Skip to main content

Representing the Change - Free Form Deformation for Evolutionary Design Optimization

  • Chapter
Evolutionary Computation in Practice

Part of the book series: Studies in Computational Intelligence ((SCI,volume 88))

The representation of a design influences the success of any kind of optimization significantly. The perfect trade-off between the number of parameters which define the search space and the achievable design flexibility is very crucial since it influences the convergence speed of the chosen optimization algorithm as well as the possibility to find the design which provides the best performance. Classical methods mostly define the design directly, e.g. via spline surfaces or by representations which are specialized to one design task. In the present chapter, the so-called deformation methods are focused which follow a different approach. Instead of describing the shape directly, deformation terms are used to morph an initial design into newones. This decouples a complex design from an expensive shape description while relying purely on mapping terms which are responsible for the geometry transformations. Thus, the designer is encouraged to determine the optimal relation between parameter set and design flexibility according to the given task. With respect to the optimization, these mapping terms are considered as parameters. In this chapter, the combination of two state of the art deformation algorithms with evolutionary optimization is focused. After an introduction of these techniques, a framework for an autonomous design optimization is sketched in more detail. By means of two optimizations, which feature a stator blade of a jet turbine the workability is shown and the advantages of such representations are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arima, T., Sonoda, T., Shirotori, M., Tamura, A., and Kikuchi, K. (1999). A numerical investigation of transonic axial compressor rotor flow using a low-Reynolds-number k-ε turbulence model. ASME Journal of Turbomachinery, 121(1), pp. 44–58.

    Article  Google Scholar 

  • Bihrer, T. (2006). Direct Manipulation of Free-Form Deformation in Evolutionary Optimisation. Diploma Thesis. Computer Science Department/ Simulation, Systems Optimization and Robotics Group (SIM), TU Darmstadt, Germany

    Google Scholar 

  • Coquillart, S. (1990). Extended Free-Form Deformation: A Sculpturing Tool for 3D Geometric Modeling. Computer Graphics, 24(4):187–196.

    Article  Google Scholar 

  • Fogel, D.B. (1995). Evolutionary Computation: toward a new philosophy of machine learning New York, NY: IEEE Press.

    Google Scholar 

  • Foli, K., Okabe, T., Olhofer, M., and Sendhoff, B. (2006). Optimization of Micro Heat Exchanger: CFD, Analytical Approach and Multi-Objective Evolutionary Algorithms. International Journal of Heat and Mass Transfer, 49(5-6), pp. 1090–1099.

    Article  Google Scholar 

  • Geist, A. et al. (1995). PVM: Parallel Virtual Machine – A Users’ Guide and Tutorial for Networked Parallel Computing. Cambridge, Ma: The MIT Press.

    Google Scholar 

  • Hansen, N., and Ostermeier, A. (2001). Completely Derandomized Self- adaptation in Evolution Strategies. In: Evolutionary Computation, vol. 9, no. 2, pp. 159–196.

    Article  Google Scholar 

  • Hasenjäger, M., Sendhoff, B., Sonoda, T., and Arima, T. (2005). Three dimensional evolutionary aerodynamic design optimization with CMA-ES. In: GECCO 2005: Proceedings of the 2005 Conference on Genetic and Evolutionary Computation, edited by H.-G. ∼Beyer et al. ACM Press, New York, NY, pp. 2173–2180.

    Chapter  Google Scholar 

  • Hasenjäger, M., Sendhoff, B., Sonoda, T., and Arima, T. (2005). Single and Multi-Objective Approaches to 3D Evolutionary Aerodynamic Design Optimisation. In: Proceedings of the 6th World Congress on Structural and Multidisciplinary Optimization, Rio de Janeiro, Brazil.

    Google Scholar 

  • Hsu, W.M., Hughes, J.F., and Kaufman, H. (1992). Direct Manipulations of Free-Form Deformations. Computer Graphics, 26:177–184.

    Article  Google Scholar 

  • Kanazaki, M., Obayashi, S., Morikawa, M., and Nakahash, K. (2002). Multiobjective Design Optimization of Merging Configuration for an Exhaust Manifold of a Car Engine. In: Parallel Problem Solving from Nature - PPSN VII, Guervos, Admidis, Beyer, Fernandez-Villacanas and Schwefel (Eds.), Lecture Notes in Computer Science, 2439, pp. 281–287.

    Google Scholar 

  • Lépine, J., Guibault, F., Trépanier, J.Y., and Pépin, F. (2001). Optimized Nonuniform Rational B-spline Geometrical Representation for Aerodynamic Design of Wings. AIAA Journal, Vol. 39, No. 11.

    Google Scholar 

  • Menzel, S., Olhofer, M., and Sendhoff, B. (2005). Evolutionary Design Optimisation of Complex Systems integrating Fluent for parallel Flow Evaluation. In: Proceedings of European Automotive CFD Conference, pp. 279–289.

    Google Scholar 

  • Olhofer, M., Jin, Y., and Sendhoff, B. (2001). Adaptive encoding for aerodynamic shape optimization using Evolution Strategies. In: Congress on Evolutionary Computation (CEC). IEEE Press, Seoul, Korea, pp. 576–583.

    Google Scholar 

  • Ong, Y.S., Nair, P.B., and Lum, K.Y. (2006). Max-Min Surrogate Assisted Evolutionary Algorithm for Robust Aerodynamic Design. IEEE Transactions on Evolutionary Computation, 10(4), pp. 392–404.

    Article  Google Scholar 

  • Oyama, A., Obayashi, S., and Nakamura, T. (2000). Real-coded Adaptive Range Genetic Algorithm Applied to Transonic Wing Optimization. Proceedings of  the 6th International Conference on Parallel Problem Solving from Nature. Springer, pp. 712–721.

    Google Scholar 

  • Perry, E.C., Benzley, S.E., Landon, M., and Johnson, R. (2000). Shape Optimization of Fluid Flow Systems. In: Proceedings of ASME FEDSM’00. ASME Fluids Engineering Summer Conference, Boston.

    Google Scholar 

  • Piegl, L., and Tiller, W. (1997). The NURBS Book. Springer-Verlag Berlin Heidelberg.

    Google Scholar 

  • PVM: Parallel Virtual Machine. http://www.csm.ornl.gov/pvm/pvm_home.html.

  • Rechenberg, I. (1994). Evolutionsstrategie ’94. Friedrich Frommann Verlagâ‹… Günther Holzboog, Stuttgart-Bad Cannstatt.

    Google Scholar 

  • Requicha, A.A.G. (1980). Representations for Rigid Solids: Theory, Methods, and Systems. In: Computing Surveys 12, pp. 437–464.

    Article  Google Scholar 

  • Schwefel, H.P. (1995). Evolution and Optimum Seeking. John Wiley & sons. New York.

    Google Scholar 

  • Sederberg, T.W., and Parry, S.R. (1986). Free-Form Deformation of Solid Geometric Models. Computer Graphics, 20(4):151–160.

    Article  Google Scholar 

  • Sendhoff, B., Kreuz, M., and von Seelen, W. (1997). A condition for the genotype-phenotype mapping: Causality. In: Thomas Bäck, editor, Proceedings of the Seventh International Conference on Genetic Algorithms (ICGA’97), Morgan Kauffmann, pp. 73–80.

    Google Scholar 

  • Sonoda, T., Yamaguchi, Y., Arima, T., Olhofer, M., Sendhoff, B., and Schreiber, H-A. (2004). Advanced High Turning Compressor Airfoils for Low Reynolds Number Condition, Part 1: Design and Optimization. Journal of Turbomachinery, 126: 350–359.

    Article  Google Scholar 

  • Terzopoulos, D., and Qin, H. (1994). Dynamic NURBS with geometric constraints for interactive sculpting. In: ACM Transactions on Graphics 13, Nr. 2, pp. 103–136.

    Article  MATH  Google Scholar 

  • Ugail, H., and Wilson, M.J. (2003). Efficient shape parameterisation for automatic design optimisation using a partial differential equation formulation. In: Computers & Structures 81, pp. 2601–2609.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Menzel, S., Sendhoff, B. (2008). Representing the Change - Free Form Deformation for Evolutionary Design Optimization. In: Yu, T., Davis, L., Baydar, C., Roy, R. (eds) Evolutionary Computation in Practice. Studies in Computational Intelligence, vol 88. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75771-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75771-9_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75770-2

  • Online ISBN: 978-3-540-75771-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics