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Abstract

Motivated by applications in mathematical biology concerning ran-

domly alternating motion of micro-organisms, we analyze a generalized

integrated telegraph process. The random times between consecutive ve-

locity reversals are gamma-distributed, and perform an alternating re-

newal process. We obtain the probability law and the mean of the process.

1 Introduction

The telegraph random process describes the motion of a particle on the real line,
traveling at constant speed, whose direction is reversed at the arrival epochs of
a Poisson process. After some initial works, such as [8], [11] and [17], numerous
efforts have been made by numerous authors and through different methods
to analyze this process. Various results on the telegraph process, including
the first-passage-time density and the distribution of motion in the presence of
reflecting and absorbing barriers have been obtained in [6], [7] and [19]. A wide
and comprehensive review devoted to this process has recently been offered by
Weiss [22], who also emphasized its relations with some physical problems.

In various applications in biomathematics the telegraph process arises as a
stochastic model for systems driven by dichotomous noise (see [2], for instance).
Two stochastic processes modeling the major modes of dispersal of cells or or-
ganisms in nature are introduced in [20]; under certain assumptions, the motion
consisting of sequences of runs separated by reorientations with new velocities is
shown to be governed by the telegraph equation. Moreover, the discrete analog
of the telegraph process, i.e. the correlated random walk, is usually used as a
model of the swarming behavior of myxobacteria (see [5], [9], [13] and [15]).
Processes governed by hyperbolic equations are also used to describe movement
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and interaction of animals [16] and chemotaxis [10]. Moreover, the integrated
telegraph process has been also used to model wear processes [3] and to describe
the dynamics of the price of risky assets [4].

Many authors proposed suitable generalizations of the telegraph process,
such as the 1-dimensional cases with three cyclical velocities [18], or with n
values of the velocity [12], or with random velocities [21]. See also the paper by
Lachal [14], where the cyclic random motion in R

d with n directions is studied.
A generalized integrated telegraph process whose random times separating

consecutive velocity reversals have a general distribution and perform an alter-
nating renewal process has been studied in [1] and [23]. Along the line of such
articles, in this paper we study a stochastic model for particles motion on the
real line with two alternating velocities c and −v. The random times between
consecutive reversals of direction perform an alternating renewal process and
are gamma distributed, which extends the Erlang-distribution case treated in
[1].

In Section 2 we introduce the stochastic process {(Xt, Vt); t ≥ 0}, with Xt

and Vt denoting respectively position and velocity of the particle at time t. In
Section 3 we obtain a series-form of the random motion probability law for
gamma-distributed random inter-renewal times, whereas the mean value of Xt

conditional on initial velocity is finally obtained in Section 4.

2 The random motion

We consider a random motion on R with two alternating velocities c and −v,
with c, v > 0. The direction of motion is forward or backward when the velocity
is c or −v, respectively. Velocities change according to the alternating counting
process {Nt; t ≥ 0} characterized by renewal times T1, T2, . . ., so that Tn is the
n-th random instant in which the motion changes velocity. Hence,

N0 = 0, Nt =
∞
∑

n=1

1{Tn6t}, t > 0.

Let {(Xt, Vt); t ≥ 0} be a stochastic process on R × {−v, c}, where Xt and Vt

give respectively position and velocity of the motion at time t. Assuming that
X0 = 0 and v0 ∈ {−v, c}, for t > 0 we have:

Xt =

∫ t

0

Vs ds, Vt =
1

2
(c− v) + sgn(V0)

1

2
(c+ v) (−1)Nt . (1)

Denoting by Uk (Dk) the duration of the k-th time interval during which
the motion goes forward (backward), we assume that {Uk; k = 1, 2, . . .} and
{Dk; k = 1, 2, . . .} are mutually independent sequences of independent copies of
non-negative and absolutely continuous random variables U and D.

If the motion does not change velocity in [0, t], then Xt = V0 t. Otherwise, if
there is at least one velocity change in [0, t], then −vt < Xt < ct w.p. 1. Hence,
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the conditional law of {(Xt, Vt); t ≥ 0} is characterized by a discrete component

P{Xt = yt, Vt = y |X0 = 0, V0 = y},

and by an absolutely continuous component

p(x, t | y) = f(x, t | y) + b(x, t | y), (2)

where

f(x, t | y) = ∂

∂x
P{Xt ≤ x, Vt = c |X0 = 0, V0 = y},

b(x, t | y) = ∂

∂x
P{Xt ≤ x, Vt = −v |X0 = 0, V0 = y},

with t > 0, −vt < x < ct and y ∈ {−v, c}.
The formal conditional law of {(Xt, Vt); t ≥ 0} has been given in Theorem

2.1 of [1] for V0 = c. Case V0 = −v can be treated by symmetry.
Explicit results for the probability law have been obtained in Theorem 3.1

of [1] when the random times U and D separating consecutive velocity reversals
have Erlang distribution. This case describes the random motion of particles
subject to collisions arriving according to a Poisson process with rate λ if the
motion is forward and rate µ it is backward. When the motion has initial
velocity c (−v), then the first n− 1 (r− 1) collisions have no effect, whereas the
nth (rth) collision causes a velocity reversal. In the following section we shall
treat the more general case in which the random inter-renewal times are gamma
distributed.

3 Gamma-distributed random times

We assume that the random times U and D are gamma distributed with pa-
rameters (λ,α) and (µ,β), respectively, where λ, µ > 0 and α, β > 0. Hereafter
we obtain the probability law of {(Xt, Vt); t ≥ 0} for this case.

Theorem 1 If U and D are gamma-distributed with parameters (λ, α) and

(µ, β), respectively, for t > 0 it is

P{Xt = ct, Vt = c |X0 = 0, V0 = c} =
Γ(α, λt)

Γ(α)
, (3)

and, for −vt < x < ct,

f(x, t | c) = 1

c+ v

{

e−µx

+∞
∑

k=1

µkβ(x)kβ−1

Γ(kβ)

[

P (kα, λx∗)− P (kα+ α, λx∗)

]

}

, (4)

b(x, t | c) = 1

c+ v

{

λαe−λx∗

(x∗)α−1

Γ(α)

Γ(β, µx)

Γ(β)

+e−λx∗
+∞
∑

k=1

λ(k+1)α(x∗)(k+1)α−1

Γ((k + 1)α)

[

P (kβ, µx)− P (kβ + β, µx)

]

}

, (5)
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where

x = x(x, t) =
ct− x

c+ v
, x∗ = x∗(x, t) =

vt+ x

c+ v
,

and

Γ(a, u) =

∫ ∞

u

ta−1e−tdt, P (a, u) =
1

Γ(a)

∫ u

0

ta−1e−tdt, a > 0. (6)

Proof. Making use of (2.4) of [1] and noting that for k ≥ 1 the pdfs of U (k) =
U1 + . . .+ Uk e D(k) = D1 + . . .+Dk are given by

f
(k)
U (x) =

λkαxkα−1e−λx

Γ(kα)
, f

(k)
D (x) =

µkβxkβ−1e−µx

Γ(kβ)
, x > 0, (7)

we have

f(x, t | c) = 1

c+ v
e−µxeλx

+∞
∑

k=1

µkβ(x)kβ−1

Γ(kβ)

λkα

Γ(kα)Γ(α)
Ik, (8)

where

Ik :=

∫ t

x

e−λs(s− x)kα−1Γ(α, λ(t− s)) ds, k ≥ 1. (9)

Noting that, due to (6), Γ(a, u) = Γ(a)
[

1− P (a, u)
]

we obtain

Ik = I1,k − I2,k, (10)

where, for k ≥ 1

I1,k := Γ(α)

∫ t

x

e−λs(s− x)kα−1 ds = Γ(kα) Γ(α) e−λxλ−kαP (kα, λx∗), (11)

I2,k := Γ(α)

∫ t

x

e−λs(s− x)kα−1 P (α, λ(t − s)) ds

= e−λxΓ(α)

∫ x∗

0

e−λyykα−1 P (α, λ(x∗ − y)) dy = e−λxλ−kα G(λx∗), (12)

with

G(λx∗) :=

∫ λx∗

0

e−uukα−1

(

∫ λx∗−u

0

e−ττα−1 dτ

)

du. (13)

Making use of the Laplace transform of (13) it follows

Lz{G(λx∗)} = Lz

{

e−λx∗

(λx∗)
kα−1

}

Lz

{

∫ λx∗

0

e−ττα−1dτ

}

=
Γ(kα) Γ(α)

z(z + 1)kα+α
.
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Hence, from identity

Lz {P (kα+ α, λx∗)} = Lz

{

∫ λx∗

0

ukα+α−1e−u

Γ(kα+ α)
du

}

=
1

z(z + 1)kα+α
,

we have
G(λx∗) = Γ(kα) Γ(α)P (kα + α, λx∗).

Eqs. (10)÷(13) thus give

Ik = Γ(kα) Γ(α) e−λxλ−kα
[

P (kα, λx∗)− P (kα+ α, λx∗)
]

. (14)

Eq. (4) then follows from (8) and (13). In order to obtain b(x, t | c), we recall
(2.5) of [1] and make use of (7) to obtain

b(x, t | c) =
1

c+ v

{

λαe−λx∗

(x∗)α−1

Γ(α)

Γ(β, µx)

Γ(β)

+ e−λx∗

eµx
∗
+∞
∑

k=1

λ(k+1)α(x∗)(k+1)α−1

Γ((k + 1)α)

× µkβ

Γ(β)Γ(kβ)

∫ t

x∗

e−µs(s− x∗)kβ−1Γ(β, µ(t− s))ds

}

. (15)

Due to (9), the integral in (15) can be calculated from (14) by interchanging x∗,
β, µ with x, α, λ, respectively. Eq. (5) then follows after some calculations. �

Figure 1 shows density p(x, t | c) as x varies in (−vt, ct) for various choices
of t, α and β. Hereafter we analyze the obtain the limits of densities f(x, t | c)
and b(x, t | c) at the extreme points of interval (−vt, ct), for any fixed t.

Proposition 1 Under the assumptions of Theorem 1 we have

lim
x↓−vt

f(x, t|c) = 0, lim
x↑ct

f(x, t|c) =







+∞, 0 < β < 1
µ

c+ v

[

P (α, λt) − P (2α, λt)
]

, β = 1

0, β > 1,

lim
x↑ct

b(x, t|c) = λαe−λttα−1

(c+ v)Γ(α)
, lim

x↓−vt
b(x, t|c) =











+∞, 0 < α < 1
λΓ(β, µt)

(c+ v)Γ(α)Γ(β)
, α = 1

0, α > 1.

From Proposition 1 we note that if α < 1 (β < 1), i.e. the gamma inter-
renewal density has a decreasing hazard rate, then the backward (forward) den-
sity is divergent when x approaches −vt (ct). This is very different from the
behavior exhibited in the case of Erlang-distributed inter-renewals (see Corol-
lary 3.1 of [1]), when the limits are finite.
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Figure 1: Density (2) for c = v = 1, λ = µ = 1, and t = 1 (dotted line), t = 2
(dashed line), and t = 3 (solid line), with (a) α = β = 0.5, (b) α = 0.5 and
β = 1.5, (c) α = 1.5 and β = 0.5, (d) α = β = 1.5.

4 Mean value

In this Section we obtain the mean value of Xt when random times U and D
are identically gamma distributed.

Theorem 2 Let U and D have gamma distribution with parameters (λ, α). For

any fixed t ∈ (0,+∞), we have

E
[

Xt

∣

∣V0

]

= V0 t+
c+ v

λ
sgn(V0)

+∞
∑

k=1

(−1)k
[

λt P (kα, λt) − kαP (kα+ 1, λt)
]

.

(16)

Proof. Due to Eqs. (1) and recalling that P(Tk ≤ s) = P (kα, λs), s ≥ 0, it is

E
[

Xt

∣

∣V0

]

=
1

2
(c− v)t+

1

2
(c+ v) sgn(V0)

∫ t

0

E
[

(−1)Ns

]

ds (17)

=
1

2
(c− v)t+

1

2
(c+ v) sgn(V0)

∫ t

0

{

1 + 2

+∞
∑

k=1

(−1)k P (kα, λs)

}

ds

= V0 t+ (c+ v) sgn(V0)

+∞
∑

k=1

(−1)k
∫ t

0

P (kα, λs) ds.
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Figure 2: Mean value E[Xt |V0 = c], for c = v = 1 and α = 0.5 (dotted line),
α = 1 (dash-dot line), α = 1.5 (dash line), α = 2 (solid line), with (a) λ = 1
and (b) λ = 2.

(Note that the above series is uniformly convergent.) Moreover, recalling (6) it
is not hard to see that

∫ t

0

P (kα, λs) ds = t P (kα, λt)− kα

λ
P (kα+ 1, λt).

Eq. (16) then immediately follows. �

The graphs given in Figure 2 show the mean value of Xt conditional on
V0 = c for some choice of the involved parameters. We note that, being P (α, t) ∼
tα−1/Γ(α) as t → 0, under the assumptions of Theorem 2 from (16) we have

E
[

Xt

∣

∣V0

]

∼ V0 t as t → 0.

We remark that when α = n is integer, i.e. the random times U and D are
Erlang-distributed with parameters (λ, n), then E

[

Xt

∣

∣V0

]

can be computed
making use of (17) and noting that

E
[

(−1)Ns

]

= 1− 2e−λs

+∞
∑

k=0

2nk+2n−1
∑

j=2nk+n

(λs)j

j!
.

For instance, in this case the following expressions hold for t > 0:
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n E
[

Xt

∣

∣V0

]

1
(c− v)t

2
+

(c+ v)

4λ
sgn(V0) [1− e−2λt]

2
(c− v)t

2
+

(c+ v)

2λ
sgn(V0) [1− e−λt cos(λt)]

3
(c− v)t

2
+

(c+ v)

2λ
sgn(V0)

{

1− e−2λt

6
+

4

3
[1− e−

λt

2 cos(

√
3

2
λt)]

}

4
(c− v)t

2
+

(c+ v)

2λ
sgn(V0)

{

[

1− (1 +

√
2

2
)e−λt(1−

√
2

2
) cos(

√
2

2
λt)
]

+
[

1− (1 −
√
2

2
)e−λt(1+

√
2

2
) cos(

√
2

2
λt)
]

}
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