Skip to main content

Implicit Operations in MV-Algebras and the Connectives of Łukasiewicz Logic

  • Chapter
Algebraic and Proof-theoretic Aspects of Non-classical Logics

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4460))

Abstract

It is shown that a conservative expansion of infinite valued Łukasiewicz logic by new connectives univocally determined by their axioms does not necessarily have a complete semantics in the real interval [0,1]. However, such extensions are always complete with respect to valuations in a family of MV-chains. Rational Łukasiewicz logic being the largest one that has a complete semantics in [0,1]. In addition, this logic does not admit expansions by axiomatic implicit connectives that are not already explicit. Similar results are obtained for n-valued Łukasiewicz logic and for the logic of abelian lattice ordered groups. These and related results are obtained by the study of compatible operations implicitly defined by identities in the varieties of MV-algebras and abelian ℓ-groups; the pertaining algebraic results having independent interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguzzoli, S., Mundici, D.: Weirstrass approximation theorem and Łukasiewicz formulas with one quantified variable. In: Fitting, M., Orlowska, E. (eds.) Beyond Two: Theory and Applications of Multiple Valued Logic, pp. 315–335. Physica-Verlag, Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  2. Baaz, M.: Infinite-valued Gödel logics with 0-1-projections and relativizations. In: Hájek, P. (ed.) Proceedings of Gödel 96. Lecture Notes in Logic 6, pp. 23–33. Springer, Heidelberg (1996)

    Google Scholar 

  3. Baaz, M., Veith, H.: Interpolation in fuzzy logic. Archive for Mathematical Logic 38, 461–498 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Baker, K.A.: Free vector lattices. Canad. J. Math. 20, 58–66 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bigard, A., Keimel, K., Wolfenstein, S.: Groupes et Anneaux Réticulés. Lecture Notes in Mathematics, vol. 608. Springer, Heidelberg (1971)

    MATH  Google Scholar 

  6. Blok, W.J., Pigozzi, D.: Algebraizable logics. Memoirs of the AMS 396 (1989)

    Google Scholar 

  7. Burris, S., Sankappanavar, H.P.: A Course in Universal Algebra. Graduate Texts in Mathematics, vol. 78. Springer, Heidelberg (1981)

    MATH  Google Scholar 

  8. Caicedo, X.: Implicit connectives of algebraizable logics. Studia Logica 78, 155–170 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Caicedo, X., Cignoli, R.: An algebraic approach to intuitionistic connectives. Journal of Symbolic Logic 60, 1620–1636 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cignoli, R., D’Ottaviano, I.M.L., Mundici, D.: Algebraic Foundations of Many-valued reasoning. Kluwer Academic Publishers, Dordrecht (2000)

    Book  MATH  Google Scholar 

  11. Chang, C.C.: A new proof of the completeness of Łukasiewicz axioms. Trans. A.M.S. 93, 74–80 (1959)

    MathSciNet  MATH  Google Scholar 

  12. Chang, C.C., Keisler, J.: Model Theory, 3rd edn. North Holland, Amsterdam (1990)

    MATH  Google Scholar 

  13. Bĕhounek, L., Cintula, P.: Fuzzy logics as the logics of chains. Fuzzy Sets and Systems 157(5), 604–610 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Galli, A., Lewin, R., Sagastume, M.: The logic of equilibrium and abelian lattice ordered groups. Arch. Math. Logic 43, 141–158 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gerla, B.: Rational Łukasiewicz logic and DMV-algebras. Neural Networks World 11, 579–584 (2001)

    Google Scholar 

  16. Komori, Y.: Super-Łukasiewicz propositional logics. Nagoya Math. J. 84, 119–133 (1981)

    Article  MATH  Google Scholar 

  17. Lacava, F., Saeli, D.: Sul model-completamento della teoría delle Ł-catene. Bolletino Unione Matematica Italiana 14-A(5), 107–110 (1977)

    MATH  Google Scholar 

  18. Marker, D.: Model Theory, An Introduction. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  19. Metcalfe, G., Olivetti, N., Gabbay, D.: Sequent and Hypersequent Calculi for Abelian and Łukasiewicz Logics. ACM Transactions on Computational Logic 6(3), 578–613 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Montagna, F.: An algebraic approach to propositional fuzzy logic. Journal of Logic Language and Information 9, 91–124 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mundici, D.: Interpretation of AF C-algebras in Łukasiewicz sentential calculus. Journal of Functional Analysis 65, 15–63 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  22. Robinson, A.: Complete theories. North Holland, Amsterdam (1956)

    MATH  Google Scholar 

  23. Van den Dries, L.: Tame topology and o-minimal structures. Cambridge U. Press, Cambridge (1998)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Stefano Aguzzoli Agata Ciabattoni Brunella Gerla Corrado Manara Vincenzo Marra

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Caicedo, X. (2007). Implicit Operations in MV-Algebras and the Connectives of Łukasiewicz Logic. In: Aguzzoli, S., Ciabattoni, A., Gerla, B., Manara, C., Marra, V. (eds) Algebraic and Proof-theoretic Aspects of Non-classical Logics. Lecture Notes in Computer Science(), vol 4460. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75939-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75939-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75938-6

  • Online ISBN: 978-3-540-75939-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics