

Edinburgh Research Explorer

XML Publishing: Bridging Theory and Practice

Citation for published version:
Fan, W 2007, XML Publishing: Bridging Theory and Practice. in Database Programming Languages: 11th
International Symposium, DBPL 2007, Vienna, Austria, September 23-24, 2007, Revised Selected Papers.
vol. 4797, Springer Berlin Heidelberg, pp. 1-16. https://doi.org/10.1007/978-3-540-75987-4_1

Digital Object Identifier (DOI):
10.1007/978-3-540-75987-4_1

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Database Programming Languages

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 26. Apr. 2024

https://doi.org/10.1007/978-3-540-75987-4_1
https://doi.org/10.1007/978-3-540-75987-4_1
https://www.research.ed.ac.uk/en/publications/2d8709c5-aab1-414d-820c-bcb848422cc1

XML Publishing: Bridging Theory and Practice

Wenfei Fan⋆

University of Edinburgh and Bell Laboratories

Abstract. Transforming relational data into XML, as known as XML

publishing, is often necessary when one wants to exchange data residing
in databases or to create an XML interface of a traditional database. This
paper aims to provide an overview of recent advances in XML publish-
ing. We present a notion of publishing transducers recently developed
for studying the expressive power and complexity of XML publishing
languages. In terms of publishing transducers we then characterize XML
publishing languages being used in practice. In addition, we address dy-
namic aspects of XML publishing, namely, incremental maintenance and
update management of XML views published from relational data.

1 Introduction

While most data is currently residing in relational databases, it is increasingly
common for one to exchange the data in XML format, or to build an XML

interface of the databases. This highlights the need for transforming relational
data into XML, as known as XML publishing of relational data.

In response to the need, a variety of XML publishing languages have been
developed [2, 3, 15, 26], and are rapidly being introduced into commercial prod-
ucts [18, 21, 24]. An XML publishing language is essentially a view definition
language, for specifying XML views of relational data. Just like their relational
counterparts, associated with XML publishing languages are a number of funda-
mental questions in connection with their complexity and expressiveness. These
questions are not only of theoretical interest, but are also important in prac-
tice for both users and designers of XML publishing languages. Given a host of
XML publishing languages, a user wants to decide which one to choose: is an
XML view expressible in certain languages but not definable in others? Which
language is “better” than others when it comes to evaluation cost? To support
recursively-defined XML views in a publishing language, database vendors may
want to know whether or not certain high-end DBMS features are a must: is it
necessary to upgrade the DBMS to support linear recursion of SQL’99?

This paper aims to provide a synergy between theory and practice by answer-
ing these questions for XML publishing languages supported by commercial prod-
ucts or research prototype systems: sql/xml of IBM DB2 XML Extender [18] and
Oracle 10g XML DB [24], for-xml and xsd of SQL Server 2005 [21], dad of DB2

XML Extender, dbms xmlgen of XML DB, as well as XPERANTO [26], TreeQL

of SilkRoute [15, 2], and ATG of PRATA [3]. We evaluate these languages in terms
of their expressive power and complexity, by leveraging a notion of publishing

⋆ Supported in part by EPSRC GR/S63205/01, GR/T27433/01, EP/E029213/1 and
BBSRC BB/D006473/1.

transducers recently proposed in [13]. We characterize these languages in terms
of various classes of publishing transducers, for which the complexity bounds
and expressive power have been established in [13].

Another aim of the paper is to promote the study of dynamic aspects of
XML publishing. Since XML publishing actually defines XML views of relational
data, for all the reasons that the incremental update and view update problems
are important for database views, efficient incremental maintenance and update
management also deserve a full treatment for XML publishing. Unfortunately we
are aware of the support of this functionality only in research prototype systems
(e.g., PRATA [6, 11]), but currently not in any of the commercial systems.

The remainder of the paper is organized as follows. In Section 2, we discuss
various dichotomies for assessing XML publishing languages. In Section 3 we
present XML publishing transducers and give an account of results about their
complexity bounds and expressive power. In Section 4 we characterize the XML

publishing languages mentioned above in terms of publishing transducers. In
Section 5, we address the incremental update and view update problems for
XML publishing. Finally, we identify open research issues in Section 6.

2 XML Publishing

An XML document is typically modeled as a node-labeled, ordered, unranked
tree. Given a relational schema R, XML publishing is to define an XML view,
i.e., a mapping τ such that for any instance I of R, τ(I) is an XML tree.

Example 1. Consider a relational schema R0 (with keys underlined): course(cno,
title, type), prereq(cno1, cno2). A database instance D0 of R0 maintains course
data classified into “regular” and “project” type, and a relation prereq in which
a tuple (c1, c2) indicates that c2 is an immediate prerequisite of c1. Note that
the transitive closure of prereq gives the prerequisite hierarchy of the courses.

One may want to define the following XML views of the relational database:

(1) As depicted in Fig. 1(a), view τ1 is a tree of depth two, containing the list
of all courses in D0 that do not have db as its immediate prerequisite, i.e., for
any such course c, (c, c′) is not in prereq if the title of c′ is db.

(2) As shown in Fig. 1(b), view τ2 contains the list of all courses in D0. Under
each course c are its title and the list of cno’s of its immediate prerequisites,
followed by an element next-level under which are the immediate prerequisites
of the cno children of c, and so on, until all the prerequisites of c are listed.

(3) As depicted in Fig. 1(c), view τ3 is a tree of depth two, containing the list
of all courses in D0. Below each course c is its cno, followed by the list of all the
cno’s that appear in the prerequisite hierarchy of c.

(4) As shown in Fig. 1(d), view τ4 is an XML tree that is required to conform to
the DTD d0 below (the definition of elements whose type is PCDATA is omitted):

<!ELEMENT db (course∗)>

<!ELEMENT course (cno, title, type, prereq)>

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

db

course coursecourse

titlecno

(a) XML view τ1

��
��
��
��
��
��
��
��

��
��
��
��

db

course coursecourse

next−level

next−levelcnocno

cnocnotitle

(b) XML view τ2

db

coursecourse course

title cno cno

(c) XML view τ3

��
��
��
��
��
��
��
��

��
��
��
��

prereq

coursecourse

cno

db

course coursecourse

title

project

type

(d) XML view τ4

Fig. 1. Example XML publishing

<!ELEMENT type (regular | project)>

<!ELEMENT prereq (course∗)>

<!ELEMENT regular (empty)> /* similarly for project */

We may find it difficult to express (1) τ1 in xsd of SQL Server 2005 [21],
RDB mapping of IBM DB2 XML Extender [18] and TreeQL [2], (2) τ2 in any lan-
guage except ATG [3], (3) τ3 in any language except dbms xmlgen of Oracle 10g
XML DB [24] and ATG, and (4) τ4 in any language except ATG to guarantee the
conformance to D0. However we are not sure whether it is because we do not
know the languages well enough, or due to the limitations of the languages. �

To answer this question we study a variety of factors that may impact the ex-
pressive power of an XML publishing language. A publishing language typically
specifies the behaviors of a middleware controller with a limited query interface
to relational sources. An XML view defined in such a language builds an output
tree top-down starting from the root: at each node it issues queries to a rela-
tional database I, generates the children of the node using the query results, and
iteratively expands the subtrees of those children inductively. It may (implicitly)
store intermediate query results in registers associated with nodes and pass the
information downward to control subtree generation [2, 3, 18, 21, 24, 26]. It may
also allow virtual tree nodes [2, 3] that will be removed from the output tree to
express, e.g., XML entities. In addition, it may be recursively defined, capable
of generating XML trees for which the depth cannot be determined at compile
time. Finally, it may encode a DTD to guarantee that the output trees conform
to the predefined DTD. These motivate us to consider the following dichotomies:

– CQ, FO vs. FP: the relational query language in which queries on relational
data are expressed. We consider conjunctive queries (CQ), first-order queries
(FO) and (inflationary) fixpoint queries (FP). For example, view τ1 requires
an FO query and cannot be expressed in languages with CQ queries only.

– Relation vs. tuple: registers that store intermediate results. Some languages
store a finite relation in a register while others allow a single tuple. View τ2
is definable only in languages that support relation registers.

– Virtual vs. normal: the types of nodes. Languages may or may not allow
virtual nodes that will be removed from the output tree. In a language that
does not support FP (e.g., SQL’99), view τ3 is definable only if virtual nodes
are allowed, by making the next-level nodes of τ2 virtual.

– Recursive vs. nonrecursive: whether or not views can be recursively defined.
For example, τ2 and τ4 are recursively defined: the depth of a course sub-tree

in these views is determined by its prerequisite hierarchy in D0.
– DTD-directed or not: whether or not output XML trees are guaranteed to

conform to a predefined DTD. In practice, XML publishing is often directed
by a type, typically a DTD, as shown by τ4. A community or industry agrees
on a certain DTD, and subsequently all members of the community create
XML views of their relational data that conform to the predefined DTD [2].

Different combinations of these parameters yield a spectrum of XML publishing
languages with quite different expressive power and complexity.

3 Publishing Transducers

We now present publishing transducers introduced in [13], which allow us to
characterize the complexity and expressive power of existing XML publishing
languages, as well as their equivalence and separation.

3.1 Definition of Publishing Transducers

Let R be a relational schema, L a relational query language, and Σ a set of XML

tags. A publishing transducer is a finite state machine that, given a database
instance I of R, generates an XML tree with elements labeled with tags in Σ,
top-down starting from the root. To do this, with each element labeled a ∈ Σ

in the XML tree, it associates a register Rega, storing intermediate result as a
relation of a fixed arity. At each a-node v, the transducer extracts data from the
underlying database I and the intermediate result in Rega, via a query in L, and
spawns the children of v using the data. This is directed by a transduction rule,
which is uniquely determined by the tag a and the current state of the machine.
In contrast to tree recognizers (see [16]) and the automata for querying XML [22,
23], which operate on an existing tree and either accept the tree or select a set
of nodes from the tree, a publishing transducer does not take a tree as input;
instead, it builds a new XML tree based on the data from a relational source.

Definition 1. A publishing transducer for a relational schema R is defined to

be τ = (Q,Σ, q0, δ), where Q is a finite set of states; Σ is a finite alphabet of

tags; q0 is the start state associated with the root tag r ∈ Σ; and δ is a finite set

of transduction rules: for each (q, a) ∈ Q×Σ, there is a unique rule

(q, a) → (q1, a1, φ1(x̄1; ȳ1)), . . . , (qk, ak, φk(x̄k; ȳk)).

Here k ≥ 0, a1, . . . , ak are distinct tags in Σ, (qi, ai) ∈ Q×Σ for i ∈ [1, k], and

φi ∈ L is a relational query from R and Rega to Regai
. �

We next give basic properties and the semantics of publishing transducers.

Deterministic. A publishing transducer is deterministic: for each (q, a) ∈ Q×Σ,
there is a unique transduction rule, except that for the start state q0, for which
only the rule for (q0, r) is defined. Furthermore, (a) q0 and r do not appear in the
right-hand side of any rule; (b) text is a special “tag” in Σ, and the right-hand
side of the rule for (q, text) is empty, i.e., text nodes do not have any children.

Tuple vs. relation register. The L query φi(x̄i; ȳi) extracts data from I and
Rega. The result of the query is grouped by attributes x̄i, yielding sets of tuples.
For each set Sj , a distinct ai child is created, carrying Sj as the content of its
register Regai

. These ai children are ordered based on an implicit ordering on
the domain of data. When |ȳi| = 0, i.e., when the result is grouped by the entire
tuple, each register Regai

holds a single tuple and is thus a tuple register.

Transduction. Initially, τ constructs a tree t consisting of a single node labeled
(q0, r) with an empty register. At each step, τ expands t by simultaneously oper-
ating on the leaf nodes of t. At each leaf u labeled (q, a), τ generates new nodes
by finding the rule for (q, a) from δ, issuing queries φ1(x̄1; ȳ1), . . . , φk(x̄k; ȳk)
embedded in the rule to the database I and the register Rega(u) associated with
u. For each i ∈ [1, k], the ai children and their associated register Regai

are
produced as described above. These yield the children of u characterized by a
regular expression a∗1 . . . a

∗

k. The transformation proceeds until a stop condition
is satisfied at all the leaf nodes. A stop condition is one of the following.
1. There is a node v on the path from the root to u such that v and u have

the same state q, tag a, and Rega(v) = Rega(u). Since the subtree rooted at
u is uniquely determined by q, a,Rega(u) and I, this asserts that the tree t
will not expand at u if the expansion adds no new information to the tree.

2. The query φj(x̄j ; ȳj) evaluates to empty for all i ∈ [1, k].
3. The right-hand side of the rule for (q, a) is empty. This is particularly the

case for a = text, for which u carries a string representation of Rega(u).

These conditions ensure the termination of the transformation.
When the tree cannot be expanded further, i.e., all leaf nodes satisfy a stop

condition, an XML tree is generated by removing all registers and states from
t. It is the output of the transducer τ , denoted by τ(I). We use τ(R) to denote
the set of all XML trees generated by τ when I ranges over all instances of R.

Example 2. We define a publishing transducer τ1 = (Q1, Σ1, q0, δ1) to generate
the view of Fig. 1(a), where Q1 = {q0, q}, Σ1 = {db, course, cno, title, text},
and the root tag is db. The transduction δ1 is defined as follows:

δ1(q0, db) = (q, course, φ1(n, t; ∅)), where
φ1(n, t) = ∃tp (course(n, t, tp) ∧ ¬∃n1, t1, tp1 (prereq(n, n1)∧course(n1, t1, tp1)∧t1=‘db’))

δ1(q, course) = (q, cno, φ2(n; ∅)), (q, title, φ3(t; ∅)), where
φ2(n) = ∃t Reg

c
(n, t), and φ3(t) = ∃n Reg

c
(n, t),

δ1(q, cno) = (q, text, φ4(n)), where φ4(n) = Reg
n
(n) (similarly for δ1(q, title))

δ1(q, text) = . (empty right-hand side.)

Here registers Regc and Regn are associated with course and cno nodes, respec-
tively. These are tuple registers: in each query φ(x̄; ȳ) in δ1, |ȳ| = 0.

Given a database I0 of schema R0, τ1 generates an XML tree as follows. First,
it creates the root of a tree t labeled with (q0, db). It then evaluates query φ1 on
I, and for each tuple (cno, title) in the result of the query, it expands the tree by
spawning a course child of the root, carrying the tuple in its register Regc. For
each course node, it generates its cno and title children by extracting relevant
attribute from the tuple in Regc via queries φ2 and φ3, respectively, which in turn

have a single text child carrying the attribute as pcdata. The transformation
stops at the text nodes (stop condition 3 above). Finally, it outputs an XML tree
by striking out states and registers associated with the nodes in t. �

Recursive transducers. Define the dependency graph Gτ of τ as follows. For
each (q, a) ∈ Q × Σ there is a unique node v(q, a) in Gτ , and there is an edge
from v(q, a) to v(q′, a′) iff (q′, a′) is on the right-hand side of the rule for (q, a).
We say that the transducer τ is recursive iff there is a cycle in Gτ .

Example 3. To generate the XML view of Fig. 1(b), we define a publishing trans-
ducer τ2 = (Q2, Σ2, q0, δ2), where the transduction δ2 is defined as follows:

δ2(q0, db) = (q, course, ψ1(n, t; ∅)), where ψ1(n, t) = ∃tp course(n, t, tp)

δ2(q, course) = (q, title, ψ2(t; ∅)), (q, cno, ψ3(n; ∅)), (q,next-level, ψ4(∅; n)), where
ψ2(t) = ∃n Reg

c
(n, t), ψ3(n1) = ∃n, t(Reg

c
(n, t) ∧ prereq(n, n1))

δ2(q,next-level) = (q, cno, ψ5(n; ∅)), (q,next-level, ψ5(∅; n))

where ψ4 is identical to ψ3 except that its result is put in a single relation (|x̄| = 0
in ψ4) as the content of register Regnl of the next-level node; in other words,
Regnl is a relation register while Regn associated with cno is a tuple register; ψ5 is
the same as ψ3 except that Regnl is used instead of Regc. In contrast to τ1, τ2 is
recursively defined: in its dependency graph there is an edge from v(q, next-level)
to itself. On an instance I0 of R0 the transformation of τ2 terminates due to stop
condition 2, in any practical setting where no course is a prerequisite of itself. �

Virtual vs. normal nodes. To incorporate virtual nodes we generalize trans-
ducers to be of the form τ = (Q,Σ, q0, δ, Σe), where Σe is a designated subset of
Σ and r 6∈ Σe, referred to as the virtual tags of τ ; and Q,Σ, q0, δ are the same
as in Definition 1. On a relational database I the transducer τ behaves the same
as a normal transducer, except that the XML tree τ(I) is obtained as follows.
For each node v in t, if v is labeled with a tag in Σe, we shortcut v by replacing
v with the children of v, i.e., treating these children nodes as children of the
parent of v, and removing v from the tree. The process continues until no node
in the tree is labeled with a tag in Σe.

Example 4. The XML view of Fig. 1(c) can be generated by a publishing trans-
ducer τ3 = (Q2, Σ2, q0, δ2, {next-level}), which is identical to τ2 given in Exam-
ple 3 except that here next-level is treated as a virtual tag. �

Different classes. We denote by PT(L, S,O) various classes of publishing trans-
ducers. Here L indicates the relational query language in which queries embedded
in the transducers are defined, ranging over CQ, FO and FP, all with equality
‘=’ and inequality 6=. Store S is either relation or tuple, indicating that the trees
induced by the transducers are with relation or tuple registers, respectively. As
mentioned earlier, transducers with tuple registers are a special case of those
with relation registers, i.e., when |ȳi| = 0 in each query φi(x̄i; ȳi). Output O is
either normal or virtual, indicating whether a transducer allows virtual nodes
or not. We denote by PTnr(L, S,O) the subclass of PT(L, S,O) consisting of all
nonrecursive transducers. For instance, the transducers τ1, τ2 and τ3 given in Ex-
amples 2, 3 and 4 are in PTnr(FO, tuple, normal), PT(CQ, relation, normal) and
PT(FO, relation, virtual), respectively (τ3 is also in PTnr(FP, tuple, normal)).

Classes Equivalence Emptiness Membership

PT(FP, S,O) undecidable undecidable undecidable

PT(FO, S,O) undecidable undecidable undecidable

PT(CQ, tuple, normal) undecidable ptime Σ
p

2
-complete

PT(CQ, relation, normal) undecidable ptime undecidable

PT(CQ, S, virtual) undecidable np-complete undecidable

PTnr(FO, O, normal) undecidable undecidable undecidable

PTnr(CQ, tuple, normal) Π
p

3
-complete ptime Σ

p

2
-complete

PTnr(CQ, tuple, virtual) Π
p

3
-complete np-complete Σ

p

2
-complete

Table 1. Complexity of decision problems (S: relation or tuple; O: normal or virtual)

3.2 Complexity and Expressiveness of Publishing Transducers

Complexity. A natural question is: does a publishing transducer for a relational
schema R always terminate on all instances of R? This is answered in [13]: For
any publishing transducer τ defined for schema R and for any database I of
R, the transformation of τ on I always terminates, and its worst-case data-
complexity is (a) exptime if τ is in PT(L, S, O) and S is tuple, (b) 2exptime if
τ is in PT(L, S, O) and S is relation, (c) ptime if τ is in PTnr(L, S, O) no matter
whether S is tuple or relation, where L ranges over CQ, FO and FP, and O is
either normal or virtual. This tells us that while the presence of relation registers
and recursion may complicate the transformation, relational query language L
and virtual nodes have no impact on the worse-case data complexity.

Classical decision problems associated with transducers include the following.
For a class PT(L, S, O) of publishing transducers,

(i) the membership problem is to determine, given an XML tree t and a transducer
τ in this class, whether or not there is a database I such that t = τ(I);

(ii) the emptiness problem is to decide, given τ in this class, whether there is an
instance I such that τ(I) is a nontrivial tree with more than one node;

(iii) the equivalence problem is to determine, given two transducers τ1 and τ2 in
the class defined for the same schema R, whether or not τ1(I) = τ2(I) for all
instances I of R, i.e., they produce the same trees on all the instances of R.

The analyses of these problems may tell a user, at compile time, whether or
not a publishing transducer makes sense (emptiness), whether an XML tree of
particular interest can be generated by a transducer (membership), and whether
a transducer can replaced by a more efficient one (equivalence).

Matching upper and lower bounds are established in [13] for various classes
of publishing transducers, and are summarized in Table 1.

Expressive power. A class PT(L1, S1, O1) is contained in PT(L2, S2, O2), de-
noted by PT(L1, S1, O1) ⊆ PT(L2, S2, O2), if for any τ1 in PT(L1, S1, O1) defined
for a relational schema R, there exists τ2 in PT(L2, S2, O2) for the same R such
that τ1(I) = τ2(I) for all instances I of R. The two classes are equivalent in ex-
pressive power, denoted by PT(L1, S1, O1) = PT(L2, S2, O2), if PT(L1, S1, O1)
⊆ PT(L2, S2, O2) and PT(L2, S2, O2) ⊆ PT(L1, S1, O1). A class PT(L1, S1, O1)
is properly contained in PT(L2, S2, O2) if PT(L1, S1, O1) ⊆ PT(L2, S2, O2) but
PT(L1, S1, O1) 6= PT(L2, S2, O2).

PT(FP, relation, virtual) = PT(FO, relation, virtual)

PT(FP, tuple, normal)

PT(FP, relation, normal)

PT(FO, relation, normal)

PT(CQ, relation, normal) PT(FO, tuple, normal)

PT(CQ, tuple, normal)

PT(FO, tuple, virtual)

PT(FP, tuple, virtual)

PT(CQ, tuple, virtual)

PT(CQ, relation, virtual)

PTnr(CQ, tuple, virtual)

PTnr(CQ, tuple, normal)

PTnr(FO, tuple, normal)

Fig. 2. Containment of various classes of XML publishing transducers

Containment. A containment hierarchy on various classes of publishing trans-
ducers is developed in [13], and is shown in Fig. 2. The containment is proper ex-
cept that PT(FO, tuple, virtual) = PT(FP, tuple, virtual) if ptime = nlogspace.
Figure 2 tells us that SQL’99 does not increase expressive power over SQL to a
publishing language that supports virtual nodes, recursion and relation registers.

DTD conformance. It is known [23] that a set of unranked trees is regular iff
it is MSO definable, and that a set of trees is MSO definable iff it is the set of
trees recognized by a specialized DTD [25].

A DTD d′ over Σ is defined by a set of rules of the form a → α, where a
is a tag in Σ and α is a regular expression over Σ. An XML tree t conforms
to d′ iff for each a-element v in t, the list of the labels of the children of v is
a word in α. A normalized DTD is a DTD in which for every rule a → α, α
is defined as either a1, . . . , ak (concatenation), or a1| . . . |ak (disjunction) or a∗1
(Kleene closure), where ai is an element type. It is known that every DTD can
be converted to an equivalent normalized DTD in linear time [5].

A specialized DTD d over Σ is a triple (Σ′, d′, g), where Σ ⊆ Σ′, g is a
mapping Σ′ 7→ Σ, and d′ is a DTD over Σ′. A tree t conforms to d if there exists
a Σ′-tree t′ that satisfies d′ and moreover, t = g(t′). We denote by L(d) the set
of all Σ-trees conforming to d. A (specialized or normal) DTD d is said to be
definable in PT(L, S, O) if there exists a publishing transducer τ in the class
defined for some relational schema R such that L(d) = τ(R).

It is shown [13] that every specialized DTD over Σ is definable in PT(FO,
tuple, virtual), and every normalized DTD is definable in PT(FO, tuple, normal).
However, there exist normal DTDs that are not definable in PT(CQ, relation,
virtual). This tells us that when L is FO or FP, PT(L, S, virtual) is capable
of defining all specialized DTDs, and thus all regular unranked trees and MSO

definable trees. In addition, PT(L, tuple, normal) can define normalized DTDs.
In contrast, PT(CQ, S,O) does not have sufficient power to express even DTDs.

Example 5. Recall DTDD0 from Example 1, which is normalized. One can define
τ4 in PT(FO, tuple, normal) to generate views of the form shown in Fig. 1(d)
that are guaranteed to conform to D0. While it is trivial to enforce rules defined
with concatenation and Kleene closure in D0, e.g., db, course, prereq, to enforce
the rule type → regular | project, we need to make sure that each type node
has either a regular or a project child, but not both. This can be checked by a
Boolean FO query ϕ. If ϕ is true τ4 uses the transduction below for type nodes:

δ4(q, type) = (q, regular, ϕ1(tp; ∅)), (q,project, ϕ2(tp; ∅))
where ϕ1(tp) = ∃n, t course(n, t, tp) ∧ Reg

c
(n) ∧ tp=‘regular’; /*similarly for ϕ2*/

Otherwise (ϕ is false) τ4 produces a default XML tree that conforms to D0. �

4 XML Publishing Languages in Practice

We are now ready to assess the expressive power of XML publishing languages
being used in practice, in terms of various classes of publishing transducers.

SQL/XML is an SQL extension for XML, by incorporating XML publishing
functions: xmlelement, xmlattribute, xmlforest, xmlconcat, xmlagg
and xmlgen. For instance, τ1 of Example 2 can be defined in sql/xml as follows:

select xmlelement {name “course”, xmlforest {c.cno as “cno”, c.title as “title”}}
from course c
where not exists (select c’.cno from course c’, prereq p

where p.cno1 = c.cno and p.cno2 = c’.cno and c’.title = ‘DB’)

sql/xml has essentially the same expressive power as PTnr(FO, tuple, normal).
It cannot express XML views τ2, τ3 and τ4 given earlier. It has been introduced
into commercial products, including IBM XML Extender [18] and Oracle 10g
XML DB [24]. The publishing language of XPERANTO [26] has the same
expressive power as sql/xml.

DBMS XMLGEN is a PL/SQL package supported by Oracle 10g XML DB [24].
It extends sql/xml by supporting SQL’99 and a function newContextFormHier-
archy, which, in combination of connect by prior of SQL’99, is capable of
expressing recursive XML views. For example, the following defines a recursive
XML view that contains the list of all courses; under each course c are the cno
and title of c followed by the hierarchy of the prerequisite courses of c.

dbms xmlgen.newContextFormHierarchy{
select xmlelement {name “course”, xmlforest {c.cno as “cno”, c.title as “title”}},
from course c
connect by prior course.cno = prereq.cno1}

dbms xmlgen allows neither virtual nodes nor relation registers. It cannot
define τ2 or guarantee specialized DTD conformance. Furthermore, it does not
have stop condition and thus cannot guarantee termination. If the stop condition
is imposed, XML views definable in dbms xmlgen are in PT(FP, tuple, normal).

FOR-XML and XSD are supported by SQL Server 2005 [21]. for-xml extends
SQL as follows: it extracts data from a relational source via an SQL query, and
organizes the data into a hierarchical XML view with nested for-xml constructs.
For example, τ1 can be defined with for-xml as follows:

select c.cno as “cno”, c.title as “title”
from course c
where not exists (select c’.cno from course c’, prereq p

where p.cno1 = c.cno and p.cno2 = c’.cno and c’.title = ‘DB’)
for xml path(‘course’), root(‘db’)

for-xml supports neither recursive XML views, virtual nodes nor relation reg-
isters. It has essentially the same expressive power as PTnr(FO, tuple, normal).

xsd specifies an XML view by annotating a (nonrecursive) schema, which
associates elements and attributes with tables and table columns, respectively.
Given a relational source, the annotated xsd constructs an XML tree by populat-
ing elements and attributes with tuples and values from their corresponding ta-
bles and columns, respectively. Information is passed via parent-child key-based
joins. For example, the annotated xsd below generates a view that contains the
list of all courses; under each course are its cno, title followed by a list of prereq
elements, which consists of the cno’s of all immediate prerequisite courses:

<xsd:annotation>
<xsd:appinfo>
<sql:relationship name=“prereq” parent=“course” parent-key=“course.cno”

child=“prereq” child-key=“prereq.cno1”/>
</xsd:appinfo>

<xsd:element name=“course” sql:relation = “course”>
<xsd:complexType> <xsd:sequence>
<xsd:element name=“cno” sql:relation = “course.cno”> </xsd:element>
<xsd:element name=“title” sql:relation = “course.title”> </xsd:element>
<xsd:element name=“prereq” sql:relationship=“prereq” maxOccurs=“unbounded”/>

</xsd:sequence> </xsd:complexType> </xsd:element>
</xsd:annotation>

All xsd views are nonrecursive and are expressible in PTnr(CQ, tuple, normal).

DAD (Document Access Definition) of IBM DB2 XML Extender [18] sup-
ports sql mapping and rdb mapping, which are similar to for-xml and
xsd despite different syntax, and are contained in PTnr(FO,tuple,normal) and
PTnr(CQ,tuple,normal), respectively. For example, the for-xml and xsd views
given above can be expressed in sql mapping and rdb mapping, respectively:

sql mapping:
<sql stmt> select c.cno as “cno”, c.title as “title”

from course c
where not exists (select c’.cno from course c’, prereq p

where p.cno1 = c.cno and p.cno2 = c’.cno and c’.title = ‘DB’)
</sql stmt>
<element node name=“course” multi occurrence=“yes”>
<element node name=“cno”> <text node> <column name=“cno”/></text node>
</element node> ... /*similarly for <element node name=“title”>*/

</element node>

rdb mapping:
<element node name=“db”>
<rdb node> <table name=“course”/> <table name=“prereq”/>

<condition>course.cno=prereq.cno1</condition> </rdb node>
<element node name=“course” multi occurrence=“yes”>
... /* <element node name=“cno”> and <element node name=“title”>*/
<element node name=“prereq” multi occurrence=“yes”> <text node> <rdb node>
<table name=“prereq”/><column name=“cno2”/> </rdb node> </text node>

</element node> </element node> </element node>

TreeQL was proposed for publishing middleware SilkRoute [15]. Its abstraction
[2] is precisely PTnr(CQ, tuple, virtual): it defines an XML view by annotating
the nodes of a tree template of a fixed depth with CQ queries, and supports
virtual tree nodes and tuple-based information passing (tuple registers).

ATG (Attribute Transformation Grammar) was proposed in [3] and re-
vised in [6], as the language of XML publishing middleware PRATA. An ATG

defines an XML view based on a normalized DTD, by associating each element
type a with an inherited attribute (register) $a, and annotating its DTD produc-
tion a → α with a set of relational queries, one for each sub-element type b in
the regular expression α, specifying how to compute $b and populate the b chil-
dren of an a element. It supports recursive DTDs and thus recursive XML views,
as well as virtual nodes to cope with XML entities. It provides a DTD-directed
method to define XML views, such that the views are guaranteed to conform to a
predefined DTD. For example, view τ4 given earlier is defined in ATG as follows,
which guarantees the view to conforms to DTD D0 of Example 1:

db → course∗

$course = select cno, title, type from course
course → cno, title, type, prereq

$prereq = select cno from $course; similarly for $cno, $title and $type
type → regular | project

$regular = select cno from $type where type=‘regular’;
$project = select cno from $type where type=‘project’;

prereq → course∗

$course = select c.cno, c.title, c.type from prereq p, $prereq cp, course c
where cp.cno = p.cno1 and p.cno2 = c.cno;

ATG of [3] is essentially PT(FO,relation,virtual) and can express views τ1–τ4.

XQuery [9] is a Turing-complete XML query language and can express arbitrary
XML views. In practice one typically does not need the expressive power of
XQuery and thus should not be penalized by the evaluation cost of full-fledged
XQuery. In contrast to ATG, XQuery neither guarantees DTD conformance, nor
provides any guidance on how to define an XML view that typechecks.

5 Dynamic Aspects

In many applications including mediation, archiving and Web site management,
large XML documents may need to be exported from relational sources and main-

tained, rather than being “disposed”. Just like their relational counterparts, there
are two practical problems associated with XML views published from relational
data: the incremental update problem and the view update problem.

Incremental publishing. Given a publishing transducer τ defined on a rela-
tional schema R, an instance I of R, the XML view t = τ(I), and changes ∆I
to I, incremental XML publishing is to compute XML changes ∆t to t such that
t⊕∆t = τ(I ⊕∆I). As an example, recall the XML view of Fig. 1(d) published
from database I0 by the transducer τ4 of Example 5. When I0 is updated by,
e.g., ∆I consisting of the insertion of tuples into prereq followed by deletion

of tuples from course, certain course subtrees of Fig. 1(d) have to be changed.
Incremental publishing is to compute the XML change ∆t in response to I0.

In contrast to recomputing the new view τ(I⊕∆I) from scratch, incremental
publishing can, in principle, improve performance substantially by applying only
the changes ∆t to the old view t. The need for this is evident in practice: as
PRATA experienced with applications of European Bioinformatics Institute [10],
recomputing the entire new view may be quite costly: it may take hours for large
XML views. In contrast, relational changes ∆I are often small, and a small ∆I
typically incurs only small XML changes ∆t. Incremental XML publishing is to
efficiently compute ∆t by minimizing unnecessary recomputation.

One approach for incremental XML publishing is to push incremental compu-
tation to the underlying relational DBMS, along the same lines as implementa-
tions of XML publishing middleware [3, 15, 26]. However, several practical issues
hamper the applicability of this reduction approach. For example, for recursive
XML views the reduction approach depends on incremental update of material-
ized views defined using SQL’99 recursion. However, few DBMS’s support SQL’99,
and none supports incremental maintenance of SQL’99 views. In addition, if the
queries embedded in a transducer are even mildly complex, the combined queries
to be pushed down to DBMS may become extremely complex. They may not be
effectively optimized by all DBMS, even for non-recursive publishing mappings.

In light of this, we outline an incremental publishing technique developed for
PT(CQ,tuple,virtual) in [6]. It requires the lowest common denominator of DBMS

functionality: neither SQL’99 nor incremental maintenance. The technique can
be extended to other publishing transducers and languages mentioned earlier.

(1) External storage. For any instance I of schema R, a publishing transducer
τ on R induces a function ST that, given a tag a, a state q and a value v of
Rega, ST(a, q, v) returns a unique subtree in t = τ(I), rooted at a node tagged
a and carrying v in its register. Leveraging this subtree property, we can store t
using (i) a hash index H in which each entry (a, q, id(v), p) identifies a node in
t, along with a pointer p to its subtree in S to be given below, where id(v) is the
unique and compact representation of v, computed by a Skolem function; (ii) a
subtree pool S consisting of entries (a, q, id(v), L), where L is a list of H entries
to all the children of the node identified by (a, q, id(v)). This allows us to store
an XML view as a dag, which may take exponentially less space than t.

(2) Algorithm. Given ∆I, one can compute XML updates ∆t as follows.

(Step 1) Compute E+ and E−, the set of edges to be inserted into and deleted
from t, respectively. Here each edge is identified by a pair of H-entries. This can
be done as follows. (i) For each pair (q, a, q′, b) of (state, tag) pairs, define an
SQL query Q(q,a,q′,b) as the union of queries ψ that appear in a τ rule (q, a) →
. . . (q′, b, ψ). (ii) Compute the incremental version ∆Q(q,a,q′,b) of Q(q,a,q′,b) in
response to ∆I, by capitalizing on incremental techniques for SQL queries such
as the counting method of [17]. (iii) Evaluate ∆Q(q,a,q′,b) for all involved tags
(a, b) to find E+ and E−. Note that neither Q(q,a,q′,b) nor∆Q(q,a,q′,b) is recursive.

(Step 2) Update the hash index H and the subtree pool S with E+ and E−, by
modifying the L filed of those relevant S entries.

(Step 3) For each newly inserted node in E+, generate its subtree if its subtree
does not have an entry in S. Only this phase involves recursive computation.

(Step 4) Clean up H and S by removing “dangling” entries, by a garbage col-
lection procedure that runs in the background.

This algorithm avoids unnecessary recomputation by reusing subtrees in S at
various levels of granularity. It guarantees that each distinct subtree of the new
view is computed at most once.

View updates. As opposed to incremental publishing, the view update problem

in connection with XML publishing can be stated as follows. Given a publishing
transducer τ defined on a relational schema R, an instance I of R, the XML view
t = τ(I), and XML updates ∆t on t, it is to compute relational updates ∆I such
that t⊕∆t = τ(I⊕∆I). That is, the relational changes ∆I, when propagated to
XML via τ , yield the desired XML updates ∆t on the view t. XML updates can
be expressed in terms of XPath. For example, one may want to pose U = insert
cs240 into course[cno=‘cs650’]//course[cno=‘cs450’]/prereq on the XML view
of Fig. 1(d); in response to this we want to find tuples ∆I0 to insert into the
underlying database I0 such that I0 ⊕∆I0 yields the updated XML view.

The update problem is already hard for relational views. Indeed, given view
updates, it is likely that there may not exist updates on the underlying source
without introducing side effects, or there must exist multiple source updates
(see, e.g., [1]). Commercial relational DBMS’s do not provide sophisticated view-
update functionality. In particular, few complexity bounds are known even for
relational view updates (see [8, 12] for recent work in this line of research).

When it comes to XML views published from relational data, the update
problem is far more intriguing. In addition to the complications encountered
in relational views, it introduces a number of new challenges. First, these XML

views may be recursively defined, and are required to conform to a predefined
schema. Second, XML updates may be recursive themselves (e.g., descendant-or-
self axis in XPath). Third, the semantics of XML view updates has to revised. For
example, the XML update U given above attempts to add cs240 as a prerequisite
of only those cs450 nodes below cs650. However, cs450 may appear elsewhere
in the tree. The subtree property given above tells us that there is a unique cs450
subtree. Thus either all occurrences of cs450 should take cs240 as a prerequisite
or none of them does. Commercial XML publishing products, e.g., Microsoft SQL

Server 2005 [21], provide at best extremely limited view update functionality.

Algorithm. An approach to tackling the view update problem has been developed
in [11] for PT(CQ, tuple, virtual). It allows both XML views and updates to
be recursively defined, and adopts a revised notion of side effects of XML view
updates based on the subtree property. It compresses the XML view t into a dag,
using the same external storage as in the setting of incremental publishing, and
derives a set V of relational views defined as edge queries Q(q,a,q′,b) given above.

Note that V is a set of union of CQ queries. Given an XML update expression
UX posed on t, one can compute the relational updates ∆I as follows.

(Step 1) Validate UX(t) w.r.t. a predefined DTD of the XML view (if any), and
reject UX if UX(t) violates the DTD.

(Step 2) Translate UX to an update expression UV on the relational view V .

(Step 3) Translate UV to an update expression UR on the source I, if it exists.

(Step 4) Update the underlying database I using UR and the relational views V
using UV , if UR exists, otherwise report side effects to the user and reject UX .

Step 3 may fail, i.e., the XML view t is found not updatable by UX , as for
its relational counterparts. Furthermore, heuristic algorithms are necessary for
Step 3 as the view update problem is intractable for the relational views V .

6 Concluding Remarks

The primary goal of the paper is to provide an overview of recent advances in
XML publishing and a synergy between theory and practice. It is by no means a
comprehensive survey: a number of related articles are not referenced due to the
space constraint (see [20] for a recent survey). It is worth mentioning that XML

publishing differs from recent work on data exchange (see [19] for a survey) in
that XML publishing focuses on transformations from relations to XML defined
in terms of mappings with embedded relational queries, rather than relation-to-
relation or XML-to-XML mappings derived from source-to-target constraints.

Below we highlight some open research issues. One topic concerns XML inte-
gration: in contrast to XML publishing, it is to define a mapping from multiple
distributed relational sources to XML documents. Along the same lines as XML

publishing, the expressive power and complexity of XML integration languages
deserve a full treatment. These are, however, more intriguing than their coun-
terparts for XML publishing. In particular, to cope with dependencies on various
sources, two-way transducers are required in contrast to top-down XML publish-
ing transducers, as indicated by the language proposed in [4] for XML integration.
In addition, other issues that arise in practice, such as information preservation
required by data migration [7], make the study more complicated.

Another issue is about XML shredding, i.e., for storing XML data in relations.
A publishing transducer τ can be treated as a relational query [13]: fixing a
designated output tag ao, we can define the output of τ(I) on a database I as a
relation: the union of all Regao

(v) for all nodes v labeled ao in the tree. Similarly
one can define an XML shredding automaton that has XML queries embedded in
it, operates on existing XML trees and returns a set of tuples to add to a database.
In contrast to publishing transducers, an XML shredding automaton outputs a
relation instead of an XML tree. Based on this an XML shredding language has
been given in [14]. XML shredding automata can be used to characterize the
expressive power and complexity of XML shredding languages found in practice.

Much more needs to be done for the view update problem associated with
XML views published from relational data. To our knowledge no previous work

has considered view update management for publishing transducers defined with
relational queries beyond CQ, e.g., PT(FO, relation, virtual).

References

1. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,
1995.

2. N. Alon, T. Milo, F. Neven, D. Suciu, and V. Vianu. Typechecking xml views of
relational databases. TOCL, 4, 2003.

3. M. Benedikt, C. Chan, W. Fan, R. Rastogi, S. Zheng, and A. Zhou. DTD-directed
publishing with attribute translation grammars. In VLDB, 2002.

4. M. Benedikt, C. Y. Chan, W. Fan, J. Freine, and R. Rastogi. Capturing both type
and integrity constraints in data integration. In SIGMOD, 2003.

5. M. Benedikt, W. Fan, and F. Geerts. XPath satisfiability in the presence of DTDs.
In PODS, 2005.

6. P. Bohannon, B. Choi, and W. Fan. Incremental evaluation of schema-directed
XML publishing. In SIGMOD, 2004.

7. P. Bohannon, W. Fan, M. Flaster, and P. Narayan. Information preserving XML
schema embedding. In VLDB, 2005.

8. P. Buneman, S. Khanna, and W. Tan. On propagation of deletions and annotations
through views. In PODS, 2002.

9. D. Chamberlin et al. XQuery 1.0: An XML Query Language. W3C Working Draft,
June 2001. http://www.w3.org/TR/xquery.

10. B. Choi, W. Fan, X. Jia, and A. Kasprzyk. A uniform system for publishing and
maintaining XML data. In VLDB, 2004. Demo.

11. B. Choi, C. Gao, W. Fan, and S. Viglas. Updating recursive XML views. In ICDE,
2007.

12. G. Cong, W. Fan, and F. Geerts. Annotation propagation revisited for key pre-
serving views. In CIKM, 2006.

13. W. Fan, F. Geerts, and F. Neven. Expressiveness and complexity of XML publish-
ing transducers. In PODS, 2007.

14. W. Fan and L. Ma. Selectively storing XML data in relations. In DEXA, 2006.
15. M. Fernandez, Y. Kadiyska, D. Suciu, A. Morishima, and W. C. Tan. SilkRoute:

A framework for publishing relational data in XML. TODS, 27(4):438–493, 2002.
16. F. Gécseg and M. Steinby. Tree languages. In Handbook of Formal Languages,

volume 3. Springer, 1996.
17. A. Gupta, I. S. Mumick, and V. S. Subrahmanian. Maintaining views incrementally.

In SIGMOD, 1993.
18. IBM. DB2 XML Extender. www-3.ibm.com/software/data/db2/extended/xmlext/.
19. P. G. Kolaitis. Schema mappings, data exchange, and metadata management. In

PODS, 2005.
20. R. Krishnamurthy, R. Kaushik, and J. Naughton. XML-SQL query translation

literature: The state of the art and open problems. In Xsym, 2003.
21. Microsoft. XML support in microsoft SQL server 2005, 2005.

msdn.microsoft.com/library/en-us/dnsql90/html/sql2k5xml.asp/.
22. F. Neven. On the power of walking for querying tree-structured data. In PODS,

2002.
23. F. Neven and T. Schwentick. Query automata over finite trees. TCS, 275(1-2):633–

674, 2002.
24. Oracle. Oracle Database 10g Release 2 XML DB Whitepaper.

http://www.oracle.com/technology/tech/xml/xmldb/index.html.
25. Y. Papakonstantinou and V. Vianu. Type inference for views of semistructured

data. In PODS, 2000.
26. J. Shanmugasundaram, E. Shekita, R. Barr, M. Carey, B. L. H. Pirahesh, and

B. Reinwald. Efficiently publishing relational data as XML documents. VLDB J.,
10(2-3):133–154, 2001.

