arXiv:0708.2076v1 [cs.DB] 15 Aug 2007

Repairing Inconsistent XML Write-Access Control
Policies

Loreto Bravo, James Cheney, and Irini Fundulaki

School of Informatics, University of Edinburgh, UK
{Ibravo, jcheney, efountd@inf.ed.ac.uk

Abstract. XML access control policies involving updates may contanuwsity
flaws, here callednconsistencigsin which a forbidden operation may be sim-
ulated by performing a sequence of allowed operations. p&per investigates
the problem of deciding whether a policy is consistent, &met, how its incon-
sistencies can be repaired. We consider policies expréssedns of annotated
DTDs defining which operations are allowed or denied for thdLXrees that
are instances of the DTD. We show that consistency is deleidatrTIME for
such policies and that consistent partial policies can benebed to unique “least-
privilege” consistent total policies. We also consideraieproblems based on
deleting privileges to restore consistency, show that figdninimal repairs is
NP-complete, and give heuristics for finding repairs.

1 Introduction

Discretionary access control policies for database systam be specified in a number
of different ways, for example by storing access contrés$ less annotations on the data
itself (as in most file systems), or using rules which can hgieg to decide whether to
grant access to protected resources. In relational daajaigh-level policies that em-
ploy rules, roles, and other abstractions tend to be mudbredasunderstand and main-
tain than access control list-based policies; also, theybmimplemented efficiently
using static techniques, and can be analyzed off-line fouréty vulnerabilities [6].

Rule-based, fine-grained access control techniques for #8ta have been consid-
ered extensively foread-only querie§10, 14, 13,12, 2, 16, 9]. However, the problem of
controllingwrite accesss relatively new and has not received much attention. Awtho
in [2,9, 15] studied enforcement of write-access contrdilgees following annotation-
based approaches.

In this paper, we build upon the schema-based access contaé| introduced
by Stoica and Farkas [18], refined by Fan, Chan, and Gara$a]a®], and extended
to write-access control by Fundulaki and Maneth [12]. Weestigate the problem of
checking for, and repairing, a particular class of vulnéitéds in XML write-access
control policies. An access control policy specifies whickians to allow a user to
perform based on the syntax of the atomic update, not itaabbehavior. Thus, it is
possible that a single-step action which is explicitly idden by the policy can nev-
ertheless be simulated by one or more allowed actions. Shighat we mean by an
inconsistencya consistent policy is one in which such inconsistenciesiat possible.
We believe inconsistencies are an interesting class ofyptdivel security vulnerabili-
ties since such policies allow users to circumvent the iéereffect of the policy. The
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Fig. 1. DTD graph (a) and XML documents conforming to the DTD (b, c)

purpose of this paper is to define consistency, understandddetermine whether a
policy is consistent, and show how to automatically idgrpiéssible repairs for incon-
sistent policies.

Motivating Example: We introduce here an example and refer to it throughout the pa
per. Consider the XML DTD represented as a graph in Fig. X@pcument conform-
ing to this DTD has as root aR-element with a single child element that can either be
anA, B, J or K-element (indicated with dashed edges); similarlydoAn A-element
has one” and oneD children elements. &B-element can have zero or matechildren
elements (indicated with-labeled edges); similariyiy and.J elements can have zero
or moreG children elements. Finally', H, I and K are text elements. Fig. 1(b) and
(c) show two documents that conform to the DTD.

Suppose that a security poliejylowsone toinsertanddeleteGG elements andor-
bidsone from replacing ari/ with an I element. It is straightforward to see that the
forbidden operation can be simulated by first deleting@helement with and child
and then inserting & element with an/ child. There are different ways of fixing this
inconsistency: eithefa) to allow all operations below eleme6t or (b) forbid one of
theinsertanddeleteoperations at nod€'.

Now, suppose that the poliallowsone toreplacean A-element with aB-element
and this with a/-element, buforbidsthe replacement ofl with J elements. The latter
operation can be easily simulated by performing a sequeinte @llowed operations.
As in the previous case, the repairs that one can propogejieallow the forbidden
replace operation db) forbid one of the allowed operations.

Our contributions: In this paper we consider policies that are defined in terms of
non-recursive structuredML DTDs as introduced in [10] that capture without loss of
generality more general non-recursive DTDs. We first cardital policies in which
all allowed or forbidden privileges are explicitly speaifiee define consistency for
such policies and prove the correctness of a straightfalhwalynomial time algorithm
for consistency checking. We also consigartial policies in which privileges may be
omitted. Such a policy is consistent if it can be extended ¢orsistent total policy;
there may be many such extensions, but we identify a canlde&st-privilegeconsis-



tent extension, and show that this can be found in polynotinia (if it exists). Finally,
given an inconsistent (partial or total) policy, we consitie problem of finding a “re-
pair”, or minimal changes to the policy which restore cotesisy. We consider repairs
based on changing operations from allowed to forbiddenwdhat finding minimal
repairs isNP-complete, and provide heuristic repair algorithms thatirupolynomial
time.

The rest of this paper is structured as follows: in Sectiorevovide the definitions
for XML DTDs and trees. Section 3 discussgshe atomic updates ani) the access
control policies that we are considering. Consistencyssukised in Section 4; Section 5
discusses algorithms for detecting and repairing incéesigolicies. We conclude in
Section 6. Proofs of theorems and detailed algorithms cdalbl in the Appendix.

2 XML DTDs and Trees

We considesstructuredXML DTDs as discussed in [10]. Although not all DTDs are
syntactically representable in this form, one can (as atdwe[10]) represent more
general DTDs by introducing new element types. The DTDs wesicler here are 1-
unambiguous as required by the XML standard [4].

Definition 1 (XML DTD). Let £ be the infinite domain of labels. A DT is rep-
resented by Ele, Rg,rt) wherei) Ele C L is a finite set ofelement types ii}t is a
distinguished type itkzle called theroot typeandiii) Rg defines the element types: that
is, foranyA € Ele, Rg(A) is a regular expression of the form:

Rg(A) i= str | € | Bl,BQ,...,Bn | Bl+BQ++Bn | Bl*

whereB; € FEle are distinct, |, “ +” and “x” stand forconcatenationdisjunctionand
Kleene starespectivelyg for the EMPTY element content argtr for text values.

We will referto A — Rg(A) as theproduction rulefor A. An element typeB; that
appears in the production rule of an element tyjis called thesubelementype of A.
We write A <p B for the transitive, reflexive closure of the subelementti@ia

A DTD can also be represented as a directed acyclic grapvihaallDTD graph

Definition 2 (DTD Graph). A DTD graphGp = (Vp,&p,rp) fora DTD D =
(Ele, Rg,rt) is a directed acyclic graph (DAG) wheieVp, is the set of nodes for
the elementtypesifieU{str},ii) Ep = {(A, B) | A, B € Ele andB is a subelement
type of A} andiii) rp is the distinguished node.

Example 1.The production rules for the DTD graph shown in Fig. 1 are:

R— A+B+J+K D — Fx G—->H+I1 H — str
A—C,D B — Ex J — Gx* I — str
C — Fx E — Gx* F — str K — str

We model XML documents asoted unorderedrees with labels fronf U {str}.

Definition 3 (XML Tree). An unordered XML treé is an expression of the form=
(Ny, Ex, A, ¢, v) Wherei) N; is the set of nodei§) E; C N; x N; is the set of edges,
i) \s : N; — LU {str} is a labeling function over node) r; is the root oft and is

a distinguished node iV, andv) v; is a function that assigns a string value to nodes
labeled withstr.



We denote bychildren;(n), parent,(n) anddesc;(n), the children, parent and descen-
dant nodes, respectively, of a noden an XML treet. The setdesc;(n) denotes the
edges ink; between descendant nodeswfA node labeled with an element typein
DTD D is called arinstanceof A.

We say that an XML tree= (N, F¢, A, r+, v¢) conformso a DTDD = (FEle, Ry,
rt) at element typel if i) r; is labeled withA (i.e., A\;(r;) = A) ii) each node inV; is
labeled with either aifvle element type3 or with str, iii) each node in labeled with an
Ele element type3 has a list of children nodes such that their labels are inghguage
defined byRg(B) andiv) each node irt labeled withstr has a string valuev¢(n) is
defined) and is a leaf of the tree. An XML tréés a valid instance of the DT if r,
is labeled withrt. We write I, (A) for the set of valid instances @b at element type
A, andIp, for Ip(rt).

Definition 4 (XML Tree Isomorphism). We say that an XML tree, is isomorphic to
an XML treet,, denoted; = ¢, iff there exists a bijectio : N;, — N, where:i)
h(rs,) = re, i) if (2,y) € Ey, then(h(x), h(y)) € Ex,, i) A, () = A, (h(z)), and
V) vt, () = vy, (h(2)) for everyz with A, () = str = A\, (h(x)).

3 XML Access Control Framework

3.1 Atomic Updates

Our updates are modeled on the XQuery Update Facility drdftyhich considers
delete, replace and severainsert update operations. Aelete(n) operation will delete
noden and all its descendants. #place(n, t) operation will replace the subtree with
root n by the treet. A replace(n, s) operation will replace the text value of node
n with string s. There are several types of insert operationg,, insert into(n, t),
insert before(n, t), insert after(n,t), insert as first(n,t), insert as last(n,t). Update
insert into(n, t) inserts the root of as a child of» whereas updat@sert as first(n, t)
(insert as last(n, t)) inserts the root of as a first (resp. last) child of. Update oper-
ationsinsert before(n, t) andinsert after(n,t) insert the root node ofas a preceding
and following sibling ofn resp..

Since we only consider unordered XML trees, we deal only i operation
insert into(n, t) (for readability purposes, we are going to wiiitgert(n, t)). Thus, in
what follows, we will restrict to four types of update opéoat:delete(n), replace(n, t),
replace(n, s) andinsert(n, t).

More formally, for a treet; = (Ny,,Et,, At,s 71y, v, ), @ NOden in ¢, a treets
= (Niy, Ety, Ay, 11,, Ur,) @nd a string value, the result of applyingnsert(n, t2),
replace(n, t2), delete(n) andreplace(n, s) t0 t1, is a new tre¢ = (N, Fy, A, 7, v¢)
defined as shown in Table 1. We denote]by](¢) the result of applying update opera-
tion op on treet.

An update operatiomsert(n, t2), replace(n, t2), replace(n, s) or delete(n) is valid
with respect to tre¢, providedn € N;, andt,, if present, does not overlap with (that
is, Ny, N N:, = (). We also considarpdate sequenceg ; . . . ; op,, with the (standard)
semanticgops;. . .;op,](t1) = [opn]([opn—1](- - - Jop1](t1))). A sequence of updates
op1;. .. ; opy is valid with respect td, if for eachi € {1,...,n}, op;+1 is valid with
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[insert(n, t2)[(t1) [Ney U N, Ei; UFE,U{(n,7i5)} Mg (m), m € Ny riq [Vt (M), m € Ny
Aty (m), m € N, Vio (m), m € Nty
[replace(n, t2)](t1)[Ne; U Nty Et; UE,U t, (M), riq [Vt (M), m € Ny
\desce, (n)  |{(parent, . (n),rip) 1\ |m € (Ney \ {n}) vey (m).m. € Noy
descf1 (n) Aty (M), m € Ny,
[replace(n, s)[(¢1) |N¢, Ey, Aty (m), m € Ny, Ty |veq (M),
m € (Ni;\{n})
ve (n) =s
[delete(n)] (t1) Ny \ desce; (n)[Eey \ desc; (n) Aty (M), req [V, (M),
m € (N, \desct, (n)) m € (N, \desct, (n))

Table 1. Semantics of update operations

respect ta;, wheret; = Jop1](to), t2 = Jop2](t1), etc The result of a valid update (or
valid sequence of updates) exists and is unique up to tremoigzhism.

3.2 Access Control Framework

We use the notion ofipdate access typ® specify the access authorizations in our
context. Our update access types are inspired fronX#e """ language discussed
in [12]. Authors followed the idea afecurity annotationsntroduced in [10] to specify
the access authorizations for XML documents in the presehad®TD.

Definition 5 (Update Access Types)Given a DTD D, anupdate access typ&AT)
defined overD is of the form(A, insert(B1)), (A, replace(By, B2)), (A, replace(str,
str)) or (A, delete(B;)), whereA is an element type i, B; and B, are subelement
types ofA and By # Bs.

Intuitively, anUAT represents a set atomic update operation$/ore specifically, for
t an instance of DT, op an atomic update ang:t an update access type we say that
op matches uat ont (op matches, uat) if:

M(n)=A t €lIp(B) Ai(n) = B Ai(parent,(n)) = A
insert(n,t’) matches, (A,insert(B)) delete(n) matches; (A, delete(B))
At(n) = B,t' € Ip(B’), Me(parenti(n)) = A, B # B’
replace(n,t’) matches; (A, replace(B, B’))

At(n) = str, A\¢(parent,(n)) = A
replace(n, s) matches; (A, replace(str, str))

It is trivial to translate our update access typeXAxU®*""°" security annotations.
In this work we assume that the evaluation of an update dpearah a tree that con-
forms to a DTDD results in aree that conforms t®. It is clear then that each update
access type only makes sense for specific element types.uF@xample DTD, the
update access typed, delete(C')) is not meaningful because allowing the deletion of
a C-element would result in an XML document that does not canfte the DTD,
and therefore, the update will be rejected. Similar(f@rdelete(A)) or (R, insert(A)).
But, (B, delete(F)) and(B, insert(E)) are relevant for this specific DTD. The relation
uat valid_in D, which indicates that an update access typeis valid for the DTDD,



is defined as follows:

Rg(A) := By Rg(A) := Bi*
(A,insert(B1)) valid_in D (A, delete(By)) valid_in D
Rg(A) :=str Rg(A):=Bi+ -+ Bn,i,j€[l,n] i#j
(A, replace(str, str)) valid_in D (A, replace(B;, B;)) valid_in D

We define the set of validATsfor a given DTDD asvalid(D) = {uat | uat valid_in
D}. A security policywill be defined by a set adllowedandforbiddenvalid UATs

Definition 6. A security policy P defined over a DTDD, is represented byA, F)
where A is the set ofallowedand F the set offorbiddenupdate access types defined
over D such thatd C valid(D), F C valid(D) and AN F = (. A security policy is
total if AU F = valid(D), otherwise it iartial.

Example 2.Consider the DTDD in Fig. 1 and the total policy’ = (A, F) where A is:
(R, replace(A, B)) (R,replace(B,J)) (R,replace(J, K)) (R, replace(K,J))
(R, replace(K, B)) (C,insert(F)) (C, delete(F)) (D, insert(F))
(D, delete(F)) (F, replace(str,str)) (B,insert(E)) (B, delete(E))
(E,insert(G)) (E,delete(@)) (G, replace(I, H)) (J,insert(G))
(J, delete(G)) (D, insert(F)) (D, delete(F)) (H, replace(str, str))
(I, replace(str,str)) (K, replace(str,str))

andF = valid(D) \ A. On the other hand? = (A, ) is a partial policy. O

The operations that are allowed by a poliey= (A, F) on an XML treet, denoted
by [A](t), are the union of the atomic update operations matching e&dhin A.
More formally,[A](t) = {op | op matches;uat ont, anduat € A}. We say an update
sequenceps; .. .;op, is allowed ont provided the sequence is valid 6randop; €
[A](t), opa € [A]([op1](t)), etc.t Analogously, the forbidden operations §iE] ()

= {op | op matches;uat ont, anduat € F}. If a policy P is total, its semantics is
given by its allowed updates, i.EP](t) = [A](¢). The semantics of a partial policy is
studied in detail in Section 4.1.

4 Consistent Policies

A policy is said to be consistent if it is not possible to siatel a forbidden update
through a sequence of allowed updates. More formally:

Definition 7. A policy P = (A, F) defined oveD is consistent if for every XML tree
t that conforms taD, there does not exist a sequengs;. .. ; op, of updates that is
allowed ont and an updatep, € [F](t) such that:

[op1; .. .5 0pn](t) = Jopo] ().

In our framework inconsistencies can be classified as: tilusbete and replace.
Inconsistencies due iasert/deleteoperations arise when the poliegjlowsone to
insertand delete nodes of element type whilst forbidding some operation in some

! Note that this is1otthe same a$ops, . . ., opn} C [A] ().



descendant element type of the node. In this case, the tiebidperation can be sim-
ulated by first deleting ar-element and then inserting a netvelement after having
done the necessary modifications.

There are two kinds of inconsistencies createcdpjaceoperations on a production
rueA — By +---+ B, of a DTD. First, if we are allowed to replade; by B; and
B; by By, but notB; by By, then one can simulate the latter operation by a sequence
of the first two. Second, consider that we are allowed to cEptmme element typs;
with an element typé3; and vice versa. If some operation in the subtreesither B;
or B; is forbidden, then it is evident that one can simulate thbitttten operation by a
sequence of allowed operations, leading to an inconsigtenc

We say thanothing is forbidden belowd in a policy P = (A, F) defined overD
if for every B; s.t. A <p B;, (B;,op) ¢ F for every(B;,op) € valid(D). If A —
B; +...+ B,, then we define theeplace grapiG4 = (Va, E4) wherei) V4 is the set
of nodesforBy, By, ... B, andii) (B;, B;) € V4 ifthere exist{ A, replace(B;, Bj)) €
A. Also, the set oforbidden edgesf A, is&4 = {(B;, Bj) | (A, replace(B;, Bj)) €
F}. We say that a grapéi = (V, ) is transitiveif (x,y), (y,z) € € then(z, z) € £.
We writeG} for the transitive graph of 4. The following theorem characterizes policy
consistency:

Theorem 1. A policy P = (A, F) defined over DTDD is consistent if and only if for
every production rule:
1. A — Bxin D, if (A,insert(B)) € A and (A, delete(B)) € A, then nothing is
forbidden belowB
2. A— B1+---+ B, in D, for every edgéB;, B,) in gj, (Bi, Bj) ¢ Fa,and
3. A— By +---+ B, in D, ifforeveryi € [1,...n], if B; is contained in a cycle in
G 4 then nothing is forbidden below, .

Proof (Sketch)The forward direction is straightforward, since if any oéttules are
violated an inconsistency can be found, as sketched aboveh€ reverse direction,
we first need to reduce allowed update sequences to certiiwed) normal forms
that are easier to analyze, then the reasoning proceedséy. @afull proof is givenin
Appendix A. ]

In the case of total policies, condition 2 in Theorem 1 amsuatrequiring that the
replace graplg 4 is transitive (i.e.Ga = G)

Example 3.(example 2 continued) The total poli¢yis inconsistent because:
— (E,insert(G)) and(E, delete(G)) are inA, but(G, replace(H, I)) € F (condition
1, Theorem 1),
— (R, replace(A, J)), (R, replace(A, K)) and (R, replace(B, K)) are inF (condi-
tion 2, Theorem 1), and
— There are cycles igr involving both B and.J, but below both of them there is a
forbiddenUAT, namely(G, replace(H, I)) (condition 3, Theorem 1)

Itis easy to see that we can check whether properties 1, 2 holil for a policy using
standard graph algorithms:

Proposition 1. The problem of deciding policy consistency i®nME.



Remark 1.We wish to emphasize that consistency is highly sensitiibeadesign of
policies and update types. For example, we have consciobslsen taomitan update
type (A4, replace(B;, B;)) for an element type in the DTD whose production rule is ei-
ther of the formBx* or By + ... + B,,. Consider the case of a conference management
system where paper element has decision and atitle subelement. Suppose that the
policy allows the author of the paper teplacea paper with anothemaper element,
but forbids to change the value of thecision subelement. This policy is inconsistent
since by replacing paper element by another with a differedtcision subelement we
are able to perform a forbidden update. In fact, ipgace(paper, paper) can simulate
any other update type applying belovpaper element. Thus, if the policy forbids re-
placement opaper nodes, then it would be inconsistent to allow any other a@Tan
decision andtitle. Because of this problem, we argue that update tygesce(B;, B;)
should not be used in policies. Instead, more specific pges should be assigned in-
dividually, e.g.,by allowing replacement of the text valuestafie or decision.

4.1 Partial Policies

Partial policiesmay be smaller and easier to maintain than total policiesal®iam-
biguous because some permissions are left unspecified. &sscontrol mechanism
must either allow or deny a request. One solution to this lpral{in accordance with
the principle of least privilegemight be to deny access to the unspecified operations.
However, there is no guarantee that the resulting totatpadiconsistentindeed, it is
not obvious that a partial policy (even if consistent) hagconsistent total extension.
We will now show how to find consistent extensions, if theyséxand in particular how
to find a “least-privilege” consistent extension; thesatout to be unique when they
exist so seem to be a natural choice for defining the meaniagaftial policy.

For convenience, we writelp and Fp for the allowed and forbidden sets of a
policy P;i.e., P = (Ap, Fp). We introduce ainformation orderingP C @), defined
asAp C Ag andFp C Fp; thatis,Q is “more defined” tharP. In this case, we say
that@ extendsP. We say that a partial polic¥ is quasiconsisterif it has a consistent
total extension. For example, a partial policy on the DTD @fufe 1 which allows
(B, insert(E)), (B, delete(F)), and denie$H, replace(str, str)) is not quasiconsistent,
because any consistent extension of the policy has to &lfbweplace(str, str)).

We also introduce arivilege orderingon total policiesP < @, defined asdp C
Ag; that is, @ allows every operation that is allowed iA This ordering has unique
greatest lower boundB A @ defined agAp N Ag, Fp U Fg). We now show that
every quasiconsistent policy hateast-privilegeconsistent extensioR'; that is, PT is
consistent and®! < Q whenevel is a consistent extension .

Lemma 1. If P;, P, are consistent total extensions@f then; A P, is also a consis-
tent extension aoFf.

Proof. It is easy to see that i, P, extend P, then P, A P, extendsF,. Suppose
P; A\ P, is inconsistent. Then there exists an XML trig@n atomic operationp, €
[Fp Ap,](t), a sequencep allowed ont by P; A Py, such thatfopo](t) = [op](¢).
Now Ap, rp, = Ap, N Ap,, SOopy must be forbidden by eithd?, or P,. On the other



hand,op must be allowed byoth P, and P, sot, opg, op forms a counterexample to
the consistency aP; (or symmetricallyP). |

Proposition 2. Each quasiconsistent polick has a unique<-least consistent total
extensionP1,

Proof. Since P is quasiconsistent, the s6t= {Q | P C @, @ consistent is finite,
nonempty, and closed under so has a<-least elemenP’ = A S. |

Finally, we show how to find the least-privilege consistetteasion, or determine that
none exists (and hence that the partial policy is not quasistent). Define the operator
T : P(valid(D)) — P(valid(D)) as:
T(S)=SU{(C,uat) | B<p C,Rgp(A) = B*,{(A,insert(B)), (A,delete(B))} C S}
U{(C,uat) | Bi <p C,Rgp(A) = B1 + ...+ Bn, (B, B;) € G5 (9)}
U{(A, replace(B;, By)) | Rgp(A) = Bi + ...+ Bn, (Bi, Bx) € G4(S)}

Lemma 2. If uat € T'(S) then any operatiomp, matchinguat ont can be simulated
using a sequence of operationg allowed ont by S (that is, such thafopo](t) =

[op] (£))-

Theorem 2. Let P be a partial policy. The following are equivalent: (P)is quasicon-
sistent, (2)P is consistent (3Y'(Ap) N Fp = 0.

Proof. To show (1) implies (2), ifP’ is a consistent extension &f, then any incon-
sistency inP would be an inconsistency iR’, so P must be consistent. To show (2)
implies (3), we prove the contrapositive. Tf(Ap) N Fp # @ then choosewat €
T(Ap)NFp.Choose an arbitrary tréend atomic updatep satisfyingopg € [uat](t).
By Lemma 2, there exists a sequemgeallowed by.Ap ont with [op](t) = [opo](t).
Hence, policyP is inconsistent. Finally, to show that (3) implies (1), ntitat (7' (Ap),
valid(D) \ T(Ap)) extendsP and is consistent providet(Ap) N Fp = 0.

Indeed, for a (quasi-)consisteRt the least-privilege consistent extension/ofs sim-
ply Pt = (T'(Ap),valid(D) \ T(Ap)) (proof omitted). Hence, we can decide whether
a partial policy is (quasi-)consistent and if so fiRd in PTIME.

5 Repairs

If a policy is inconsistent, we would like to suggest possiinimal ways of modifying
it in order to restore consistency. In other words, we woike to findrepairsthat are
as close as possible to the inconsistent policy.

There are several ways of defining these repairs. We mightttewaapair by chang-
ing the permissions of certain operations from allow to fdden and vice versa; or we
might give preference to some type of changes over othess, Ale can measure the
minimality of the repairs as a minimal number of changes oiirdmal set of changes
under set inclusion.

Due to space restrictions, in this paper we will focus on figdiepairs that trans-
form UATsfrom allowedto forbiddenand that minimize the number of changes. We
believe that such repairs are a useful special case, siacephirs are guaranteed to be
more restrictive than the original policy.



Definition 8. A policy P’ = (A’, F’) is arepair of a policy P = (A, F) defined over
aDTD D iff:i) P’is a policy defined oveD, ii) P’ is consistent, and i’ < P.

A repair istotal if 7' = valid(D) \ A andpartial otherwise. Furthermore a repair
P = (A, F') of P(A,F) is aminimal-total-repairif there is no total repaiP”’ =
(A", F") such thatA’| < |.A”| and aminimal-partial-repairif 7/ = F and there is no
partial repairP” = (A”, F) such thatA’| < |A”].

Given a policyP = (A, F) and an integek, the total-repair (partial-repair) problem
consists in determining if there exists a total-repair {iparepair) P’ = (A’, F') of
policy P such thatA\ A’| < k. This problem can be shown to ke-hard by reduction
from the edge-deletion transitive-digraph problem [19].

Theorem 3. The total-repair and partial-repair problem ispP-complete.

If the DTD has no production rules of the tyge— B, +- - -+ B,,, then the total-repair
problem is inPTIME.

5.1 Repair Algorithm

In this section we discuss a repair algorithm that finds a rméirepair of a total or
partial policy. All the algorithms can be found in Appendix B

The algorithm to compute a minimal repair of a policy relirghe independence
between inconsistenciesr.t. insert/delete (Theorem 1, condition 1) and replace (The-
orem 1, conditions 2 and 3) operations. In fact, a local mepfaén inconsistencw.r.t.
insert/delete operations will never solve nor create aonsistency with respectto a re-
place operation and vice-versa. We will separately des¢hb algorithm for repairing
the insert/delete inconsistencies and then the algorithring replace ones.

Both algorithms make use of threarked DTD graphM/ Gp = (Gp, i1, x) where
w is a function from nodes iwvp to {“+”,“—"} andy is a partial function fromVp
to { L}. In a marked graph for a DT and a policyP = (A, F) i) each node in the
graph is either marked with4” (i.e., nothing is forbidden below the node) or with a
“—"(i.e., there exists at least one update access type thati&ltien below the node).
If, for nodesA and B in the DTD, both (A4, insert(B)) and (A4, delete(B)) are in.A
and u(A) = “=", then x(4) = “L". A marked graph is obtained from algorithm
markGraph which takes as input a DTD graph and a polieyand traverses the
DTD graph starting from the nodes with out-degree 0 and midnksiodes and edges
as discussed above.

Example 4.Consider the graph for DT in Fig. 2(a) and policyP? = (A, F), with

A defined in Example 2. The result of applyingarkGraph to this DTD and policy

is shown in Fig. 2(b). Notice that nodés F and.J are marked with both a=" and
“1" sincei) update access tyfé&, replace(H, I)) is in F andii) all insert and delete
update access types f6Y, £ andJ are in.A. For readability purposes we do not show
the multiplicities in the marked DTD graph. o
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Fig. 2. DTD Graph (a) and Marked DTD Graph (b) for the DTD in Fig. 1

Repairing Inconsistencies for Insert and Delete Operatioa Recall that if both the
insert and delete operations are allowed at some elemeatayg there is some op-
eration below this type that is not allowed, then there israromsistency (see Theo-
rem 1, condition 1). The marked DTD graph provides exactly itiformation: a node
A is labeled with “L” if it is inconsistent w.r.tinsert/deleteoperations. For each such
node and for the repair strategy that we have chosen, thesmstency can be mini-
mally repaired by removing eithér, insert(B)) or (A, delete(B)) from A. Algorithm
InsDelRepair takes as input a DTD grapip and a security policy? = (A, F)
and returns a set aJATsto remove fromA to restore consistenay.r.t. insert/delete-
inconsistencies.

Example 5.Given the marked DTD graph in Fig. 2(b), it is easy to see thatdATs
that must be repaired are associated with ndgle and £ (all nodes are marked with
“1"). The repairs that can be proposed to the user are to remowe fl one UAT
from each of the following sets{(B, insert(F)), (B,delete(E))}, {(F,insert(G)),
(E, delete(G))} and{(J, insert(Q)), (J, delete(G))}. O

Repairing Inconsistencies for Replace OperationsThere are two types of inconsis-
tencies related to replace operations (see Theorem 1, tmmsiP—3): the first arises
when some element is contained in some cycle and something is forbidden betow i
the second arises when the replace gréplcannot be extended to a transitive graph
without adding a forbidden edge iA. In what follows we will refer to these type of
inconsistencies asegative-cyclendforbidden-transitivity By Theorem 3, the repair
problem isnP-complete, and therefore, unless: NP, there is no polynomial time al-
gorithm to compute a minimal repair to the replace-incdesisies. Our objective then,
is to find an algorithm that runs in polynomial time and congsua repair that is not
necessarily minimal.

Algorithm ReplaceNaive traverses the marked grapiGp and at each node,
checks whether its production rule is of the forkin— B; + ... + B,. If this is the
case, it builds the replace graph fdr G4, and runs a modified version of the Floyd-
Warshall algorithm [11]. The original Floyd-Warshall atgbm adds an edge3, D) to
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the graph if there is a node such that B, C') and(C, D) are in the graph an@B, D)
is not. Our modification consists on deleting eitfi8;, C') or (C, D) if (B, D) € Fa,
i.e.,if there is forbidden-transitivity. In this way, the finalaph will satisfy condition 2
of Theorem 1. Also, if there are edgeB, C') and(C, B) andu(C) = “-", i.e.,there
is a negative-cycle, one of the two edges is deleted. AlgorReplaceNaive returns
the set of edges to delete from each node to remove replaoesistencies.

Example 6.The replace grapld has no negative-cycles nor forbidden-transitivity,
therefore it is not involved in any inconsistency. On theeothand, the replace graph
Gr = (V,€&), shown in Fig. 3(a) is the source of many inconsistenciesossible
execution ofReplaceNaive (shownin Fig. 7 in the Appendix) i$A, B), (B, J) € £
but(A, J) € F,so(A, B) or (B, J) should be deleted, sdy!, B). Now, (B, J), (J, K)

€ £ and(B, K) € F, therefore we delete eith¢B, J) or (J, K), say(B, J). Next,
(K,J), (J,K) € £andu(J) = “="in Fig. 2(b), therefore there is a negative-cycle
and either( K, J) or (J, K') has to be deleted. [fK, J) is deleted, the resulting graph
has no forbidden-transitive and nor negative-cycles. Taéleyobtained by removing
(R, replace(A4, B)), (R, replace(B, J)) and(R, replace(.J, K)) from A has no replace-
inconsistencies. a

The ReplaceNaive algorithm might remove more than the necessary edges to
achieve consistency: in our example, if we had removed ¢#gd) at the first step,
then we would have resolved the inconsistencies that ieveliges A, B), (B, J) and
(J,K).

An alternative to algorithnReplaceNaive, that can find a solution closer to min-
imal repair, is algorithnReplaceSetCover, which also uses a modified version of
the Floyd-Warshall algorithm. In this case, the modificatimnsists in computing the
transitive closure of the replace gra@h and labelling each newly constructed edge
with a set ofjustifications.7. Each justification contains sets of edgegjafthat were
used to ada: in G. Also, if a node is found to be part of a negative-cycle, itds |
belled with the justifications/ of the edges in each cycle that contains the node. An
edge or vertex might be justified by more than one set of edgéact, the number of
justifications an edge or node might have&!®!). To avoid the exponential number
of justifications,ReplaceSetCover() assigns at mos} justifications to each edge or
node, wheréy is a fixed number. This new labelled graph is then used to natsin
instance of the minimum set cover problem (MSCP) [17]. THatgm to the MSCP,
can be used to determine the set of edges to removedirpiso that none of the jus-
tifications that create inconsistencies are valid anyn®eeause of the upper boufid
on the number of justifications, it might be the case that tlaglg still has forbidden-
transitive or negative-cycles. Thus, the justificationsehto be computed once more
and the set cover run again until there are no more replacasistencies.

Example 7.ForJ = 1, the first computation of justifications &eplaceSetCover
results in the graph in Fig. 3 (b) with the following justift@ns:

J((A, 1) = (A, B), (B, J)}} J((J; B)) = {{(J, K), (K, B)}}

J((A, K)) ={{(A, B), (B, ]), (J, K)}}  J(B)) ={{(B,J), (J; K), (K, B)}}
J((B, K)) ={{(B, J), (J, K)}} J(J) = H{{J, K), (K, J)}}

12



s ,,
J 74 =
R e T Tl
e AN \\\\
/- ———
/// /// \\ \\\\\\\
4 B J K e Bz y > i
\/\/ N
\\//
@ ®)

Fig. 3. ReplaceGr (a) and Transitive Replace Gragh; (b)

Justifications for edges represent violations of trangjtidustification for nodes rep-
resent negative-cycles. If we want to remove the inconsiss, it is enough to delete
one edge from each set ii. ]

The previous example shows that, for each nddeeplace-inconsistencies can be re-
paired by removing at least one edge from each of the judtditaof edges and vertices
in G1. Itis easy to see that this problem can be reduced to the M&CRstance of
the MSCP consists of a univer&eand a setS of subsets of/. A subseC of S is a set
cover if the union of the elements in it d8. A solution of the MWSCP is a set cover
with the minimum number of elements.

The set cover instance associateditp = (V, ) and the set of forbidden edges
Fa,is MSCP(GH,Fa) = U,S)foriU ={s|se T(e),e€ Fa}U{s|se T(V),
V eV} andii)S =, Z(e) whereZ(e) = {s | s €U, e € s}. Intuitively,i/ contains
all the inconsistencies, and the g&t) the replace-inconsistencies in which an edge
is involved. Notice that in this instance of the MSCP, thhés a set of justifications,
thereforeS is a set of sets of justifications.

Example 8.The minimum set cover instanc&/SCP (G}, E) = (U, S), is such that
U={{(A,B).(B.J).(J.K)}.{(A, B),(B,.)}, {(B.J),(J, K)},{(J. K). (K, B)},
{(J. K), (K, D)} A(K, ), (J.K)}, (B, J), (J.K), (K. B)}} andS = {Z((A, B)),
Z((B,J)),Z((J,K)),Z((K,J)), Z((K, B)) }. The extensions ¢f are given in Table 2,
where each column corresponds to @sehd each row to an elementifi Values 1 and
0 in the table represent membership and non-membershipai@sgy. A minimum set
cover of MSCP(G})isC = {Z(B, J),Z(J, K)}, sinceZ(B, J) covers all the elements
of U except for the elemer{( A, B), (B, J)}, which is covered b (.J, K'). Now, using
the solution from the set cover, we remove edg@sJ) and(J, K) from Gr. If we try
to compute the justifications once again, it turns out thategtare no more negative-
cycles and that the graph is transitive. Therefore, by réngp{R, replace(B, J)) and
(R, replace(J, K)) from A, there are no replace-inconsistencies in ngde |

The set cover problem is MAXSNP-hard [17], but its soluti@nde approximated
in polynomial time using a greedy-algorithm that can achiam approximation factor
of log(n) wheren is the size ot/ [8]. In our casepn is O(J x |Ele|). In the ongoing
example, the approximation algorithm of the set cover willirn a cover of size 2. This
is better than what was obtained by lReplaceNaive algorithm. In order to decide
which one is better, we need to run experiments to investia trade off between
efficiency and the size of the repaired policy.
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S
| u I((A, B)) [ Z((B,J)) | Z((J. K)) | Z((K, J)) [ I((K, B))
{(A,B), (B,J), (J,K)} 1 1 1 0 0
{(A,B), (B, J)} 1 1 0 0 0
{(B,J), (J,K)} 0 1 1 0 0
{(J,K), (K, B)} 0 0 1 0 1
{(J,K), (K, J)} 0 0 1 1 0
{(K,.J), (J,K)} 0 0 1 1 0
(B, J), (J,K), (K,B)} 0 1 1 0 1

Table 2. Set cover problem

Algorithm ReplaceRepair will compute the set otJATsto remove fromA, by
using eitheReplaceNaive (if J = 0) or ReplaceSetCover (if J > 0).

Computation of a Repair Algorithm Repair computes a new consistent poligy =
(A", F')from P = (A, F) by removing fromA the union of th&JATsreturned by algo-
rithmsInsDelRepair andReplaceRepair. If argumentotal of algorithmRepair
is true, then the repair returned by it will be total. fidlse then a partial policy such
thatF’ = F will be returned.

Theorem 4. Given a total (partial) policyP, algorithmRepair returns a total (par-
tial) repair of P.

6 Conclusion

Access control policies attempt to constrain the actuatadfmns users can perform, but
are usually enforced in terms of syntactic representatibtise operations. Thus, poli-
cies controlling update access to XML data may forbid cartaerations but permit
other operations that have the same effect. In this paperawe $tudied sucimcon-
sistencyvulnerabilities and shown how to check consistency andirépeonsistent
policies. This is, to our knowledge, the first investigatiminconsistency and repairs
for XML update security. We also considered consistencyrapdir problems for par-
tial policies which may be more convenient to write since ynarivileges may be left
unspecified.

Cautis, Abiteboul and Milo in [5] discuss XML update congtta to restrict in-
sert and delete updates, and propose to detect updatesaiasd these constraints by
measuring the size of the modification of the database. Tgsoach differs from our
security framework for two reasons: a) we consider in addito insert/delete alse-
placeoperations and b) we require that each operation in the segqus updates does
not violate the security constraints, whereas in their ctsgy require that only the
input and output database satisfies them.

Minimal repairs are used in the problem of returning coesisanswers from incon-
sistent databases [1]. There, a consistent answer is défiiedns of all the minimal
repairs of a database. In [3] the set cover problem was usiattoepairs of databases
w.r.t. denial constraints.

There are a number of possible directions for future workluiding running ex-
periments for the proposed algorithms, studying consistéor more general security
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policies specified using XPath expressions or constraimtsstigating the complexity
of and algorithms for other classes of repairs, and conisigenore general DTDs.

Acknowledgments: We would like to thank Sebastian Maneth and Floris Geerts for
insightful discussions and comments.
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A Proofs

A.1 Proofs from Section 4

In this appendix we outline a detailed proof of correctn@soiur characterization of
policy consistency (Theorem 1). The proof is not deep, bgtiires considering many
combinations of cases. The main difficulty is in proving thales 1, 2, and 3 imply
consistency, since this involves showing that for a coesispolicy, there is no way
to simulate a single forbidden operation via a sequencelofvatl operations. The
obvious approach by induction on the length of the alloweglisace does not work
because subsequences of the allowed sequence do not mécessdéinue to simulate
the denied operation.
The solution is to establish the existence of an appropniatsal formfor update
sequences, such that (roughly speaking):
1. The normal form of an update sequencEpplied to input is

delete(ny); - - - ; delete(n;); T;insert(l1, v1), . . ., insert(l;, vj)

consisting of a sequence of deletes, then replacementsirtherts
2. The replacementscan be partitioned into “chained” subsequergs. ., 7; that
of the form7; = replace(m;, uj); replace(r,i , ub); - - -
3. Eachn;, m;,l; isint.
4. No deleted or replaced node;(or ;) is an ancestor of another of the modified
nodes {;, m;, li;)
5. Allowed update sequences have allowed normal forms.
Pictorially, a normalized update sequence can be visuhhzea tree with some of its
nodes “annotated” with insertion operatioinsert(u), deletionsdelete, and replace-
ment sequencesplace(us, . . ., u, ), such that no annotation occurs below a node with
a delete or replace annotation. Such annotations can bedia#instructions for how
to construcfa](¢t) fromT'.
Normalized update sequences are much easier to analyzethirary allowed
sequences in the proof of the reverse direction of Theorem 1.
We introduce some additional helpful notation: write

node(delete(n)) = n
node(insert(n,u)) =n
node(replace(n,u)) = n
for the “principal” node of an operation; writg, for the ancestor-descendant ordering

ont (thatis,E*); write L, for the relation{(n,m) € Ny x N; | n £; m andm %; n}
(thatis,n L, m means: andm are<;-incomparable).

Proposition 3. Let P be a security policy and an allowed update sequence mapping
t tot’. Then there is an equivalent allowed update sequehteat is in normal form.

Proof. We first note that the laws in Figures 4, 5, and 6 are valid fariteng update
sequences relative to a given input tte®/e writeop = op’ to indicate that the (partial)
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insert(n, u); insert (m, v) { insert(n, [insert(m,v)](u)) if m € N,

insert(m, v);insert(n,u) if m ¢ N,

replace(m, v) ifneNe,m<in
. replace(m,v);insert(n,u) ifne N, mZ n
insert(n, u); replace(m,v) = inSert(é ) ) (n,w) i 7’2 e
insert(n, [replace(m, v)](w)) if m € Ny — {ru}
delete(m) if m<in
insert(n, u); delete(m) = Selete(m); insert(n, u) :; z S]:t' m£en

insert(n, [delete(m)](u)) if m € Ny — {r.}

Fig. 4. Moving inserts forward

delete(m) ifm<;n
) _ ) delete(m);replace(n,u) ifm € Ny,m Len

replace(n, u); delete(m) = delete(n) if =
replace(n, [delete(m)](u)) if m € Ny — {ru}

delete(m ifm<;n

delete(n); delete(m) = {deletegmg; delete(n) if m £, n

Fig. 5. Moving deletes backward

replace(m, v) if m<:n
replace(n, u); replace(m,v) = { replace(m,v);replace(n,u) if m e Nyym <¢n
replace(n, [replace(m, v)](u)) if m € Ny — {ru}

Fig. 6. Chaining and commuting replacements
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functions[[op] (—) and[op’](—) are equal; that is, for any treeop is valid ont if and
only of op’ is valid ont, and if both are valid, thefop] (t) = [op’](t).

We can use these identities to normalize an update sequeffiaiosvs. First, move
occurrences of inserts to the end of the sequence. Next, deletes to the beginning
of the sequence. Finally, we use the remaining rules to eéteidependencies among
deletes, replacements and inserts, and to build chainsptdaements. The resulting
sequence is in normal form.

Note that most of the identities only rearrange existingvedld updates and do not
introduce any new update operations that we need to chedaksagfae policy. In a few
cases, we need to do some work to check that the rewritteresequs still allowed.
For example, when we rewriteplace(n, u); delete(m) to delete(n) with m = r,,, we
need to verify that we are allowed to deletethis is because we were allowed to delete
n, which replacedn.

We say that two treesgree above: if the trees are equal after deleting the subtree
rooted at» from each. Note that for all of the operations we consider ifias principal
noden andop is valid ont thent agrees withop] (¢) aboven.

Lemma 3. If ¢ and?’ are equal except under the subtree startingratand allowed
sequenc@& mapst to ¢/, then there is an equivalent, normalized, allowed sequehce
that only affects nodes at or aboxe

Proof. We show that for each node unrelated ton, updates applying directly to:
can be eliminated. If a deletion appliesng then must be an insertion replacing the
deleted subtree exactly, and these are the only updatesiadfe.. Thus, it is safe to
remove this useless deletion-insertion pair. If a replaam@napplies tan, then there
must be subsequent replacements that restore the subtreeTdtis sequence of re-
placements can be eliminated. No other possibilities ansistent witht and¢’ being
equal except at. Thus, by considering each nogdein the tree that is unrelated tq
and removing the updates having an effectronwe can obtain an equivalent update
sequence’ having only updates whose principal node is related.t®his update se-
quence is still allowed since we have only removed alloweatajons (and since all of
the operations we have removed are independent of the remgaines), and can also
be further normalized if necessary.

If ¢, ¢’ agree above, anda is an allowed sequence, then we definerthrelated nor-
mal form ofa to be an equivalent allowed, normalized sequence of opaisdffecting
the tree above or below, which must exist by the above lemma.

Proof of Theorem 1. For the forward direction, we prove the contrapositive. Agued
in Section 4, any violations of the above properties suff@atow that a policy is
inconsistent.

For the reverse direction, we again prove the contrapesiBupposé is inconsis-
tent, and let be a treeq a sequence allowed anandd denied ory by P, such that
[al(t) = [d](t). We consider the four cases fdr

— d = insert(n, t). Consider the normal form of thierestricted to the updates related
to n. Clearlya cannot consist only of updates at or belavgince an insertion at
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n cannot be simulated by a deletion or replacement @t by any operations that
only apply belown. If there is a deletion abowe, there must also be an insertion
aboven that restores the extra deleted nodes and also has thedfffestrt(n, t).
Hence there is a violation of rule 1. Otherwise, if there isgl@acement above node
n, then there must be one or more replacements restoring shefr¢he tree to
its previous form and inserting violating rule 3 (since the chain of replacements
must be allowed by a cycle in some graph)

— d = delete(n, t), replace(n, s). Similar to case foinsert, since again these opera-
tions cannot be simulated solely by operations at or below

— d = replace(n,v). There are two possibilities. If the-related normal form of;
consists only of replacementssatthen the policy must violate rule 2. Otherwise,
an argument similar to that in the above cases can be usedwothiat P must
violate rule 1 or 3. 0

Proof of Proposition 1. By Theorem 1, there are two cases in which a policy can be
inconsistent. The first case can be checked by doing a tiageykthe graph following
a topological sorting of the DTD graph. This can be done irypoinial time over the
number of edges and vertices of the DTD graph.

The second case consists of checking if the graphsre acyclic and transitive.
Checking this two conditions for each elemehtan be done in polynomial time. O

Proof of Lemma 1. Since bothP and ) extendR, we haveAdp, Ao O Ar and
Dp,Dg 2 Dg; hence

Apprg=ApNAg 2 ArNAr = Ag
Dprg = DpUDg 2 DpUDR = Dpg

O

Proof of Lemma 2. By cases according to the definitiondf If uat € S then there is
nothing to do.

If for some A, B we haveuat = (C,op) with B <p C, with production ruled
— B*, {(A, insert(B)), (A, delete(B))} C S, then letn = node(opy), let m be the
B-labeled node above: in ¢ (there must be exactly one), and iébe the subtree of
t rooted atm. We can simulatep, by deleting theB-labeled subtree to whichp,
applies, then inserting the tree resulting from applyipg; thus, the sequencg =
delete(m); insert(n, [opo] (') simulatesp, and is allowed.

If for some A, B we haveuat = (C,op) with B; <p C,Rgp(A) = By + ...+
B, (B;,B;) € QX(S), then letB;,, ..., B;, be a cycle inG4 beginning and ending
with B;. Again letn = node(opy), m be the (uniquep;-labeled node above, andt’
be the subtree afrooted atm. Lett,,...,t,_1 be arbitrary trees disjoint fromhand
satisfyingt; € Ip(B;;). (The latter sets are always nonempty so such trees may be
found.) Now consider the update sequence

op = replace(m, t1); replace(rts, , t2); . . . ; replace(rts, ,,tn—1);replace(rts, —1, [opo](t'))

This update sequence is allowedtoand simulatesp,.
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Finally, if for someB., ..., B, we haveuat = (C, replace(B;, B;)), whereRgp (C) =
Bi+...+By, (B;, Bj) € G4 (S) then leth = node(opy), lett’ be the subtree rooted at
n.LetB;,, ..., B;, beasequence of nodes forming a path flBm= B;, to B; = B;,
in Go, and choosey, . . ., t;_1 satisfyingt; € Ip(B;,). Then the update sequence

op = replace(n, t1); replace(rte,, t2);. .. ; replace(rts, ,,tn—1); replace(rts, —1, [opo](t'))

again is allowed and simulateg. |
A.2 Proofs from Section 5

Proof of Theorem 3. We will concentrate on the total-repair problem. The prawnf f
partial-repair problem is analogous.

First we will prove that the total-repair is iRP. We can determine if there is a
repairP’ = (A, ') of P such thatA\ A’| < k, by guessing a policy”’, checking if
A\ A'| < kandifitis consistent. Since consistency and the distaanée checked
in polynomial time, the algorithm is inp.

To prove that the problem isP-hard, we reduce the edge-deletion transitive-digraph
problem which isvpP-complete [20, 19]. The problem consists in, given a dirggi@ph
G=W, &) withV = {vy,...,v,} andE a set of edges without self-loops, determine
if there exists a sef’ = (V,&’) such thate” C E, ¢’ is transitive andE \ E'| < k.
Now, let us define a DTV and a policyP. The production rules ab are:

A—uvy+- -+,

v; = str fori € [1,n]

The policy P = (A, F) is such thatd = {(A, replace(vi,v;))|(vi,v;) € E} U {(v;,
replace(str,str)) | v; € V} andF = valid(D) \ A. It is easy to see th&l4 = G and
therefore finding a repair will consist on finding the minimaimber of edges to delete
from G to make the graph transitive. ]

Proof of Theorem 4. Given an inconsistency polic® = (A, F), Let us assume, by
contradiction, that the policy’’ = (A’, ') returned by algorithnRepair is not a
repair. SinceP’ is defined oveD, and by constructio®’ < P, this implies thatP’ is
not consistent. Then, it should be the case that either thegss returned by:

1. InsDelRepair do not solve all the insert/delete-inconsistencigss implies that
there is a noded with production ruleA — Bx such that(A, insert(B)) € A,
(A, delete(B)) € A’ and there is at least one forbidde\T, say (C, op), such
that B <p C. SinceP’ < P, (A,insert(B)) € A and (A, delete(B)) € A. If
we prove that there is always an operat{@h op) € F such thatB <p G, the
marked DTD graph would be such thetA) =_1. Then, either A, insert(B)) or
(A, delete(B)) would have been in the changes returnedhyDelRepair and
one of them wouldn’t have belonged . Now we will prove that sucliG, op)
always exists. If(C,op) € F, then,(G,op) = (C,op). On the other hand, if
(C,op) ¢ F then(C, op) is either one of the changes returnediingDelRepair
or ReplaceRepair:

(a) If (C,op) was a change returned iysDelRepair, then there was an insert-
delete inconsistency, and there is anottaf (F, op2) € F such thatC <p
F'. As a consequend® <p F', and we have founf, op).
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(b) If (C,0p) was a change returned WeplaceRepair this would mean that
(C,op) was either involved in a negative-cycle or forbidden-trawis/. The
former implies there is anoth&lAT (F, op2) € F such thaC <p F. Then,B
<p F, and we have founfl=, op). The latter case implies there is at least one
other(C, op2) € F'. We have foundG, op).

2. ReplaceRepair do not solve all the replace-inconsistencigis implies that
there is a nodel with production ruleA — By + --- 4+ B,, such that one of the
following holds:

(@) There is an edgéB;, B;) in G} for P', s.t.(B;, B;) € F,. If (B;,B;) €
Fa, thenReplaceRepair would have deleted at least one edge from each
justification of (B;, B;), and therefore(B;, B;) could not be inG} for P’.
On the other hand, ifB;, B;) ¢ Fa, then(A,replace(B;, B;)) it implies
that it was part of the changes returned BgplaceRepair. Since both,
ReplaceNaive and ReplaceSetCover check that the final graph has no
forbidden-transitivity, this is not possible.

(b) Thereis aB; which is part of a cycle igj 4 for P’ and there is &AT (C, op) €
F'st.B; <p C. SinceB; is in a cycle inG4 for P’, it should be part of a
cycle inG, for P. If (C,op) € F, then the inconsistency would have been
solve. On the other hand, {{C,op) ¢ F, then(C,op) is either one of the
changes returned binsDelRepair or ReplaceRepair. By an analogous
reasoning as in cases 1(a)-1(b), this is not possible either

Therefore P’ is consistent and is a repair 6% |

B Algorithms

Algorithm 1 markGraph

Input: DTD GraphGp, Policy P
Output: Marked DTD GraphVGp = (Gp, i, X)

1: Letly, o, ...l be the set of nodes i p with out-degreeé
2: forall lin {l1,l2,...lx} do

3:  markNode(MGp,l, P)

4: return MGp
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Algorithm 2 markNode

Input: Marked DTD GraphM Gp = (Gp, i, x), Node B, Policy P = (A, F)
1: forall A € Vp suchthafA, B) € Ep do
if u(B) ="“—"then
p(A) =
else
I* u(B) is undefined */
if (4,insert(B)) € F or (A,delete(B)) € F or (A, replace(B, B")) € F then
p(B) =", p(A) & ="
else
u(B) ="+
if u(A) ="-"then
11: if (A,insert(B)) € Aand(A, delete(B)) € Athen
12: X(A) «*“L”
13:  markNode(A)

COXNDU DA WN

Algorithm 3 InsDelRepair

Input: DTD graphG p, security policyP

Output: Set of UATs to remove fromP to restore consistency i® w.rt. insert/delete-

inconsistencies

MGp < markGraph(Gp, P)

. changes < ()

: forall A€ Vpand(A,B) € Ep do

if x(A) ="L1"then
Randomly choose eith¢r, insert(B) or (A, delete(B)) and assign it td/
changes < changes U U

: return  changes

NoagkhwhE

Algorithm 4 ReplaceRepair

Input: DTD graphG p, security policyP = (A, F), Maximum Number of Justificatior
Output: Set ofUATsto remove fromA to restore consistency iR w.r.t. replace-inconsistencies
. MGp < markGraph(Gp, P)
if 3 = 0then

Sol < ReplaceNaive(rp, MGp)
else

Sol < ReplaceSetCover(rp, MGp,J)
changes <+ ()
: forall (A,C) € Sol do

forall (B,C) e C do
changes < changes U (A, replace(B, C))

s return changes

NN R

[EnY
o
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Algorithm 5 ReplaceNaive
Input: Node R, Marked GraphV/Gp
Output: SetSol containing pairg B, C) whereB is a node reachable frol® in M Gp, andC
a set of edges to delete frofii to make it consistent
1: if Rg(R) := B1+ B2...+ B, then

2. LetGgr be the replace graph fd
3 C«0
4:  Let stackS contain all the nodes in c
5. while S not emptydo
6: B + S.pop()
7 forall AinVg,s.t.(A,B) € Er\ Cdo
8: forall C € Vg, s.t.(B,C) € Er \ Cdo
9: /* If there is an edge missing for transitive or if there is atgyover a node with
a UAT forbidden below */
10: if A% Coru(A)="-"then
11: Lete be one of( A4, B), (B, C) (chosen randomly)
12: C=CuU{e}
13: if e = (A, B) then
14: G=A
15: else
16: G=B8B
17: forall F € Vg s.t.F is reachable fronds in Gr do
18: S.push(F)
19:  Sol + {(R,C)}
20: else
21:  Sol + 0

22: forall (R,B) € £r do
23:  Sol + Sol U ReplaceNaive(B, MGp)
24: return Sol

Fig. 7. Execution ofReplaceNaive onGr

23



Algorithm 6 ReplaceSetCover

Input: NodeR, marked DTD grapi G p, forbidden edgesr, integery
Output: SetSol containing pairg B, C) whereB is a node reachable frol in M Gp, andC
a set of edges to delete frofii to make it consistent

1: Sol + 0, C + (0, done— false

2: if Rg(R) :== B1 + B2 ...+ B, then

3. LetGr = (V, &) be the replace graph fat

4 G+« Gr

5:  while ~donedo

6.

7

gt « ComputeJustifications(G, J)
/* Algorithm set CoverAlg takes the grapl§ ™ with the justifications and the set of
forbidden edges and returns the edges to delete fary

8: Ege — setCoverAlg(g+, Fr)
9: if £sc # (0 then
10: remove edges ifi;. fromg
11: C+ CUE&s.
12: else
13: done = true

14:  Sol + SolU{(R,C)}

15: forall (R, B) € Er do

16:  Sol + Sol U ReplaceSetCover(B, MGp)
17: return Sol
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Algorithm 7 ComputeJustifications

Input: Replace Graplyr, Maximum Number of Justificatior{s

Output: g;, i.e., the transitive closure offz with each edge and node labelled with a Set
containing at mosy justifications

LE+(

2: forall (A,B) € Erdo

3 J((AB) = {{(A B)}}

4: forall A € Vrdo
5 JA) =0
6: forall Ain Vg do
7:  forall BinVg,s.t.(A,B) € Er U E do
8: forall C' € Vg,s.t.(B,C) € Er U E do
9: [* If there is an edge missing for transitivity */
10: if (A,C) ¢ ErandA # C then
11: if (A,C) ¢ Ethen
12: E+ EU{(A,C)}
13: J((A,C)) « 0
14: forall j1 € J((A, B)) do
15: forall j» € J((B,C)) do
16: if |7((A,C))| <Jthen
17: T((A,0)) + T((A,C)) U {j1 Uja}
18: [* If there is a cycle */
19: if A= Candu(A) ="—"then
20: forall j: € J((A, B))do
21: forall jo» € 7((B,A))do
22: if |TJ(A)|<J then
23: J(A) « TJ(A) U{jr Uj2}

24: gg — (VR,(C:R ] E)
25: return G

Algorithm 8 Repair

Input: DTD graphG p, security policyP = (A, F), booleartotal

Output: A repair P’ of P. The repair is total if parametéotal= 1, partial otherwise.
1: changes < InsDelChecking(Gp, P) U ReplaceRepair(Gp, P)
2: A" + A — changes

3: if total then

4:  F' <+ vald(D) - A

5: else
6
7
8

F «—F
— (A" F)
:return P’
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