
ar
X

iv
:0

70
8.

20
76

v1
 [

cs
.D

B
]

15
 A

ug
 2

00
7

Repairing Inconsistent XML Write-Access Control
Policies

Loreto Bravo, James Cheney, and Irini Fundulaki
School of Informatics, University of Edinburgh, UK

{lbravo, jcheney, efountou}@inf.ed.ac.uk

Abstract. XML access control policies involving updates may contain security
flaws, here calledinconsistencies, in which a forbidden operation may be sim-
ulated by performing a sequence of allowed operations. Thispaper investigates
the problem of deciding whether a policy is consistent, and if not, how its incon-
sistencies can be repaired. We consider policies expressedin terms of annotated
DTDs defining which operations are allowed or denied for the XML trees that
are instances of the DTD. We show that consistency is decidable in PTIME for
such policies and that consistent partial policies can be extended to unique “least-
privilege” consistent total policies. We also consider repair problems based on
deleting privileges to restore consistency, show that finding minimal repairs is
NP-complete, and give heuristics for finding repairs.

1 Introduction

Discretionary access control policies for database systems can be specified in a number
of different ways, for example by storing access control lists as annotations on the data
itself (as in most file systems), or using rules which can be applied to decide whether to
grant access to protected resources. In relational databases, high-level policies that em-
ploy rules, roles, and other abstractions tend to be much easier to understand and main-
tain than access control list-based policies; also, they can be implemented efficiently
using static techniques, and can be analyzed off-line for security vulnerabilities [6].

Rule-based, fine-grained access control techniques for XMLdata have been consid-
ered extensively forread-only queries[10, 14, 13, 12, 2, 16, 9]. However, the problem of
controllingwrite accessis relatively new and has not received much attention. Authors
in [2, 9, 15] studied enforcement of write-access control policies following annotation-
based approaches.

In this paper, we build upon the schema-based access controlmodel introduced
by Stoica and Farkas [18], refined by Fan, Chan, and Garofalakis [10], and extended
to write-access control by Fundulaki and Maneth [12]. We investigate the problem of
checking for, and repairing, a particular class of vulnerabilities in XML write-access
control policies. An access control policy specifies which actions to allow a user to
perform based on the syntax of the atomic update, not its actual behavior. Thus, it is
possible that a single-step action which is explicitly forbidden by the policy can nev-
ertheless be simulated by one or more allowed actions. This is what we mean by an
inconsistency; a consistent policy is one in which such inconsistencies are not possible.
We believe inconsistencies are an interesting class of policy-level security vulnerabili-
ties since such policies allow users to circumvent the intended effect of the policy. The

http://arxiv.org/abs/0708.2076v1

A B

C D E

F G

R

H I

str

J

str

K

str
★

★
★

A

C D

F

R

"some

text"

"some more

text"

F

(a) (b)

B

E

G

R

H

E

G

I

"some

text"

"some more

text"

(c)

★ ★

Fig. 1. DTD graph (a) and XML documents conforming to the DTD (b, c)

purpose of this paper is to define consistency, understand how to determine whether a
policy is consistent, and show how to automatically identify possible repairs for incon-
sistent policies.
Motivating Example: We introduce here an example and refer to it throughout the pa-
per. Consider the XML DTD represented as a graph in Fig. 1(a).A document conform-
ing to this DTD has as root anR-element with a single child element that can either be
anA, B, J orK-element (indicated with dashed edges); similarly forG. AnA-element
has oneC and oneD children elements. AB-element can have zero or moreE children
elements (indicated with∗-labeled edges); similarly,E andJ elements can have zero
or moreG children elements. Finally,F , H , I andK are text elements. Fig. 1(b) and
(c) show two documents that conform to the DTD.

Suppose that a security policyallowsone toinsertanddeleteG elements andfor-
bids one from replacing anH with an I element. It is straightforward to see that the
forbidden operation can be simulated by first deleting theG element with anH child
and then inserting aG element with anI child. There are different ways of fixing this
inconsistency: either(a) to allow all operations below elementG or (b) forbid one of
the insertanddeleteoperations at nodeG.

Now, suppose that the policyallowsone toreplaceanA-element with aB-element
and this with aJ-element, butforbidsthe replacement ofA with J elements. The latter
operation can be easily simulated by performing a sequence of the allowed operations.
As in the previous case, the repairs that one can propose are(a) to allow the forbidden
replace operation or(b) forbid one of the allowed operations.

Our contributions: In this paper we consider policies that are defined in terms of
non-recursive structuredXML DTDs as introduced in [10] that capture without loss of
generality more general non-recursive DTDs. We first consider total policies in which
all allowed or forbidden privileges are explicitly specified. We define consistency for
such policies and prove the correctness of a straightforward polynomial time algorithm
for consistency checking. We also considerpartial policies in which privileges may be
omitted. Such a policy is consistent if it can be extended to aconsistent total policy;
there may be many such extensions, but we identify a canonical least-privilegeconsis-

2

tent extension, and show that this can be found in polynomialtime (if it exists). Finally,
given an inconsistent (partial or total) policy, we consider the problem of finding a “re-
pair”, or minimal changes to the policy which restore consistency. We consider repairs
based on changing operations from allowed to forbidden, show that finding minimal
repairs isNP-complete, and provide heuristic repair algorithms that run in polynomial
time.

The rest of this paper is structured as follows: in Section 2 we provide the definitions
for XML DTDs and trees. Section 3 discussesi) the atomic updates andii) the access
control policies that we are considering. Consistency is discussed in Section 4; Section 5
discusses algorithms for detecting and repairing inconsistent policies. We conclude in
Section 6. Proofs of theorems and detailed algorithms can befound in the Appendix.

2 XML DTDs and Trees

We considerstructuredXML DTDs as discussed in [10]. Although not all DTDs are
syntactically representable in this form, one can (as argued by [10]) represent more
general DTDs by introducing new element types. The DTDs we consider here are 1-
unambiguous as required by the XML standard [4].

Definition 1 (XML DTD). Let L be the infinite domain of labels. A DTDD is rep-
resented by(Ele,Rg, rt) wherei) Ele ⊆ L is a finite set ofelement types ii)rt is a
distinguished type inEle called theroot typeandiii) Rg defines the element types: that
is, for anyA ∈ Ele, Rg(A) is a regular expression of the form:

Rg(A) := str | ǫ | B1, B2, . . . , Bn | B1 +B2 + . . .+Bn | B1∗
whereBi ∈ Ele are distinct, “,”, “ +” and “∗” stand forconcatenation, disjunctionand
Kleene starrespectively,ǫ for theEMPTY element content andstr for text values.

We will refer toA → Rg(A) as theproduction rulefor A. An element typeBi that
appears in the production rule of an element typeA is called thesubelementtype ofA.
We writeA ≤D B for the transitive, reflexive closure of the subelement relation.

A DTD can also be represented as a directed acyclic graph thatwe callDTD graph.

Definition 2 (DTD Graph). A DTD graphGD = (VD, ED, rD) for a DTD D =
(Ele,Rg, rt) is a directed acyclic graph (DAG) wherei) VD is the set of nodes for
the element types inEle∪{str}, ii) ED = {(A,B) |A,B ∈ Ele andB is a subelement
type ofA} andiii) rD is the distinguished nodert.

Example 1.The production rules for the DTD graph shown in Fig. 1 are:
R→ A+B+J+K

A→ C,D

C → F∗

D → F∗
B → E∗
E → G∗

G→ H + I

J → G∗
F → str

H → str

I → str

K → str

We model XML documents asrooted unorderedtrees with labels fromL ∪ {str}.

Definition 3 (XML Tree). An unordered XML treet is an expression of the formt =
(Nt, Et, λt, rt, vt) wherei) Nt is the set of nodesii) Et ⊂ Nt ×Nt is the set of edges,
iii) λt : Nt → L ∪ {str} is a labeling function over nodesiv) rt is the root oft and is
a distinguished node inNt andv) vt is a function that assigns a string value to nodes
labeled withstr.

3

We denote bychildrent(n), parentt(n) anddesct(n), the children, parent and descen-
dant nodes, respectively, of a noden in an XML treet. The setdescet (n) denotes the
edges inEt between descendant nodes ofn. A node labeled with an element typeA in
DTD D is called aninstanceof A.

We say that an XML treet= (Nt, Et, λt, rt, vt) conformsto a DTDD = (Ele,Rg,

rt) at element typeA if i) rt is labeled withA (i.e.,λt(rt) = A) ii) each node inNt is
labeled with either anEle element typeB or with str, iii) each node int labeled with an
Ele element typeB has a list of children nodes such that their labels are in the language
defined byRg(B) and iv) each node int labeled withstr has a string value (vt(n) is
defined) and is a leaf of the tree. An XML treet is a valid instance of the DTDD if rt
is labeled withrt. We writeID(A) for the set of valid instances ofD at element type
A, andID for ID(rt).

Definition 4 (XML Tree Isomorphism). We say that an XML treet1 is isomorphic to
an XML treet2, denotedt1 ≡ t2, iff there exists a bijectionh : Nt1 → Nt2 where:i)
h(rt1) = rt2 ii) if (x, y) ∈ Et1 then(h(x), h(y)) ∈ Et2 , iii) λt1 (x) = λt2(h(x)), and
iv) vt1(x) = vt2(h(x)) for everyx with λt1(x) = str = λt2(h(x)).

3 XML Access Control Framework

3.1 Atomic Updates

Our updates are modeled on the XQuery Update Facility draft [7], which considers
delete, replace and severalinsert update operations. Adelete(n) operation will delete
noden and all its descendants. Areplace(n, t) operation will replace the subtree with
root n by the treet. A replace(n, s) operation will replace the text value of node
n with string s. There are several types of insert operations,e.g., insert into(n, t),
insert before(n, t), insert after(n, t), insert as first(n, t), insert as last(n, t). Update
insert into(n, t) inserts the root oft as a child ofn whereas updateinsert as first(n, t)
(insert as last(n, t)) inserts the root oft as a first (resp. last) child ofn. Update oper-
ationsinsert before(n, t) andinsert after(n, t) insert the root node oft as a preceding
and following sibling ofn resp..

Since we only consider unordered XML trees, we deal only withthe operation
insert into(n, t) (for readability purposes, we are going to writeinsert(n, t)). Thus, in
what follows, we will restrict to four types of update operations:delete(n), replace(n, t),
replace(n, s) andinsert(n, t).

More formally, for a treet1 = (Nt1 ,Et1 , λt1 , rt1 , vt1), a noden in t1, a treet2
= (Nt2 , Et2 , λt2 , rt2 , vt2) and a string values, the result of applyinginsert(n, t2),
replace(n, t2), delete(n) andreplace(n, s) to t1, is a new treet = (Nt, Et, λt, rt, vt)
defined as shown in Table 1. We denote by[[op]](t) the result of applying update opera-
tion op on treet.

An update operationinsert(n, t2), replace(n, t2), replace(n, s) or delete(n) is valid
with respect to treet1 providedn ∈ Nt1 andt2, if present, does not overlap witht1 (that
is,Nt1∩Nt2 = ∅). We also considerupdate sequencesop1; . . . ; opn with the (standard)
semantics[[op1; . . . ; opn]](t1) = [[opn]]([[opn−1]](· · · [[op1]](t1))). A sequence of updates
op1; . . . ; opn is valid with respect tot0 if for eachi ∈ {1, . . . , n}, opi+1 is valid with

4

Nt Et λt rt vt

[[insert(n, t2)]](t1) Nt1
∪Nt2

Et1
∪ Et2

∪ {(n, rt2)} λt1
(m), m ∈ Nt1

rt1 vt1 (m), m ∈ Nt1

λt2
(m), m ∈ Nt2

vt2 (m), m ∈ Nt2

[[replace(n, t2)]](t1) Nt1
∪Nt2

Et1
∪ Et2

∪ λt1
(m), rt1 vt1 (m), m ∈ Nt1

\desct1 (n) {(parentt1 (n), rt2)}\ m ∈ (Nt1
\ {n}) vt2 (m), m ∈ Nt2

descet1
(n) λt2

(m), m ∈ Nt2

[[replace(n, s)]](t1) Nt1
Et1

λt1
(m), m ∈ Nt1

rt1 vt1 (m),
m ∈ (Nt1

\{n})
vt1 (n) = s

[[delete(n)]](t1) Nt1
\ desct1 (n) Et1

\ descet1
(n) λt1

(m), rt1 vt1 (m),
m ∈ (Nt1

\desct1 (n)) m ∈ (Nt1
\desct1 (n))

Table 1.Semantics of update operations

respect toti, wheret1 = [[op1]](t0), t2 = [[op2]](t1), etc. The result of a valid update (or
valid sequence of updates) exists and is unique up to tree isomorphism.

3.2 Access Control Framework

We use the notion ofupdate access typeto specify the access authorizations in our
context. Our update access types are inspired from theXAcUannot language discussed
in [12]. Authors followed the idea ofsecurity annotationsintroduced in [10] to specify
the access authorizations for XML documents in the presenceof a DTD.

Definition 5 (Update Access Types).Given a DTDD, anupdate access type(UAT)
defined overD is of the form(A, insert(B1)), (A, replace(B1, B2)), (A, replace(str,
str)) or (A, delete(B1)), whereA is an element type inD, B1 andB2 are subelement
types ofA andB1 6= B2.

Intuitively, anUAT represents a set ofatomic update operations. More specifically, for
t an instance of DTDD, op an atomic update anduat an update access type we say that
op matches uat on t (op matchest uat) if:

λt(n) = A t′ ∈ ID(B)

insert(n, t′)matchest (A, insert(B))

λt(n) = B λt(parentt(n)) = A

delete(n) matchest (A, delete(B))

λt(n) = B, t′ ∈ ID(B′), λt(parentt(n)) = A,B 6= B′

replace(n, t′) matchest (A, replace(B,B′))

λt(n) = str, λt(parentt(n)) = A

replace(n, s)matchest (A, replace(str, str))

It is trivial to translate our update access types toXAcUannot security annotations.
In this work we assume that the evaluation of an update operation on a tree that con-
forms to a DTDD results in atree that conforms toD. It is clear then that each update
access type only makes sense for specific element types. For our example DTD, the
update access type(A, delete(C)) is not meaningful because allowing the deletion of
a C-element would result in an XML document that does not conform to the DTD,
and therefore, the update will be rejected. Similar for(R, delete(A)) or (R, insert(A)).
But, (B, delete(E)) and(B, insert(E)) are relevant for this specific DTD. The relation
uat valid in D, which indicates that an update access typeuat is valid for the DTDD,

5

is defined as follows:

Rg(A) := B∗

1

(A, insert(B1)) valid in D

Rg(A) := B1∗

(A, delete(B1)) valid in D

Rg(A) := str

(A, replace(str, str)) valid in D

Rg(A) := B1 + · · ·+Bn, i, j ∈ [1, n] i 6= j

(A, replace(Bi, Bj)) valid in D

We define the set of validUATsfor a given DTDD asvalid(D) = {uat | uat valid in

D}. A security policywill be defined by a set ofallowedandforbiddenvalid UATs.

Definition 6. A security policyP defined over a DTDD, is represented by(A,F)
whereA is the set ofallowedandF the set offorbiddenupdate access types defined
overD such thatA ⊆ valid(D), F ⊆ valid(D) andA ∩ F = ∅. A security policy is
total if A∪ F = valid(D), otherwise it ispartial.

Example 2.Consider the DTDD in Fig. 1 and the total policyP =(A,F) whereA is:
(R, replace(A,B)) (R, replace(B, J)) (R, replace(J,K)) (R, replace(K,J))
(R, replace(K,B)) (C, insert(F)) (C,delete(F)) (D, insert(F))
(D, delete(F)) (F, replace(str, str)) (B, insert(E)) (B, delete(E))
(E, insert(G)) (E, delete(G)) (G, replace(I,H)) (J, insert(G))
(J, delete(G)) (D, insert(F)) (D, delete(F)) (H, replace(str, str))
(I, replace(str, str)) (K, replace(str, str))

andF = valid(D) \ A. On the other hand,P = (A, ∅) is a partial policy. ✷

The operations that are allowed by a policyP = (A,F) on an XML treet, denoted
by [[A]](t), are the union of the atomic update operations matching eachUAT in A.
More formally,[[A]](t) = {op | op matchestuat on t, anduat ∈ A}. We say an update
sequenceop1; . . . ; opn is allowed ont provided the sequence is valid ont andop1 ∈
[[A]](t), op2 ∈ [[A]]([[op1]](t)), etc.1 Analogously, the forbidden operations are[[F]](t)
= {op | op matchestuat on t, anduat ∈ F}. If a policy P is total, its semantics is
given by its allowed updates, i.e.[[P]](t) = [[A]](t). The semantics of a partial policy is
studied in detail in Section 4.1.

4 Consistent Policies

A policy is said to be consistent if it is not possible to simulate a forbidden update
through a sequence of allowed updates. More formally:

Definition 7. A policyP = (A,F) defined overD is consistent if for every XML tree
t that conforms toD, there does not exist a sequenceop1; . . . ; opn of updates that is
allowed ont and an updateop0 ∈ [[F]](t) such that:

[[op1; . . . ; opn]](t) ≡ [[op0]](t).

In our framework inconsistencies can be classified as: insert/delete and replace.
Inconsistencies due toinsert/deleteoperations arise when the policyallowsone to

insertand delete nodes of element typeA whilst forbidding some operation in some

1 Note that this isnot the same as{op1, . . . , opn} ⊆ [[A]](t).

6

descendant element type of the node. In this case, the forbidden operation can be sim-
ulated by first deleting anA-element and then inserting a newA-element after having
done the necessary modifications.

There are two kinds of inconsistencies created byreplaceoperations on a production
ruleA → B1 + · · · + Bn of a DTD. First, if we are allowed to replaceBi by Bj and
Bj by Bk but notBi by Bk, then one can simulate the latter operation by a sequence
of the first two. Second, consider that we are allowed to replace some element typeBi

with an element typeBj and vice versa. If some operation in the subtree ofeitherBi

orBj is forbidden, then it is evident that one can simulate the forbidden operation by a
sequence of allowed operations, leading to an inconsistency.

We say thatnothing is forbidden belowA in a policyP = (A,F) defined overD
if for everyBi s.t.A ≤D Bi, (Bi, op) 6∈ F for every(Bi, op) ∈ valid(D). If A →
B1+ . . .+Bn, then we define thereplace graphGA = (VA, EA) wherei) VA is the set
of nodes forB1, B2, . . . Bn andii) (Bi, Bj) ∈ VA if there exists(A, replace(Bi, Bj)) ∈
A. Also, the set offorbidden edgesof A, is EA = {(Bi, Bj) | (A, replace(Bi, Bj)) ∈
F}. We say that a graphG = (V , E) is transitive if (x, y), (y, z) ∈ E then(x, z) ∈ E .
We writeG+

A for the transitive graph ofGA. The following theorem characterizes policy
consistency:

Theorem 1. A policyP = (A,F) defined over DTDD is consistent if and only if for
every production rule:
1. A → B∗ in D, if (A, insert(B)) ∈ A and (A, delete(B)) ∈ A, then nothing is

forbidden belowB
2. A → B1 + · · ·+Bn in D, for every edge(Bi, Bj) in G+

A , (Bi, Bj) 6∈ FA, and
3. A → B1 + · · ·+Bn in D, if for everyi ∈ [1, . . . n], if Bi is contained in a cycle in

GA then nothing is forbidden belowBi.

Proof (Sketch).The forward direction is straightforward, since if any of the rules are
violated an inconsistency can be found, as sketched above. For the reverse direction,
we first need to reduce allowed update sequences to certain (allowed) normal forms
that are easier to analyze, then the reasoning proceeds by cases. A full proof is given in
Appendix A. ✷

In the case of total policies, condition 2 in Theorem 1 amounts to requiring that the
replace graphGA is transitive (i.e.,GA = G+

A)

Example 3.(example 2 continued) The total policyP is inconsistent because:
– (E, insert(G)) and(E, delete(G)) are inA, but(G, replace(H, I)) ∈ F (condition

1, Theorem 1),
– (R, replace(A, J)), (R, replace(A,K)) and(R, replace(B,K)) are inF (condi-

tion 2, Theorem 1), and
– There are cycles inGR involving bothB andJ , but below both of them there is a

forbiddenUAT, namely(G, replace(H, I)) (condition 3, Theorem 1)

It is easy to see that we can check whether properties 1, 2, and3 hold for a policy using
standard graph algorithms:

Proposition 1. The problem of deciding policy consistency is inPTIME.

7

Remark 1.We wish to emphasize that consistency is highly sensitive tothe design of
policies and update types. For example, we have consciouslychosen toomit an update
type(A, replace(Bi, Bi)) for an element type in the DTD whose production rule is ei-
ther of the formB∗ or B1 + . . .+ Bn. Consider the case of a conference management
system where apaper element has adecision and atitle subelement. Suppose that the
policy allows the author of the paper toreplacea paper with anotherpaper element,
but forbids to change the value of thedecision subelement. This policy is inconsistent
since by replacing apaper element by another with a differentdecision subelement we
are able to perform a forbidden update. In fact, thereplace(paper, paper) can simulate
any other update type applying below apaper element. Thus, if the policy forbids re-
placement ofpaper nodes, then it would be inconsistent to allow any other operation on
decision andtitle. Because of this problem, we argue that update typesreplace(Bi, Bi)
should not be used in policies. Instead, more specific privileges should be assigned in-
dividually,e.g.,by allowing replacement of the text values oftitle or decision.

4.1 Partial Policies

Partial policiesmay be smaller and easier to maintain than total policies, but are am-
biguous because some permissions are left unspecified. An access control mechanism
must either allow or deny a request. One solution to this problem (in accordance with
theprinciple of least privilege) might be to deny access to the unspecified operations.
However, there is no guarantee that the resulting total policy is consistent. Indeed, it is
not obvious that a partial policy (even if consistent) hasanyconsistent total extension.
We will now show how to find consistent extensions, if they exist, and in particular how
to find a “least-privilege” consistent extension; these turn out to be unique when they
exist so seem to be a natural choice for defining the meaning ofa partial policy.

For convenience, we writeAP andFP for the allowed and forbidden sets of a
policy P ; i.e.,P = (AP ,FP). We introduce aninformation orderingP ⊑ Q, defined
asAP ⊆ AQ andFP ⊆ FQ; that is,Q is “more defined” thanP . In this case, we say
thatQ extendsP . We say that a partial policyP is quasiconsistentif it has a consistent
total extension. For example, a partial policy on the DTD of Figure 1 which allows
(B, insert(E)), (B, delete(E)), and denies(H, replace(str, str)) is not quasiconsistent,
because any consistent extension of the policy has to allow(H, replace(str, str)).

We also introduce aprivilege orderingon total policiesP ≤ Q, defined asAP ⊆
AQ; that is,Q allows every operation that is allowed inP . This ordering has unique
greatest lower boundsP ∧ Q defined as(AP ∩ AQ,FP ∪ FQ). We now show that
every quasiconsistent policy has aleast-privilegeconsistent extensionP †; that is,P † is
consistent andP † ≤ Q wheneverQ is a consistent extension ofP .

Lemma 1. If P1, P2 are consistent total extensions ofP0 thenP1 ∧P2 is also a consis-
tent extension ofP0.

Proof. It is easy to see that ifP1, P2 extendP0 thenP1 ∧ P2 extendsP0. Suppose
P1 ∧ P2 is inconsistent. Then there exists an XML treet, an atomic operationop0 ∈
[[FP1∧P2

]](t), a sequenceop allowed ont by P1 ∧ P2, such that[[op0]](t) = [[op]](t).
NowAP1∧P2

= AP1
∩AP2

, soop0 must be forbidden by eitherP1 orP2. On the other

8

hand,op must be allowed bybothP1 andP2, sot, op0, op forms a counterexample to
the consistency ofP1 (or symmetricallyP2). ✷

Proposition 2. Each quasiconsistent policyP has a unique≤-least consistent total
extensionP †.

Proof. SinceP is quasiconsistent, the setS = {Q | P ⊑ Q,Q consistent} is finite,
nonempty, and closed under∧, so has a≤-least elementP † =

∧
S. ✷

Finally, we show how to find the least-privilege consistent extension, or determine that
none exists (and hence that the partial policy is not quasiconsistent). Define the operator
T : P(valid(D)) → P(valid(D)) as:
T (S) = S ∪ {(C, uat) | B ≤D C,RgD(A) = B

∗

, {(A, insert(B)), (A,delete(B))} ⊆ S}

∪{(C, uat) | Bi ≤D C,RgD(A) = B1 + . . .+Bn, (Bi, Bi) ∈ G
+

A (S)}

∪{(A, replace(Bi, Bk)) | RgD(A) = B1 + . . .+Bn, (Bi, Bk) ∈ G
+

A (S)}

Lemma 2. If uat ∈ T (S) then any operationop0 matchinguat on t can be simulated
using a sequence of operationsop allowed ont by S (that is, such that[[op0]](t) =
[[op]](t)).

Theorem 2. LetP be a partial policy. The following are equivalent: (1)P is quasicon-
sistent, (2)P is consistent (3)T (AP) ∩ FP = ∅.

Proof. To show (1) implies (2), ifP ′ is a consistent extension ofP , then any incon-
sistency inP would be an inconsistency inP ′, soP must be consistent. To show (2)
implies (3), we prove the contrapositive. IfT (AP) ∩ FP 6= ∅ then chooseuat ∈
T (AP)∩FP . Choose an arbitrary treet and atomic updateop satisfyingop0 ∈ [[uat]](t).
By Lemma 2, there exists a sequenceop allowed byAP on t with [[op]](t) = [[op0]](t).
Hence, policyP is inconsistent. Finally, to show that (3) implies (1), notethat(T (AP),
valid(D) \ T (AP)) extendsP and is consistent providedT (AP) ∩ FP = ∅.

Indeed, for a (quasi-)consistentP , the least-privilege consistent extension ofP is sim-
ply P † = (T (AP), valid(D) \ T (AP)) (proof omitted). Hence, we can decide whether
a partial policy is (quasi-)consistent and if so findP † in PTIME.

5 Repairs

If a policy is inconsistent, we would like to suggest possible minimal ways of modifying
it in order to restore consistency. In other words, we would like to findrepairs that are
as close as possible to the inconsistent policy.

There are several ways of defining these repairs. We might want to repair by chang-
ing the permissions of certain operations from allow to forbidden and vice versa; or we
might give preference to some type of changes over others. Also, we can measure the
minimality of the repairs as a minimal number of changes or a minimal set of changes
under set inclusion.

Due to space restrictions, in this paper we will focus on finding repairs that trans-
form UATs from allowedto forbiddenand that minimize the number of changes. We
believe that such repairs are a useful special case, since the repairs are guaranteed to be
more restrictive than the original policy.

9

Definition 8. A policy P ′ = (A′,F ′) is arepair of a policyP = (A,F) defined over
a DTDD iff: i) P ′ is a policy defined overD, ii) P ′ is consistent, and iii)P ′ ≤ P .

A repair istotal if F ′ = valid(D) \ A andpartial otherwise. Furthermore a repair
P ′ = (A′,F ′) of P (A,F) is a minimal-total-repairif there is no total repairP ′′ =
(A′′,F ′′) such that|A′|< |A′′| and aminimal-partial-repairif F ′ = F and there is no
partial repairP ′′ = (A′′,F) such that|A′| < |A′′|.

Given a policyP = (A,F) and an integerk, the total-repair (partial-repair) problem
consists in determining if there exists a total-repair (partial-repair)P ′ = (A′,F ′) of
policyP such that|A\A′| < k. This problem can be shown to beNP-hard by reduction
from the edge-deletion transitive-digraph problem [19].

Theorem 3. The total-repair and partial-repair problem isNP-complete.

If the DTD has no production rules of the typeA → B1+ · · ·+Bn, then the total-repair
problem is inPTIME.

5.1 Repair Algorithm

In this section we discuss a repair algorithm that finds a minimal repair of a total or
partial policy. All the algorithms can be found in Appendix B.

The algorithm to compute a minimal repair of a policy relies in the independence
between inconsistenciesw.r.t. insert/delete (Theorem 1, condition 1) and replace (The-
orem 1, conditions 2 and 3) operations. In fact, a local repair of an inconsistencyw.r.t.
insert/delete operations will never solve nor create an inconsistency with respect to a re-
place operation and vice-versa. We will separately describe the algorithm for repairing
the insert/delete inconsistencies and then the algorithm for the replace ones.

Both algorithms make use of themarked DTD graphMGD = (GD, µ, χ) where
µ is a function from nodes inVD to {“+” , “−”} andχ is a partial function fromVD

to {⊥}. In a marked graph for a DTDD and a policyP = (A,F) i) each node in the
graph is either marked with “+” (i.e., nothing is forbidden below the node) or with a
“−” (i.e., there exists at least one update access type that is forbidden below the node).
If, for nodesA andB in the DTD, both (A, insert(B)) and(A, delete(B)) are inA
andµ(A) = “−”, then χ(A) = “⊥”. A marked graph is obtained from algorithm
markGraph which takes as input a DTD graph and a policyP and traverses the
DTD graph starting from the nodes with out-degree 0 and marksthe nodes and edges
as discussed above.

Example 4.Consider the graph for DTDD in Fig. 2(a) and policyP = (A,F), with
A defined in Example 2. The result of applyingmarkGraph to this DTD and policy
is shown in Fig. 2(b). Notice that nodesB, E andJ are marked with both a “−” and
“⊥” since i) update access type(G, replace(H, I)) is in F andii) all insert and delete
update access types forB, E andJ are inA. For readability purposes we do not show
the multiplicities in the marked DTD graph. ✷

10

A B

C D E

F G

R

H I

str

J

str

K

str

(a)

A B

C D E

F G

R

H I

str

J

str

K

str

-

+

+ +

+

+ +

-

-,!

-,! -,!

(b)

+

Fig. 2. DTD Graph (a) and Marked DTD Graph (b) for the DTD in Fig. 1

Repairing Inconsistencies for Insert and Delete Operations Recall that if both the
insert and delete operations are allowed at some element type and there is some op-
eration below this type that is not allowed, then there is an inconsistency (see Theo-
rem 1, condition 1). The marked DTD graph provides exactly this information: a node
A is labeled with “⊥” if it is inconsistent w.r.t.insert/deleteoperations. For each such
node and for the repair strategy that we have chosen, the inconsistency can be mini-
mally repaired by removing either(A, insert(B)) or (A, delete(B)) fromA. Algorithm
InsDelRepair takes as input a DTD graphGD and a security policyP = (A,F)
and returns a set ofUATsto remove fromA to restore consistencyw.r.t. insert/delete-
inconsistencies.

Example 5.Given the marked DTD graph in Fig. 2(b), it is easy to see that theUATs
that must be repaired are associated with nodesB, J andE (all nodes are marked with
“⊥”). The repairs that can be proposed to the user are to remove from A oneUAT
from each of the following sets:{(B, insert(E)), (B, delete(E))}, {(E, insert(G)),
(E, delete(G))} and{(J, insert(G)), (J, delete(G))}. ✷

Repairing Inconsistencies for Replace OperationsThere are two types of inconsis-
tencies related to replace operations (see Theorem 1, conditions 2–3): the first arises
when some elementA is contained in some cycle and something is forbidden below it;
the second arises when the replace graphGA cannot be extended to a transitive graph
without adding a forbidden edge inF . In what follows we will refer to these type of
inconsistencies asnegative-cycleandforbidden-transitivity. By Theorem 3, the repair
problem isNP-complete, and therefore, unlessP = NP, there is no polynomial time al-
gorithm to compute a minimal repair to the replace-inconsistencies. Our objective then,
is to find an algorithm that runs in polynomial time and computes a repair that is not
necessarily minimal.

Algorithm ReplaceNaive traverses the marked graphMGD and at each node,
checks whether its production rule is of the formA → B1 + . . . + Bn. If this is the
case, it builds the replace graph forA, GA, and runs a modified version of the Floyd-
Warshall algorithm [11]. The original Floyd-Warshall algorithm adds an edge(B,D) to

11

the graph if there is a nodeC such that(B,C) and(C,D) are in the graph and(B,D)
is not. Our modification consists on deleting either(B,C) or (C,D) if (B,D) ∈ FA,
i.e., if there is forbidden-transitivity. In this way, the final graph will satisfy condition 2
of Theorem 1. Also, if there are edges(B,C) and(C,B) andµ(C) = “−”, i.e., there
is a negative-cycle, one of the two edges is deleted. AlgorithmReplaceNaive returns
the set of edges to delete from each node to remove replace-inconsistencies.

Example 6.The replace graphGG has no negative-cycles nor forbidden-transitivity,
therefore it is not involved in any inconsistency. On the other hand, the replace graph
GR = (V , E), shown in Fig. 3(a) is the source of many inconsistencies. A possible
execution ofReplaceNaive (shown in Fig. 7 in the Appendix) is:(A,B), (B, J) ∈ E
but(A, J) ∈F , so(A,B) or (B, J) should be deleted, say(A,B). Now,(B, J), (J,K)
∈ E and(B,K) ∈ F , therefore we delete either(B, J) or (J,K), say(B, J). Next,
(K, J), (J,K) ∈ E andµ(J) = “−” in Fig. 2(b), therefore there is a negative-cycle
and either(K, J) or (J,K) has to be deleted. If(K, J) is deleted, the resulting graph
has no forbidden-transitive and nor negative-cycles. The policy obtained by removing
(R, replace(A,B)), (R, replace(B, J)) and(R, replace(J,K)) fromA has no replace-
inconsistencies. ✷

TheReplaceNaive algorithm might remove more than the necessary edges to
achieve consistency: in our example, if we had removed edge(B, J) at the first step,
then we would have resolved the inconsistencies that involve edges(A,B), (B, J) and
(J,K).

An alternative to algorithmReplaceNaive, that can find a solution closer to min-
imal repair, is algorithmReplaceSetCover, which also uses a modified version of
the Floyd-Warshall algorithm. In this case, the modification consists in computing the
transitive closure of the replace graphGA and labelling each newly constructed edgee

with a set ofjustificationsJ . Each justification contains sets of edges ofGA that were
used to adde in G+

A . Also, if a node is found to be part of a negative-cycle, it is la-
belled with the justificationsJ of the edges in each cycle that contains the node. An
edge or vertex might be justified by more than one set of edges.In fact, the number of
justifications an edge or node might have isO(2|E|). To avoid the exponential number
of justifications,ReplaceSetCover() assigns at mostJ justifications to each edge or
node, whereJ is a fixed number. This new labelled graph is then used to construct an
instance of the minimum set cover problem (MSCP) [17]. The solution to the MSCP,
can be used to determine the set of edges to remove fromGA so that none of the jus-
tifications that create inconsistencies are valid anymore.Because of the upper boundJ
on the number of justifications, it might be the case that the graph still has forbidden-
transitive or negative-cycles. Thus, the justifications have to be computed once more
and the set cover run again until there are no more replace inconsistencies.

Example 7.For J = 1, the first computation of justifications ofReplaceSetCover

results in the graph in Fig. 3 (b) with the following justifications:
J ((A, J)) = {{(A, B), (B, J)}}
J ((A, K)) = {{(A, B), (B, J), (J, K)}}
J ((B, K)) = {{(B, J), (J, K)}}

J ((J, B)) = {{(J, K), (K, B)}}
J (B)) = {{(B, J), (J, K), (K, B)}}
J (J) = {{(J, K), (K, J)}}

12

A B J K

R

G

A B J K

R

G +

(a) (b)

Fig. 3. ReplaceGR (a) and Transitive Replace GraphG+R (b)

Justifications for edges represent violations of transitivity. Justification for nodes rep-
resent negative-cycles. If we want to remove the inconsistencies, it is enough to delete
one edge from each set inJ . ✷

The previous example shows that, for each nodeA, replace-inconsistencies can be re-
paired by removing at least one edge from each of the justifications of edges and vertices
in G+

A . It is easy to see that this problem can be reduced to the MSCP.An instance of
the MSCP consists of a universeU and a setS of subsets ofU . A subsetC of S is a set
cover if the union of the elements in it isU . A solution of the MWSCP is a set cover
with the minimum number of elements.

The set cover instance associated toG+
A = (V , E) and the set of forbidden edges

FA, isMSCP(G+
A ,FA) = (U ,S) for i) U = {s | s ∈ J (e), e ∈ FA} ∪ {s | s ∈ J (V),

V ∈ V}, and ii)S =
⋃

e∈E I(e) whereI(e) = {s | s ∈ U , e ∈ s}. Intuitively,U contains
all the inconsistencies, and the setI(e) the replace-inconsistencies in which an edgee

is involved. Notice that in this instance of the MSCP, theU is a set of justifications,
therefore,S is a set of sets of justifications.

Example 8.The minimum set cover instance,MSCP(G+
R , E) = (U ,S), is such that

U = {{(A,B), (B, J), (J,K)}, {(A,B), (B, J)}, {(B, J), (J,K)}, {(J,K), (K,B)},
{(J, K), (K, J)}, {(K, J), (J,K)}, {(B, J), (J,K), (K,B)}} andS = {I((A,B)),
I((B, J)), I((J,K)), I((K, J)), I((K,B))}. The extensions ofI are given in Table 2,
where each column corresponds to a setI and each row to an element inU . Values 1 and
0 in the table represent membership and non-membership respectively. A minimum set
cover ofMSCP(G+

R) is C = {I(B, J), I(J,K)}, sinceI(B, J) covers all the elements
of U except for the element{(A,B), (B, J)}, which is covered byI(J,K). Now, using
the solution from the set cover, we remove edges(B, J) and(J,K) fromGR. If we try
to compute the justifications once again, it turns out that there are no more negative-
cycles and that the graph is transitive. Therefore, by removing (R, replace(B, J)) and
(R, replace(J, K)) fromA, there are no replace-inconsistencies in nodeR. ✷

The set cover problem is MAXSNP-hard [17], but its solution can be approximated
in polynomial time using a greedy-algorithm that can achieve an approximation factor
of log(n) wheren is the size ofU [8]. In our case,n is O(J × |Ele|). In the ongoing
example, the approximation algorithm of the set cover will return a cover of size 2. This
is better than what was obtained by theReplaceNaive algorithm. In order to decide
which one is better, we need to run experiments to investigate the trade off between
efficiency and the size of the repaired policy.

13

S
U I((A,B)) I((B, J)) I((J,K)) I((K,J)) I((K,B))

{(A,B), (B,J), (J,K)} 1 1 1 0 0
{(A,B), (B, J)} 1 1 0 0 0
{(B, J), (J,K)} 0 1 1 0 0
{(J,K), (K,B)} 0 0 1 0 1
{(J,K), (K,J)} 0 0 1 1 0
{(K, J), (J,K)} 0 0 1 1 0

{(B, J), (J,K), (K,B)} 0 1 1 0 1

Table 2.Set cover problem

Algorithm ReplaceRepair will compute the set ofUATsto remove fromA, by
using eitherReplaceNaive (if J = 0) orReplaceSetCover (if J > 0).

Computation of a Repair AlgorithmRepair computes a new consistent policyP ′ =
(A′,F ′) fromP = (A,F) by removing fromA the union of theUATsreturned by algo-
rithmsInsDelRepair andReplaceRepair. If argumenttotal of algorithmRepair

is true, then the repair returned by it will be total. Iffalse, then a partial policy such
thatF ′ = F will be returned.

Theorem 4. Given a total (partial) policyP , algorithmRepair returns a total (par-
tial) repair of P .

6 Conclusion

Access control policies attempt to constrain the actual operations users can perform, but
are usually enforced in terms of syntactic representationsof the operations. Thus, poli-
cies controlling update access to XML data may forbid certain operations but permit
other operations that have the same effect. In this paper we have studied suchincon-
sistencyvulnerabilities and shown how to check consistency and repair inconsistent
policies. This is, to our knowledge, the first investigationof consistency and repairs
for XML update security. We also considered consistency andrepair problems for par-
tial policies which may be more convenient to write since many privileges may be left
unspecified.

Cautis, Abiteboul and Milo in [5] discuss XML update constraints to restrict in-
sert and delete updates, and propose to detect updates that violate these constraints by
measuring the size of the modification of the database. This approach differs from our
security framework for two reasons: a) we consider in addition to insert/delete alsore-
placeoperations and b) we require that each operation in the sequence of updates does
not violate the security constraints, whereas in their case, they require that only the
input and output database satisfies them.

Minimal repairs are used in the problem of returning consistent answers from incon-
sistent databases [1]. There, a consistent answer is definedin terms of all the minimal
repairs of a database. In [3] the set cover problem was used tofind repairs of databases
w.r.t. denial constraints.

There are a number of possible directions for future work, including running ex-
periments for the proposed algorithms, studying consistency for more general security

14

policies specified using XPath expressions or constraints,investigating the complexity
of and algorithms for other classes of repairs, and considering more general DTDs.

Acknowledgments:We would like to thank Sebastian Maneth and Floris Geerts for
insightful discussions and comments.

References

1. M. Arenas, L. Bertossi, and J. Chomicki. Consistent QueryAnswers in Inconsistent
Databases. InPODS, pages 68–79. ACM Press, 1999.

2. E. Bertino and E. Ferrari. Secure and Selective Dissemination of XML Documents.ACM
TISSEC, 5(3):290–331, 2002.

3. L. Bertossi, L. Bravo, E. Franconi, and A. Lopatenko. Complexity and Approximation of
Fixing Numerical Attributes in Databases Under Integrity Constraints. InDBPL, Springer
LNCS 3774, pages 262–278, 2005.

4. T. Bray, J. Paoli, C.M. Sperberg-McQueen, E. Maler, and F.Yergeau. Extensible Markup
Language (XML) 1.0 (Fourth Edition). http://www.w3.org/TR/REC-xml/, September 2006.

5. B. Cautis, S. Abiteboul, and T. Milo. Reasoning about XML Update Constraints. InPODS,
2007.

6. P. Centonze, G. Naumovich, S. J. Fink, and M. Pistoia. Role-Based Access Control Consis-
tency Validation. InISSTA, pages 121–132. ACM Press, 2006.

7. D. Chamberlin, D. Florescu, and J. Robie. XQuery Update Facility.
http://www.w3.org/TR/xqupdate/, July 2006. W3C Working Draft.

8. V Chvatal. A Greedy Heuristic for the Set Covering Problem. Mathematics of Operations
Research, 4:233–235, 1979.

9. E. Damiani, S. De Capitani di Vimercati, S. Paraboschi, and P. Samarati. A Fine-grained
Access Control System for XML Documents.ACM TISSEC, 5(2):169–202, 2002.

10. W. Fan, C-Y. Chan, and M. Garofalakis. Secure XML Querying with Security Views. In
ACM SIGMOD, 2004.

11. R. Floyd. Algorithm 97: Shortest path.Communications of the ACM, 5(6):345, 1962.
12. I. Fundulaki and S. Maneth. Formalizing XML Access Control for Update Operations. In

SACMAT, 2007.
13. I. Fundulaki and M. Marx. Specifying Access Control Policies for XML Documents with

XPath. InSACMAT, pages 61–69, 2004.
14. G. Kuper, F. Massacci, and N. Rassadko. Generalized XML Security Views. InSACMAT,

pages 77–84, 2005.
15. C-H. Lim, S. Park, and S. H. Son. Access control of XML documents considering update

operations. InACM Workshop on XML Security, 2003.
16. M. Murata, A. Tozawa, M. Kudo, and S. Hada. XML Access Control Using Static Analysis.

ACM TISSEC, 9(3):290–331, 2006.
17. Ch. Papadimitriou.Computational Complexity. Addison-Wesley, 1994.
18. A. Stoica and C. Farkas. Secure XML Views. InIFIP WG 11.3, volume 256. Kluwer, 2002.
19. M. Yannakakis. Edge-Deletion Problems.SIAM Journal on Computing, 10(2):297–309,

1981.
20. Mihalis Yannakakis. Node-and Edge-deletion NP-complete Problems. InSTOC, pages 253–

264. ACM Press, 1978.

15

A Proofs

A.1 Proofs from Section 4

In this appendix we outline a detailed proof of correctness for our characterization of
policy consistency (Theorem 1). The proof is not deep, but requires considering many
combinations of cases. The main difficulty is in proving thatrules 1, 2, and 3 imply
consistency, since this involves showing that for a consistent policy, there is no way
to simulate a single forbidden operation via a sequence of allowed operations. The
obvious approach by induction on the length of the allowed sequence does not work
because subsequences of the allowed sequence do not necessarily continue to simulate
the denied operation.

The solution is to establish the existence of an appropriatenormal formfor update
sequences, such that (roughly speaking):
1. The normal form of an update sequencea applied to inputt is

delete(n1); · · · ; delete(ni); r; insert(l1, v1), . . . , insert(lj , vj)

consisting of a sequence of deletes, then replacements, then inserts
2. The replacementsr can be partitioned into “chained” subsequencesr1, . . . , rj that

of the formri = replace(mi, u
i
1); replace(rui

1

, ui
2); · · · .

3. Eachni,mj , lk is in t.
4. No deleted or replaced node (ni or mj) is an ancestor of another of the modified

nodes (ni,mj , lk)
5. Allowed update sequences have allowed normal forms.

Pictorially, a normalized update sequence can be visualized as a tree with some of its
nodes “annotated” with insertion operationsinsert(u), deletionsdelete, and replace-
ment sequencesreplace(u1, . . . , un), such that no annotation occurs below a node with
a delete or replace annotation. Such annotations can be viewed as instructions for how
to construct[[a]](t) from T .

Normalized update sequences are much easier to analyze thanarbitrary allowed
sequences in the proof of the reverse direction of Theorem 1.

We introduce some additional helpful notation: write

node(delete(n)) = n

node(insert(n, u)) = n

node(replace(n, u)) = n

for the “principal” node of an operation; write≤t for the ancestor-descendant ordering
on t (that is,E∗); write⊥t for the relation{(n,m) ∈ Nt ×Nt | n 6≤t m andm 6≤t n}
(that is,n ⊥t m meansn andm are≤t-incomparable).

Proposition 3. LetP be a security policy anda an allowed update sequence mapping
t to t′. Then there is an equivalent allowed update sequencea′ that is in normal form.

Proof. We first note that the laws in Figures 4, 5, and 6 are valid for rewriting update
sequences relative to a given input treet. We writeop ≡ op′ to indicate that the (partial)

16

insert(n, u); insert(m,v) ≡

insert(n, [[insert(m,v)]](u)) if m ∈ Nu

insert(m, v); insert(n, u) if m 6∈ Nu

insert(n, u); replace(m,v) ≡

8

>

>

<

>

>

:

replace(m,v) if n ∈ Nt, m ≤t n

replace(m,v); insert(n, u) if n ∈ Nt, m 6≤t n

insert(n, v) if m = ru
insert(n, [[replace(m, v)]](u)) if m ∈ Nu − {ru}

insert(n, u); delete(m) ≡

8

>

>

<

>

>

:

delete(m) if m ≤t n

delete(m); insert(n, u) if m ∈ Nt, m 6≤t n

ǫ if m = ru
insert(n, [[delete(m)]](u)) if m ∈ Nu − {ru}

Fig. 4.Moving inserts forward

replace(n, u); delete(m) ≡

8

>

>

<

>

>

:

delete(m) if m <t n

delete(m); replace(n, u) if m ∈ Nt, m 6≤t n

delete(n) if m = ru
replace(n, [[delete(m)]](u)) if m ∈ Nu − {ru}

delete(n); delete(m) ≡

delete(m) if m ≤t n

delete(m); delete(n) if m 6≤t n

Fig. 5. Moving deletes backward

replace(n, u); replace(m, v) ≡

8

<

:

replace(m, v) if m <t n

replace(m, v); replace(n, u) if m ∈ Nt, m ≤t n

replace(n, [[replace(m, v)]](u)) if m ∈ Nu − {ru}

Fig. 6. Chaining and commuting replacements

17

functions[[op]](−) and[[op′]](−) are equal; that is, for any treet, op is valid ont if and
only of op′ is valid ont, and if both are valid, then[[op]](t) = [[op′]](t).

We can use these identities to normalize an update sequence as follows. First, move
occurrences of inserts to the end of the sequence. Next, movedeletes to the beginning
of the sequence. Finally, we use the remaining rules to eliminate dependencies among
deletes, replacements and inserts, and to build chains of replacements. The resulting
sequence is in normal form.

Note that most of the identities only rearrange existing allowed updates and do not
introduce any new update operations that we need to check against the policy. In a few
cases, we need to do some work to check that the rewritten sequence is still allowed.
For example, when we rewritereplace(n, u); delete(m) to delete(n) with m = ru, we
need to verify that we are allowed to deletem; this is because we were allowed to delete
n, which replacedm.

We say that two treesagree aboven if the trees are equal after deleting the subtree
rooted atn from each. Note that for all of the operations we consider, ifop has principal
noden andop is valid ont thent agrees with[[op]](t) aboven.

Lemma 3. If t and t′ are equal except under the subtree starting atn, and allowed
sequencea mapst to t′, then there is an equivalent, normalized, allowed sequencea′

that only affects nodes at or aboven.

Proof. We show that for each nodem unrelated ton, updates applying directly tom
can be eliminated. If a deletion applies tom, then must be an insertion replacing the
deleted subtree exactly, and these are the only updates affectingm. Thus, it is safe to
remove this useless deletion-insertion pair. If a replacement applies tom, then there
must be subsequent replacements that restore the subtree atm. This sequence of re-
placements can be eliminated. No other possibilities are consistent witht andt′ being
equal except atn. Thus, by considering each nodem in the tree that is unrelated ton,
and removing the updates having an effect onm, we can obtain an equivalent update
sequencea′ having only updates whose principal node is related ton. This update se-
quence is still allowed since we have only removed allowed operations (and since all of
the operations we have removed are independent of the remaining ones), and can also
be further normalized if necessary.

If t, t′ agree aboven, anda is an allowed sequence, then we define then-related nor-
mal form ofa to be an equivalent allowed, normalized sequence of operations affecting
the tree above or belown, which must exist by the above lemma.

Proof of Theorem 1. For the forward direction, we prove the contrapositive. As argued
in Section 4, any violations of the above properties suffice to show that a policy is
inconsistent.

For the reverse direction, we again prove the contrapositive. SupposeP is inconsis-
tent, and lett be a tree,a a sequence allowed ont, andd denied ont by P , such that
[[a]](t) = [[d]](t). We consider the four cases ford:

– d = insert(n, t). Consider the normal form of thea restricted to the updates related
to n. Clearlya cannot consist only of updates at or belown since an insertion at

18

n cannot be simulated by a deletion or replacement atn or by any operations that
only apply belown. If there is a deletion aboven, there must also be an insertion
aboven that restores the extra deleted nodes and also has the effectof insert(n, t).
Hence there is a violation of rule 1. Otherwise, if there is a replacement above node
n, then there must be one or more replacements restoring the rest of the tree to
its previous form and insertingt, violating rule 3 (since the chain of replacements
must be allowed by a cycle in some graphGA)

– d = delete(n, t), replace(n, s). Similar to case forinsert, since again these opera-
tions cannot be simulated solely by operations at or belown.

– d = replace(n, v). There are two possibilities. If then-related normal form ofa
consists only of replacements atn, then the policy must violate rule 2. Otherwise,
an argument similar to that in the above cases can be used to show thatP must
violate rule 1 or 3.

✷

Proof of Proposition 1. By Theorem 1, there are two cases in which a policy can be
inconsistent. The first case can be checked by doing a traversing of the graph following
a topological sorting of the DTD graph. This can be done in polynomial time over the
number of edges and vertices of the DTD graph.

The second case consists of checking if the graphsGA are acyclic and transitive.
Checking this two conditions for each elementA can be done in polynomial time.✷

Proof of Lemma 1. Since bothP andQ extendR, we haveAP ,AQ ⊇ AR and
DP ,DQ ⊇ DR; hence

AP∧Q = AP ∩AQ ⊇ AR ∩ AR = AR

DP∧Q = DP ∪ DQ ⊇ DR ∪ DR = DR

✷

Proof of Lemma 2. By cases according to the definition ofT . If uat ∈ S then there is
nothing to do.

If for someA, B we haveuat = (C, op) with B ≤D C, with production ruleA
→ B∗, {(A, insert(B)), (A, delete(B))} ⊆ S, then letn = node(op0), let m be the
B-labeled node abovem in t (there must be exactly one), and lett′ be the subtree of
t rooted atm. We can simulateop0 by deleting theB-labeled subtree to whichop0
applies, then inserting the tree resulting from applyingop0; thus, the sequenceop =
delete(m); insert(n, [[op0]](t

′) simulatesop0 and is allowed.
If for someA,B we haveuat = (C, op) with Bi ≤D C,RgD(A) = B1 + . . . +

Bn, (Bi, Bi) ∈ G+
A (S), then letBi1 , . . . , Bik be a cycle inGA beginning and ending

with Bi. Again letn = node(op0), m be the (unique)Bi-labeled node aboven, andt′

be the subtree oft rooted atm. Let t1, . . . , tk−1 be arbitrary trees disjoint fromt and
satisfyingtj ∈ ID(Bij). (The latter sets are always nonempty so such trees may be
found.) Now consider the update sequence

op = replace(m, t1); replace(rtt1 , t2); . . . ; replace(rttn−2
, tn−1); replace(rttn−1, [[op0]](t

′))

This update sequence is allowed ont and simulatesop0.

19

Finally, if for someB1, . . . , Bn we haveuat = (C, replace(Bi, Bj)), whereRgD(C) =
B1+. . .+Bn, (Bi, Bj) ∈ G+

C (S) then letn = node(op0), let t′ be the subtree rooted at
n. LetBi1 , . . . , Bik be a sequence of nodes forming a path fromBi = Bi1 toBj = Bik

in GC , and chooset1, . . . , tk−1 satisfyingtl ∈ ID(Bil). Then the update sequence

op = replace(n, t1); replace(rtt1 , t2); . . . ; replace(rttn−2
, tn−1); replace(rttn−1, [[op0]](t

′))

again is allowed and simulatesop0. ✷

A.2 Proofs from Section 5

Proof of Theorem 3. We will concentrate on the total-repair problem. The proof for
partial-repair problem is analogous.

First we will prove that the total-repair is inNP. We can determine if there is a
repairP ′ = (A′,F ′) of P such that|A \ A′| < k, by guessing a policyP ′, checking if
|A \ A′| < k and if it is consistent. Since consistency and the distance can be checked
in polynomial time, the algorithm is inNP.

To prove that the problem isNP-hard, we reduce the edge-deletion transitive-digraph
problem which isNP-complete [20, 19]. The problem consists in, given a directed graph
G = (V , E) with V = {v1, . . . , vn} andE a set of edges without self-loops, determine
if there exists a setG′ = (V , E ′) such thatE′ ⊆ E, G′ is transitive and|E \ E′| < k.
Now, let us define a DTDD and a policyP . The production rules ofD are:

A → v1 + · · ·+ vn
vi → str for i ∈ [1, n]

The policyP = (A,F) is such thatA = {(A, replace(vi, vj))|(vi, vj) ∈ E} ∪ {(vi,
replace(str, str)) | vi ∈ V} andF = valid(D) \ A. It is easy to see thatGA = G and
therefore finding a repair will consist on finding the minimalnumber of edges to delete
fromG to make the graph transitive. ✷

Proof of Theorem 4. Given an inconsistency policyP = (A,F), Let us assume, by
contradiction, that the policyP ′ = (A′,F ′) returned by algorithmRepair is not a
repair. SinceP ′ is defined overD, and by constructionP ′ ≤ P , this implies thatP ′ is
not consistent. Then, it should be the case that either the changes returned by:
1. InsDelRepair do not solve all the insert/delete-inconsistencies. This implies that

there is a nodeA with production ruleA → B∗ such that(A, insert(B)) ∈ A′,
(A, delete(B)) ∈ A′ and there is at least one forbiddenUAT, say (C, op), such
thatB ≤D C. SinceP ′ ≤ P , (A, insert(B)) ∈ A and(A, delete(B)) ∈ A. If
we prove that there is always an operation(G, op) ∈ F such thatB ≤D G, the
marked DTD graph would be such thatχ(A) =⊥. Then, either(A, insert(B)) or
(A, delete(B)) would have been in the changes returned byInsDelRepair and
one of them wouldn’t have belonged toP ′. Now we will prove that such(G, op)
always exists. If(C, op) ∈ F , then,(G, op) = (C, op). On the other hand, if
(C, op) 6∈ F then(C, op) is either one of the changes returned byInsDelRepair

orReplaceRepair:
(a) If (C, op) was a change returned byInsDelRepair, then there was an insert-

delete inconsistency, and there is anotherUAT (F, op2) ∈ F such thatC ≤D

F . As a consequenceB ≤D F , and we have found(G, op).

20

(b) If (C, op) was a change returned byReplaceRepair this would mean that
(C, op) was either involved in a negative-cycle or forbidden-transitivity. The
former implies there is anotherUAT(F, op2) ∈ F such thatC ≤D F . Then,B
≤D F , and we have found(G, op). The latter case implies there is at least one
other(C, op2) ∈ F . We have found(G, op).

2. ReplaceRepair do not solve all the replace-inconsistencies: This implies that
there is a nodeA with production ruleA → B1 + · · · + Bn such that one of the
following holds:
(a) There is an edge(Bi, Bj) in G+

A for P ′, s.t. (Bi, Bj) ∈ F ′
A. If (Bi, Bj) ∈

FA, thenReplaceRepair would have deleted at least one edge from each
justification of (Bi, Bj), and therefore,(Bi, Bj) could not be inG+

A for P ′.
On the other hand, if(Bi, Bj) 6∈ FA, then (A, replace(Bi, Bj)) it implies
that it was part of the changes returned byReplaceRepair. Since both,
ReplaceNaive andReplaceSetCover check that the final graph has no
forbidden-transitivity, this is not possible.

(b) There is aBi which is part of a cycle inGA for P ′ and there is aUAT(C, op) ∈
F ′ s.t.Bi ≤D C. SinceBi is in a cycle inGA for P ′, it should be part of a
cycle inGA for P . If (C, op) ∈ F , then the inconsistency would have been
solve. On the other hand, if(C, op) 6∈ F , then (C, op) is either one of the
changes returned byInsDelRepair or ReplaceRepair. By an analogous
reasoning as in cases 1(a)-1(b), this is not possible either.

Therefore,P ′ is consistent and is a repair ofP . ✷

B Algorithms

Algorithm 1 markGraph

Input: DTD GraphGD , PolicyP
Output: Marked DTD GraphMGD = (GD, µ, χ)
1: Let l1, l2, . . . lk be the set of nodes inGD with out-degree=0
2: for all l in {l1, l2, . . . lk} do
3: markNode(MGD, l, P)
4: return MGD

21

Algorithm 2 markNode

Input: Marked DTD GraphMGD = (GD, µ, χ), NodeB, PolicyP = (A,F)
1: for all A ∈ VD such that(A,B) ∈ ED do
2: if µ(B) = “−” then
3: µ(A)← “−”
4: else
5: /* µ(B) is undefined */
6: if (A, insert(B)) ∈ F or (A,delete(B)) ∈ F or (A, replace(B,B′)) ∈ F then
7: µ(B)← “−”, µ(A)← “−”
8: else
9: µ(B) = “+”

10: if µ(A) = “−” then
11: if (A, insert(B)) ∈ A and(A, delete(B)) ∈ A then
12: χ(A)← “⊥”
13: markNode(A)

Algorithm 3 InsDelRepair

Input: DTD graphGD , security policyP
Output: Set of UATs to remove fromP to restore consistency inP w.r.t. insert/delete-

inconsistencies
1: MGD ←markGraph(GD, P)
2: changes ← ∅
3: for all A ∈ VD and(A,B) ∈ ED do
4: if χ(A) = “⊥” then
5: Randomly choose either(A, insert(B) or (A, delete(B)) and assign it toU
6: changes ← changes ∪ U

7: return changes

Algorithm 4 ReplaceRepair

Input: DTD graphGD , security policyP = (A,F), Maximum Number of JustificationsJ
Output: Set ofUATsto remove fromA to restore consistency inP w.r.t. replace-inconsistencies
1: MGD ←markGraph(GD, P)
2: if J = 0 then
3: Sol ← ReplaceNaive(rD,MGD)
4: else
5: Sol ← ReplaceSetCover(rD,MGD, J)
6: changes ← ∅
7: for all (A,C) ∈ Sol do
8: for all (B,C) ∈ C do
9: changes ← changes ∪ (A, replace(B,C))

10: return changes

22

Algorithm 5 ReplaceNaive

Input: NodeR, Marked GraphMGD

Output: SetSol containing pairs(B, C) whereB is a node reachable fromR in MGD , andC
a set of edges to delete fromGB to make it consistent

1: if Rg(R) := B1 +B2 . . .+Bn then
2: LetGR be the replace graph forR
3: C ← ∅
4: Let stackS contain all the nodes in c
5: while S not emptydo
6: B ← S.pop()
7: for all A in VR, s.t.(A,B) ∈ ER \ C do
8: for all C ∈ VR, s.t.(B,C) ∈ ER \ C do
9: /* If there is an edge missing for transitive or if there is a cycle over a node with

a UAT forbidden below */
10: if A 6= C or µ(A) = “−” then
11: Lete be one of(A,B), (B,C) (chosen randomly)
12: C = C ∪ {e}
13: if e = (A,B) then
14: G = A

15: else
16: G = B

17: for all F ∈ VR s.t.F is reachable fromG in GR do
18: S.push(F)
19: Sol ← {(R, C)}
20: else
21: Sol ← ∅
22: for all (R,B) ∈ ER do
23: Sol ← Sol ∪ReplaceNaive(B,MGD)
24: return Sol

A B J K

A B J K

A B J K

A B J K

(a)

(b)

(c)

(d)

Fig. 7. Execution ofReplaceNaive onGR

23

Algorithm 6 ReplaceSetCover

Input: NodeR, marked DTD graphMGD , forbidden edgesFR, integerJ
Output: SetSol containing pairs(B, C) whereB is a node reachable fromR in MGD , andC

a set of edges to delete fromGB to make it consistent
1: Sol ← ∅, C ← ∅, done← false
2: if Rg(R) := B1 +B2 . . .+Bn then
3: LetGR = (V, E) be the replace graph forR
4: G ← GR
5: while ¬donedo
6: G+ ← ComputeJustifications(G, J)
7: /* Algorithm setCoverAlg takes the graphG+ with the justifications and the set of

forbidden edges and returns the edges to delete fromGA */
8: Esc ← setCoverAlg(G+,FR)
9: if Esc 6= ∅ then

10: remove edges inEsc from G
11: C ← C ∪ Esc
12: else
13: done = true
14: Sol ← Sol ∪ {(R, C)}
15: for all (R,B) ∈ ER do
16: Sol ← Sol ∪ReplaceSetCover(B,MGD)
17: return Sol

24

Algorithm 7 ComputeJustifications

Input: Replace GraphGR, Maximum Number of JustificationsJ
Output: G+R , i.e., the transitive closure ofGR with each edge and node labelled with a setJ

containing at mostJ justifications
1: E ← ∅
2: for all (A,B) ∈ ER do
3: J ((A,B)) = {{(A,B)}}
4: for all A ∈ VR do
5: J (A) = ∅
6: for all A in VR do
7: for all B in VR, s.t.(A,B) ∈ ER ∪E do
8: for all C ∈ VR, s.t.(B,C) ∈ ER ∪E do
9: /* If there is an edge missing for transitivity */

10: if (A,C) 6∈ ER andA 6= C then
11: if (A,C) 6∈ E then
12: E ← E ∪ {(A,C)}
13: J ((A,C))← ∅
14: for all j1 ∈ J ((A,B)) do
15: for all j2 ∈ J ((B,C)) do
16: if |J ((A,C))| < J then
17: J ((A,C))← J ((A,C)) ∪ {j1 ∪ j2}
18: /* If there is a cycle */
19: if A = C andµ(A) = “−” then
20: for all j1 ∈ J ((A,B)) do
21: for all j2 ∈ J ((B,A)) do
22: if |J (A)| < J then
23: J (A)← J (A) ∪ {j1 ∪ j2}
24: G+R ← (VR, ER ∪ E)
25: return G+R

Algorithm 8 Repair

Input: DTD graphGD , security policyP = (A,F), booleantotal
Output: A repairP ′ of P . The repair is total if parametertotal= 1, partial otherwise.
1: changes ← InsDelChecking(GD, P) ∪ReplaceRepair(GD, P)
2: A′ ← A− changes

3: if total then
4: F ′ ← valid(D)−A′

5: else
6: F ′ ← F
7: P ′ ← (A′,F ′)
8: return P ′

25

