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Summary. Recognition algorithms are difficult to write and difficult to maintain.
There is need for better tools to support the creation, debugging, optimization, and
comparison of recognition algorithms. We propose an approach that centers on a
process-oriented description. The approach is implemented using a new scripting
language called RSL (Recognition Strategy Language), which captures the recogni-
tion decisions an algorithm makes as it executes. This semi-formal process-oriented
description provides a powerful basis for developing and comparing recognition algo-
rithms. Based on this description, we describe new metrics related to the sequence
of decisions an algorithm makes during recognition. The capture of intermediate
decision outputs and these new process-oriented metrics greatly extend the limited
information available from final results and traditional results-oriented metrics such
as recall and precision. Using a simple example, we illustrate how these new metrics
can be used to understand and improve decisions within a recognition strategy. We
believe these new metrics may also be applied in machine learning algorithms that
construct optimal decision sequences from sets of decisions and/or strategies.

1 Introduction

Tables have been used to summarize vast quantities of information in books,
papers, text files, electronic documents, and HTML web pages. Significant
efforts have been made towards developing automated and semi-automated
methods for searching, extracting, summarizing, and integrating the infor-
mation they contain. A wide variety of algorithms have been published for
detecting tables and analyzing their structure, and a number of surveys on
table recognition and processing are available [3, 4, 5, 6, 7, 8].

Algorithms that recognize tables search a space of possible interpretations
in order to describe the tables present in an input file. The space of inter-
pretations is defined by some model of table locations and structure whose
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a. Original Image b. Decision 1 (Word Regions → Cells)

c. Decision 13 (Merge) d. Decision 19 (Merge)

e. Decision 32 (Merge) f. Decision 42 (Merge)

g. Decision 59 (Merge) h. Decision 85 (Merge) : Output

Fig. 1. Production of Cell Hypotheses by the Handley Algorithm [1]. (a) Input
image from the University of Washington Database [2], page a038. (b) Line and
Word regions are defined manually. All Word regions are immediately classified as
cells in the first step. (c) to (h) Cell region hypotheses are refined through merging
(see caption of Figure 9 for further details)
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operations are invoked by the algorithm while searching. The search for ta-
bles and/or structural elements of tables proceeds through a series of decisions
that determine which model operations to apply, and which interpretations
are worth pursuing or are acceptable for output.

Currently it is difficult to compare table recognition algorithms. One dif-
ficulty is that the algorithms often address different problems, and do not
use the same model to describe tables as a result [9, 10]. For example, some
algorithms assume that all table cells are separated by ruling lines, while in
others ruling lines are optional or are assumed to be absent. As another ex-
ample, some algorithms aim to detect cell locations in an image or text file,
while other methods assume cell locations are known, and then attempt to
recover the indexing structure of the table from header cells to body cells.
Also, algorithms are usually defined informally in the literature, often with
no explicit description of the table model or its associated space of possible
interpretations. This makes table recognition algorithms hard to replicate,
compare, and combine.

We do not believe that it is possible or even desirable for researchers to
adopt a standard table model. We propose instead to make table models
and their operations more explicit, in order to permit easier identification
of common elements in models and recognition techniques. A decision-based
specification of a table recognition algorithm defines a sequence of decisions
that each select from an explicit set of table model operations. Each decision is
defined in terms of the input data used to make the decision, the set of model
operations from which to select (defined using the inputs), and a function that
will decide which operations to select at run-time.

In Section 3 we present the Recognition Strategy Language (RSL [11]), a
functional scripting language for creating and executing decision-based speci-
fications. RSL provides a small but general set of decision types used to manip-
ulate interpretations represented by attributed graphs. We then demonstrate
how decision-based specifications allow algorithms to be compared through
decisions affecting common table model elements. Graph-based summaries of
table models used for recognition may be produced through static analysis
of RSL programs (see Section 4). After execution, the results of intermediate
decisions may be observed and compared in addition to the final results. To
illustrate, in Section 6 we compare the detection of table cells in two published
algorithms [1, 12] that have been re-implemented in RSL, and then combine
the algorithms to produce a better result. Figure 1 illustrates how one of these
algorithms creates and discards table cell hypotheses.

Commonly, measures such as recall and precision are used to evaluate
recognition algorithms. In the case of cells in table recognition, recall is the
percentage of ground-truth cells that are detected correctly, and precision is
the percentage of detected table cells that are in the ground truth. Using re-
call and precision, recognition is characterized only in terms of final results,
and not in terms of the process of recognition; there is no characterization of
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whether individual decisions are helpful, detrimental, or irrelevant for accu-
rately recognizing tables within a set of documents.

In conventional performance evaluations there is also no characterization
of false negatives: these are valid hypotheses that are created and later re-
jected by an algorithm. RSL records a complete history of all decision out-
comes, which makes it possible to determine which decisions create, reject,
and reinstate each generated hypothesis after execution (see Figures 9 and
10). Taking advantage of this additional information, we present historical re-
call and historical precision, two new metrics that characterize the complete
set of generated hypotheses (e.g. cell locations) in Section 5.

Aside from table recognition, we believe that the decision based-approach
to specification, comparison, and evaluation may be usefully applied to many
other document recognition and machine learning problems. These include
problems in document layout analysis such as page region labeling and in-
terpreting symbol layout within page regions (e.g. in text regions, figures,
and diagrammatic notations) where a series of decisions must be made about
region types, locations, and relationships, and the problem of classifier com-
bination, where a decision-based specification would support rapid construc-
tion and modification of classifier architectures from existing classifiers. Other
chapters in this book provide more information about machine learning tech-
niques related to document layout analysis and classifier combination. The
decision-based approach provides intermediate interpretations and metrics for
decision sequences (e.g. historical recall and precision) that could be used by
machine learning algorithms to train or optimize individual decisions within a
recognition strategy, or to learn recognition strategies themselves given a set
of decisions and/or strategies [13, 14, 15].

We begin our main discussion by introducing table recognition problems
as sequential decision-making problems in more detail.

2 Recognizing Tables: A Decision-Making Problem

Researchers have used the term physical structure to refer to explicit proper-
ties of an encoding, and logical structure to refer to properties that are implicit
in an encoding [5, 16, 17]. Simple examples of physical structure include the
number of rows and columns in an image file, the number of characters in
each text line of a text file, and the location of a pixel or character within an
image or text file (this is usually expressed geometrically, in terms of columns
and rows).

Source files for markup language encodings such as HTML and XML have
the same physical structure as plain text files, but also represent regions of the
file and the relationships between them using text demarcators (‘tags’). To
recover the information represented by the demarcators requires an inferential
process that uses the rules of structure for the appropriate markup language
(i.e. we must parse the file using an appropriate grammar). Properties of a file
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that must be recovered using an inferential process such as this are referred
to as logical structure.

Markup language parsers are formal language recognizers that recover im-
plicit logical structure from text encodings. From a pattern recognition per-
spective they are considered simple because the information used to deduce
the tag structure is largely fixed and unambiguous, and parsers assume that
input files contain data in the correct format.

Table recognition is a more difficult problem because which information
and inferential processes to use for recovering tables are neither fixed nor un-
ambiguous, and are subjects of ongoing study. Table structure is frequently
adapted to the idiosyncratic needs of authors, making it difficult and per-
haps impossible to make a single, formal definition. Unless strong assump-
tions about tables in input files are made, there is the additional problem of
selecting which model of table structure to apply.

Even if a valid table structure model is used for an input file, the set
of possible model instances may be large, and it is often difficult to define
inferencing methods that reliably identify table structures due to noise in the
file (e.g. smearing in images) and unanticipated properties of the input. For
systems recognizing tables in raw images, all table properties are implicit.
At the other extreme, for HTML files often table cells, rows, and columns
are already represented; however, tags for tables are often used to arrange
arbitrary data visually, and determining which encoded tables are real tables
is a difficult problem [18, 19].

In our work we have come to view structural pattern recognition prob-
lems such as table recognition as sequential decision-making problems: given
a model of logical structure to be recovered from a set of input files, what
series of decisions about model operations to apply will produce interpreta-
tions of logical structure that maximize a given performance criterion? For
recognition tasks, the performance criterion will be some combination of met-
rics for execution time, storage requirements, and accuracy. Similar views of
structural recognition problems have been proposed in the machine learning
literature [20, 21]. Accuracy metrics are influenced by the chosen source(s)
of ground truth; to accommodate this, a problem formulation in which the
source of ground truth is an explicit variable may be used (we have proposed
one such formulation [10]).

We wish to be able to easily compare, re-sequence, and combine individual
decisions about model operations made by different table recognition algo-
rithms. We also wish to be able to easily evaluate interpretations produced
by intermediate decisions, and characterize the complete set of hypotheses
generated by an algorithm, not just those accepted at a given point in the
algorithm’s execution.

Currently in the literature, table recognition algorithms are most com-
monly characterized as a sequence of operations that are implemented in a
general-purpose programming language. Less frequently model-driven speci-
fications are employed, in which a representation of the table model is used
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Nested Row Header

Row Header

Stub

Stub Head
Boxhead

Boxhead Separator

Body

Cell Block

Term
Assignments Examinations

Ass1 Ass2 Ass3 Midterm Final
Final
Grade

1991

    Winter 85 80 75 60 75 75

    Spring 80 65 75 60 70 70

    Fall 80 85 75 55 80 75

1992

    Winter 85 80 70 70 75 75

    Spring 80 80 70 70 75 75

    Fall 75 70 65 60 80 70

Nested Column Header

Stub Separator Column Header

Fig. 2. Table Structure. This example is taken from Wang [26], and uses terminology
taken from the Chicago Manual of Style [27]

to ‘program’ the system (e.g. as an attributed grammar with rules containing
associated actions [22, 23, 24]). Given a model specification and an input file,
the sequence of decisions to make is determined algorithmically (e.g. by a
parser): the model definition is mapped to a decision sequence. The procedu-
ral approach has the benefit of being highly flexible, while the model-driven
approach has the benefits of concise specification and a level of formality
which permits more information about decision-making to be automatically
collected.

For our purposes, the primary disadvantage of procedural implementations
is that operations for computing input data for decisions, making decisions,
and applying model operations are represented in the same way. This makes
it difficult to extract individual decisions. A disadvantage of model-driven
systems is that their model definitions are usually tied quite tightly to a
particular set of recognition techniques, and it can be difficult to modify these
systems to accommodate unanticipated requirements and/or new techniques
[25].

In Section 3 we present the Recognition Strategy Language (RSL [11]),
which provides a way to express recognition algorithms as decision sequences
and automatically capture decision outcomes, while maintaining much of the
flexibility of procedural implementations. In this paper we present two proce-
dural table recognition algorithms that have been successfully reimplemented
in RSL (see Section 3.3). It may be worth investigating whether there would
be benefits to having model-driven systems use a decision-based representa-
tion for the output algorithm. A model-driven system might compile a model
definition into an RSL program, for example. In this way, decision-based spec-
ifications provide an intermediate level of abstraction between procedural and
model-driven system specifications.
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2.1 Table Structure and Terminology

The most abstract representation of a table is the underlying data set that
the table visualizes; often a great deal of domain knowledge about the infor-
mation represented in a table is needed to recover this. A slightly less abstract
representation is the indexing structure, which describes how cells in the body
of the table are indexed by header cells in the boxhead, stub, and stubhead of
the table. As an example, in Figure 2, we might use a dot notation similar to
that of Wang [26] to represent the grade in the top-left corner of the body as
((Term.1991.Winter,Assignments.Ass1),85). This also often requires linguistic
and/or domain knowledge to recover as well [28], but to a lesser extent.

Closer to the physical structure of images and text files we have the table
grid, which describes the arrangement of cells in rows and columns, and the
location of ruling lines and whitespace separators. This is often represented
by extending all separators to the boundaries of a table, and then assigning
cells and separators to locations within the resulting grid.

The main structural elements of a printed table are illustrated in Figure
2. Cells of the table are organized in rows and columns. Some cells such as the
column header ‘Assignments’ are spanning cells, which belong to more than
one column and/or row of the table. Cells are further distinguished as header
cells, which determine how data cells in the body of the table are indexed.
Header cells which are indexed by other header cells are termed nested row
and nested column headers, as appropriate.

Commonly there are four regions of a table, as illustrated in Figure 2.
The body contains the data cells, which normally are the values intended to
be most easily searched and compared within the table. Header cells appear
in the boxhead (labeling columns) and stub (labeling rows, when present).
Sometimes, as in Figure 2, there is a header in the top-left region of the table,
called the stub head. An adjacent set of cells in the table body is referred to
as a block.

3 The Recognition Strategy Language: Decision-Based

Specification

As a first step towards being able to more easily observe intermediate deci-
sions and combine decisions from different recognition algorithms, we have
devised the Recognition Strategy Language (RSL [11]). RSL provides a level
of formalization that lies between procedural and model-driven specifications
(see Section 2). Based on notes from our survey of table recognition [8], the
language allows models of table structure to be defined in terms of three basic
decisions for regions in an input file: classification, segmentation, and parsing
(binary relationships).

We refer to RSL as a decision-based specification because the basic unit
of formalization defines the inputs and acceptable outputs for decisions. An
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RSL program defines properties of interpretations, a single set of constant
and variable parameters used for making decisions, and the sequencing of the
decisions. Decision outcomes are provided at run-time by functions referred
to in the decision specifications, but which are defined outside of the RSL
program. Functions that provide the decision outcomes may use arbitrary
techniques to arrive at a decision.

As currently defined, RSL is a simple functional scripting language influ-
enced by the text-based approach taken in Tcl/Tk [29], with some similarities
to an expert system shell [30]. Decisions in RSL are similar to rules in an ex-
pert system in that both define transformations of a knowledge representation,
though RSL decisions define only possible transformations, and not concrete
transformations as in the case with rules. The ability to trace rule applica-
tions in an expert system shell is replaced by record-keeping and annotation
in RSL, and RSL specifications are sequential, and not declarative (expert
system shells often support applying rules using various search algorithms).

RSL strategies may be interpreted for rapid development, or compiled.
RSL has been implemented using the TXL language [31], which is a func-
tional language for rapid prototyping that has been used for a wide array of
applications including source code transformation, design recovery, and pat-
tern recognition [32, 33].

In the remainder of this section we provide an overview of RSL and a
simple example of an RSL program and its execution.

3.1 Transforming Logical Structure Interpretations in RSL

Interpretations of logical structure are represented by attributed directed
graphs in RSL. Graph nodes represent geometric regions of an input file (R),
and graph edges represent relations on regions. The contains relation defines
the combination of regions into region segments (S), and additional binary
relations may be defined (E). The main elements of an interpretation in RSL
are:

• V , the set of expressible geometric locations in an input file, defined using
a set of functions. Currently in RSL there are only two functions used to
define V : one for bounding boxes, vBB (defined by top-left, bottom-right
corners), and another for polylines, vl (a list of points).

• R ⊆ (I ×V ), the set of input file regions used in an interpretation (defines
nodes of the graph). I is a set of legal identifiers. Each region in R has a
unique identifier, but regions may have identical locations

• S = {(S1 ⊆ R, r1 ∈ R), . . . , (Sn ⊆ R, rn ∈ R)}, the set of region segments
(regions containing other regions). Each set of regions Sj ⊆ R is unique,
and defines a region rj ∈ R: currently in RSL this region is located at the
bounding box of the regions in the segment (Sj)

• C = {(i1 ∈ I, C1 ⊆ R), . . . , (in ∈ I, Cn ⊆ R)}, the regions associated with
each region type identified by ij ∈ I (e.g. Word, Cell, Row, and Column)
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RSL Decision Type (Operation) Input Output

Classification: Labeling Regions

classify { Word } regions as { Cell }

classify { C1, C2, ... } regions as { Co1, Co2, ... } using
...

create { Invisible_Vline } regions using 
...

replace { Invisible_Vline } regions using 
...

reject { Cell } classifications

reject { C1, C2, ... } classifications using
             ... 

Relating: Binary Relations on Regions

relate { Cell, Cell } regions with { hor_adj } using
...

reject { hor_adj } relations

reject { C1, C2, ... } relations using
... 

Segmentation: Grouping Regions

segment { Word } regions into { Cell } 

segment { C1, C2, ... } regions into { Co1  } using 
...

resegment { Word } regions into { Cell } using
...

resegment { C1, C2, ... } regions into { Co1 } using
...

merge { Cell } regions using
...

Fig. 3. RSL Decision Types for Transforming Interpretations. For the example
inputs and outputs, only accepted hypotheses are shown.
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• E = {(i1 ∈ I, E1 ⊆ R2), . . . , (in ∈ I, En ⊆ R2)}, defines binary relations
on regions for relation types identified by ij ∈ I (e.g. horizontal adjacency)

• A0, the set of named attributes associated with elements of R, S, and E
in the interpretation provided as input (I0). Attribute values are lists of
strings or floating point numbers

Input to an RSL program is an initial interpretation (I0) that defines the
initial sets of regions, segments, region classes, and region relations (R, S, C,
and E) and their attributes (A0). Within A0, the file described by the inter-
pretation is represented by a single region, with the name of the file provided
as an attribute of the region. For example, image files may be represented by
a region of type Image with a text attribute FILE NAME. Currently only
elements in the input interpretation I0 are permitted to have additional at-
tributes (to avoid side-effects [34]).

The output of an RSL program is a set of accepted interpretations, with
each interpretation annotated with a complete history of the model operations
that produced it. This allows all intermediate states of an interpretation to be
recovered. While RSL supports the selection of multiple alternatives at each
decision point [34], here we will consider only the case where each decision
selects exactly one alternative, producing a single interpretation as output.

Figure 3 summarizes the available decision types for transforming individ-
ual interpretations in RSL. Shown on the left of each row is the first line of
an RSL decision specification. Each decision type indicates the interpretation
elements that define the set of possible outcomes at run-time. In the case of
create and replace, the alternative outcomes are implicitly defined using
the set of all possible input regions (V ). Figure 5 illustrates how alternatives
are produced for a few decision types.

Examples of input and output interpretations are provided for each of
these decision types in Figure 3. Some alternate forms for the decision types
are also given. For example, more than one region type may be used to define
both the regions to classify and the possible classes in a classify operation.

Decisions that generate hypotheses either classify, segment, or relate re-
gions, while the reject decision type discards hypotheses. The replace,

resegment, and merge operations both assert and reject hypotheses. replace
returns sets of regions of a given type, replacing each with a new region of the
same type. merge and resegment reject a region type for regions, replacing
these with new region segments of the same type. merge combines regions and
segments into new ones, while resegment is more general, and may be used
to split segments as well (see examples in Figure 3).

RSL uses a simple method for classification in which all input regions
are classified as at most one of the possible output classes (some subset of
the region types in C): selecting no class indicates rejection. Segmentation
operators simultaneously define segments and assign a type to each segment
(altering S and C). Relating operations update the region edge sets in E.
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Additional decision types for altering parameters of decision functions and
accepting and rejecting interpretations are defined within RSL [34]. Other
than to accept all interpretations produced before a strategy completes (see
bottom of Figure 4), these are unused in any of the strategies described in
this chapter.

3.2 A Simple RSL Strategy

Figure 4 provides an example of a simple RSL strategy, and Figure 5 shows an
example execution of the first three decisions of the main function. The input
interpretation shown in Figure 5 contains three Word regions. As discussed
in the previous section, the decision type (first line) of each decision operator
defines a fixed set of possible outcomes for the associated external decision
function. External decision functions and the set of possible alternatives are
shown in rounded boxes in Figure 5. Selected alternatives are returned as text
records, which are first validated and then used to specify a transformation
to apply to the interpretation. RSL records all the decision outcomes, and
annotates changes made to the interpretation within the interpretation itself
when applying a transformation.

In Figure 4, the model regions and model relations sections define the
set of region and relation types for interpretations used in the strategy (i.e. de-
fine the elements of C and E). Any other relations or region types in the input
interpretation are left intact, but otherwise ignored by the strategy. Decisions
which refer to types not provided in these sections will produce a syntax er-
ror. The recognition parameters section defines a series of static (constant)
and adaptive (variable) parameters for use in the external decision functions.
Static parameters are indicated using a prefix ‘s’ (e.g. sMaxHorDistance in
Figure 4), and adaptive parameters using a prefix ‘a’ (e.g. aMaxColSep in
Figure 4). All parameters may be string or floating point number-valued.

Control flow is specified in RSL using strategy functions, which define a
sequence of decision operations and calls to other strategy functions. Recur-
sion is permitted: see the recursiveStrategy in Figure 4. Each strategy function
takes the current set of interpretations and parameter values as input, and
produces a new set of interpretations as output. For conciseness, this is im-
plicit rather than explicit within an RSL program (i.e. syntactically strategy
functions look like procedures, but they are in fact functions).

Following convention, execution begins with the main strategy function,
which is passed the input interpretation and the initial set of values for the
adaptive parameters defined in the recognition parameters section.

There is only one form of conditional statement in RSL which acts as
a guard for strategy functions. This statement prevents interpretations not
selected by an external decision function from being altered by a strategy
function, and must appear at the beginning of a strategy function declaration.

For example, in Figure 4 a for interpretations statement is used to
define the stopping point for the recursiveStrategy. The statement given calls
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an external decision function adjacencyIncomplete for each current interpre-
tation, using the aMaxColSep and aMaxHorSep parameters. adjacencyIncom-
plete is required to specify which of the current interpretations the recursiveS-
trategy may be applied to.

The observing keyword is used to add visible types to the interpretations
passed to external decision functions; by default, only the interpretation el-
ements that may be altered by the decision are visible (these are called the
scope types). For example, for classification operations, the visible regions in-
clude those associated with the types of input regions to be classified, but
none of the possible output classes are visible unless they are also an input
type or are explicitly added using observing. The create decision type is
unique in that by default no region types are visible in the interpretations
passed to the decision function: all visible types must be explicitly listed in
an observing statement.

However, the sets of regions and region segments (R∪S) in the interpreta-
tion are always visible to all external decisions. Consider Decision 2 in Figure
5, where the regions associated with Word are visible, but not their type. As
one would expect, only parameters explicitly passed to the external decision
function are visible for each decision.

3.3 Handley and Hu et al. Algorithms in RSL

As a proof of concept, we have re-implemented two table structure recognition
algorithms in RSL [1, 12]. All external decision functions were implemented
using TXL. These algorithms were chosen because they were part of a small
set of algorithms described in enough detail to permit replication, and because
they exhibited a degree of sophistication. Both algorithms are described pro-
cedurally, as sequences of operations.

As a brief summary, both algorithms recover table structure given a list
of input Line and Word regions (note that the Hu et al. algorithm ignores
the Line regions). The Handley algorithm uses a strictly geometry-based ap-
proach, in which Word regions are all hypothesized as Cell regions, and then
merged in a series of steps which makes use of weighted projection profiles
and cell adjacency relationships. The Hu et al. algorithm starts by detecting
columns based on a hierarchical clustering applied to the horizontal spans
of Word regions, detects the table boxhead, stub and rows of the table, and
finally Cells in the body of the table. The Hu algorithm makes use of limited
(but powerful) lexical information in its analysis; text in input Word regions
are classified as alphabetic or alphanumeric. Within RSL, the text of words
is represented as attributes of the input Word regions (i.e. the word text is
defined within A0).

Reflecting their different intended applications, the Handley algorithm
seeks only to recover table cells, while the Hu algorithm returns detected
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model regions

Word Cell Header Entry Image

end regions

model relations

adj right close to

end relations

recognition parameters

sMaxHorDistance 5.0 % mms

aMaxColSep 20.0 % mms

aMaxHorSep 25.0 % mms

end parameters

strategy main

relate { Word } regions with { hor adj } using

selectHorizAdjRegions(sMaxHorDistance)

segment { Word } regions into { Cell } using

segmentHorizAdjRegions()

observing { hor adj } relations

classify { Cell } regions as { Header, Entry } using

labelColumnHeaderAndEntries()

...

recursiveStrategy

accept interpretations

end strategy

strategy recursiveStrategy

for interpretations using

adjacencyIncomplete(aMaxColSep,aMaxHorSep)

observing { Word, Cell } regions { close to } relations

...

resursiveStrategy

end strategy

Fig. 4. A Simple RSL Strategy

rows, columns, and cell indexing structure for the table. Please note that we
have modified the Hu algorithm with an extra step to define textlines using a
simple projection of Word regions onto the Y-axis, defining textlines at gaps
greater than a given threshold value. This was necessary because the algorithm
was originally specified for detecting table structure within text files.
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Fig. 5. Execution of the the First Three Decisions for the RSL Strategy Given in Figure 4. Three Word regions are provided in the
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written in light gray. Each external decision function returns a text-based record. A decision interpreter validates chosen alternatives
before they are used to transform the current interpretation to produce the input interpretation for the next decision or the output
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RSL specifications for the two algorithms are available [34]; the Handley
algorithm is specified in roughly 540 lines of RSL, and the Hu algorithm in
about 240 lines. These lengths include significant commenting, but not code
for the external decision functions. The external functions were implemented
in roughly 5000 lines of TXL for the Handley algorithm, and roughly 3000
lines of TXL for the Hu algorithm. Small changes were made to these RSL
strategies in order to produce the results shown later in this chapter, in par-
ticular renaming common region types to make them more explicit. Some
bugs in the implementation of the external decision functions for the Handley
algorithm were also corrected, and the performance results provided later in
this chapter for the Handley algorithm are better than those reported earlier
[34, 35] as a result.

4 Static Analysis of RSL Specifications

Useful insights can be gained from examining static dependencies within an
RSL specification, and by comparing static dependencies between algorithms.
In this section, we illustrate this process using Figure 6, which provides table
model summaries for the Handley and Hu algorithms. First we describe how
these table model summaries are derived from a static analysis of the RSL
specifications. Next we discuss insights obtained from examining Figure 6, re-
garding comparisons and contrasts between the Handley and Hu algorithms.
This discussion is based on static analysis; dynamic aspects of the algorithms
are treated in Section 5.

4.1 Construction of Table Model Summaries

RSL specifications consist of a sequence of decision operations. Each decision
operation has an associated set of regions and relation types, a decision func-
tion, and decision parameters. Each region or relation type T that may be
altered by an RSL decision operator R has four dependencies:

1. On region types used to define the output model operations for
R. These are the scope types provided as input to a decision (see
Section 3.2)

2. On observed region or relation types (these follow the observing

keyword)
3. On the decision function used for R
4. On parameters used by the decision function for R

These per-decision dependencies may be used to construct data dependency
graphs. These graphs describe how inputs are used to produce outputs, and
are commonly used in software engineering and analysis [36]. Once a data
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a. Handley

Textline

Boxhead

Row_Header

Alpha_Column

NonAlpha_Column

Stub

Inconsistent_Line

Consistent_Line

Core_Line

Partial_Line

Cluster

Alpha_Word

NonAlpha_Word

indexes

*All

Row

indexes

*All
CellColumn_Header

Column

Word

REGION

b. Hu et al.

Fig. 6. . Table Model Summaries for Two Algorithms: (a) Handley and (b) Hu et
al. Boxes represent region types, with thick borders indicating input types (Word,
Line, and REGION ). Gray boxes show types common to both algorithms. Labeled
dashed lines are relations between region types. Solid lines represent segmentation
operations, and dash-dotted lines represent classification operations
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dependency graph has been constructed, additional analyses of an RSL speci-
fication can be made. For example, we can automatically determine the set of
decision operations and types associated with a particular decision function.
As another example, we can determine which region and relation types may
be affected by a given decision parameter. These analyses are analogous to the
techniques of backward and forward program slicing [37], respectively (please
note that slicing requires information about decision sequences not shown in
Figure 6).

The summaries of table model structure shown in Figure 6 are simple
data dependency graphs which are produced as follows. We compute only
dependencies of type 1: dependencies between output types and scope types
that define the alternative outcomes. Then we filter all operations that merge
and reject regions and relations. The resulting graph summarizes the table
model in terms of relationships between scope types and output types. Figure
6 does not represent reject and merge operations because these only modify
interpretations within a single type, either removing or combining elements
of that type, and we wish primarily to represent relationships between types.
Alternative summaries that incorporate merge and reject operations are of
course possible.

4.2 Discussion of Table Model Summaries

In Figure 6, boxes represent region types. The three input types (Word, Line,
and REGION ) are shown in boxes with thick borders. Region types common
to both algorithms are shown in gray boxes. Relations between region types
are represented using labeled dashed lines (e.g. indexes for the Hu algorithm).

The three basic inference types used in RSL are represented using different
arrow types: segmentation operations are represented by solid lines, classifica-
tion by dash-dotted lines, and relations by labeled dashed lines. Segmentation
and relation dependencies are drawn as arrows from output types to the scope
types on which they depend. For ease of reading, we have reversed the arrow
direction for classification operations; arrows representing classification are
drawn from scope types (those to be classified) to output types.

To indicate where classifications have more than one output class, con-
necting arcs are used. For example, in the Handley algorithm, Line regions
may be (exclusively) classified as horizontal (Hline) or vertical (Vline) lines,
or neither (see Section 3). The annotation *All is used to indicate labelings,
trivial classifications where all regions of the input type have been labeled as
the output type. For example, for at least one decision all Word regions are
labeled as Cell regions in the Handley algorithm, and Cluster regions in the
Hu algorithm. Though neither implemented strategy does so, arcs could also
be used to represent segmentation operations which combine multiple region
types into a segment (region) type.

The type REGION includes the set of all input regions expressible in RSL.
Currently this is all bounding boxes and polylines expressible within the input
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image, as defined by the set V (see Section 3.1). Elements of REGION are
not promoted directly to a model region type unless a create or replace

operation is used. In the Handley algorithm, many input regions are directly
promoted to various types after geometric analyses (e.g. after projecting cells
and finding minima in histograms, to define rows and columns). In the Hu
algorithm, only Textline regions are produced by directly classifying input
regions, in the preprocessing step that we added to the algorithm.

The graphs shown in Figure 6 can be interpreted similarly to semantic
networks [38]. Segmentation edges correspond roughly to ‘has-a’ edges, and
classification edges correspond roughly to ‘is-a’ edges, with the remaining
edges defining other binary relationships (e.g. adjacency). Unlike a semantic
net, non-binary relationships are represented in the graph, using and-or re-
lationships. In this way, each unique set of relationships between scope and
output types are represented separately, as an ‘or’ of ‘ands’.

To illustrate the information that can be read directly from Figure 6,
consider the Textline regions in the Hu algorithm. The graph edges connecting
to the Textline box in Figure 6b tell us the following:

1. Textline regions may be segmented into Row regions
2. Word regions may be segmented into Textline regions
3. Image REGION s may be classified as a Textline region
4. A Textline region may be classified as either an Inconsistent Line

or Consistent Line, or neither
5. A Textline region may be classified as either a Partial Line or

Core Line, or neither

Despite their simplicity, these table model summaries provide useful infor-
mation for analyzing the implemented algorithms. First we discuss the region
types which are common and unique to each algorithm. Both algorithms uti-
lize Word, Cell, Row, Column, and Column Header regions. However, the
Handley algorithm takes lines (underlines and ruling lines in the table) into
account, and defines spatial relationships that are not used in the Hu algo-
rithm. The Hu algorithm on the other hand makes greater use of classification
operations, particularly for Column, Textline, and Word regions. The Hu al-
gorithm also explicitly defines Boxhead and Stub regions, which the Handley
algorithm does not.

Figure 6 also shows interesting differences between the relationships that
occur among the common regions. In the Handley algorithm, Cell regions are
classified as Column Header regions, while at some point in the Hu algorithm,
all Column Header regions are classified as Cells. In the Handley algorithm,
Column and Row regions contain Cells. In contrast, the Hu algorithm com-
poses Column and Row regions as follows: Column regions contain either Cell
or Word regions (but not both), whereas Row regions contain either Cell or
Textline regions, but not Word regions. The Hu algorithm defines an index-
ing relation from column headers to Columns of headers, while the Handley



Decision-Based Specification and Comparison of Algorithms 19

algorithm has no representation of indexing structure (as the algorithm was
not designed to address that problem).

This simple table model summary provides a useful course-grained view
of similarities and differences between the table models used by these two
algorithms. The relationships provided in the table model summaries are also
useful when debugging and during evaluation, as we will see in the next sec-
tion.

5 Evaluating the Accuracy of Decisions

The three main criteria for evaluating a recognition algorithm are accuracy,
speed, and storage requirements. Here, we concern ourselves solely with ac-
curacy but we acknowledge that speed and storage requirements are nearly
as important for real-world applications (e.g. for on-line interactive applica-
tions), and that some form of trade-off often needs to be made between these
three criteria.

Evaluating the accuracy of an algorithm means assessing the ability of the
algorithm to produce interpretations that meet the requirements of a given
task [10]. This is normally done using test data, for which the ground-truth
is known (significant difficulties in defining ground truth for tables have been
discussed in the literature [39, 40]). Normally evaluation of recognition algo-
rithms focuses on comparing the final interpretations accepted by algorithms
[41, 3, 42, 43, 44, 45].

In this section we use the decision-based approach to evaluate accuracy of
recognition by considering the decision process used to produce results. We
discuss characterizing individual decisions made by a recognition algorithm
as good or bad (Section 5.1), and we augment the traditional measures of
recall and precision with the new measures of historical recall and historical
precision (see Section 5.2).

5.1 Evaluating the Accuracy of Individual Decisions

Our goal is to measure the accuracy of individual recognition decisions, and
the accuracy of sequences of recognition decisions. This detailed information
is useful for planning improvements to a recognition algorithm, and provides a
basis for learning algorithms which seek to automatically improve recognition
performance.

In our evaluation of decision accuracy, we are concerned only with decisions
which affect the comparison with ground truth. It is common for algorithms
to hypothesize many objects and relationships that aren’t part of the inter-
pretation space used for evaluation. For example, the algorithm comparisons
we report in Section 6 use a ground truth that defines the location of cells,
but the ground truth does not identify which subset of cells are header cells.
The reason we did not record header cells in our ground truth is that one
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of the algorithms does not aim to identify all header cells. The ground truth,
and the comparisons based on ground truth, must be restricted to objects and
relationships that are identified by all the algorithms.

In order to define what constitutes a ‘good’ decision, we first define cor-
rect, complete, and perfect decisions. Each decision to apply an interpretation
model operation results in asserting and/or rejecting hypotheses. In RSL, each
decision record produced by a decision function corresponds to a set of model
operations to apply to the current interpretation, chosen from a space of al-
ternative model operations (see Figure 5). Examples for decision types are
provided in Section 6.3.

A decision is correct if all operations selected generate only valid hypothe-
ses and/or reject only invalid hypotheses. A decision is complete if it selects
the set of all correct operations in the set of alternatives that alter the in-
terpretation (e.g. re-classifying a Word as a Cell is no more complete than
not selecting this redundant operation). A perfect decision is both correct and
complete; all selected alternatives are correct, and all correct alternatives are
in the set. For the case where no alternatives are selected, this is either a per-
fect decision (when all alternatives are incorrect), or an incomplete decision
(when correct alternatives exist).

Using these definitions, ‘good’ decisions lie somewhere between perfect
decisions and those that are totally incorrect. One could characterize a deci-
sion using recall and precision metrics (see the next subsection), to give the
proportion of correct alternatives selected, and the proportion of selected al-
ternatives that are correct. These metrics could then be thresholded, or used
to assign fuzzy membership values for the set of ‘good’ decisions. More infor-
mally, one might consider any decision that is perfect, correct but incomplete,
or complete and mostly correct to be a ‘good’ one.

We could characterize a sequence of decisions (at those decisions for which
evaluation information exists) similarly, in terms of distributions of recall
and precision for selecting valid model operations. The metrics might also
be weighted based on the location of valid operations within the sequence of
decision outcomes, to weight earlier decisions more heavily for example.

These are internal performance measures which characterize decisions
based on their associated alternative outcomes. While we will only touch on
these briefly here, we believe that these may provide a basis for devising table
recognition algorithms based on game-theoretic principles such as mini-max
optimization [46, 10].

5.2 Historical Recall and Precision

The traditional detection metrics recall and precision measure how simi-
lar an algorithm’s final interpretation is to the ground truth interpretation.
Here we introduce historical versions of these measures [35]. Informally stated,
the historical measures give an algorithm credit for correct hypotheses that
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Fig. 7. Recall, Precision, Historical Recall, and Historical Precision

it made somewhere along the way, even if the algorithm later rejected these
hypotheses. The historical measures can be evaluated at any point during
algorithm execution; this information provides valuable insight into the algo-
rithm’s treatment of hypothesis generation and rejection.

Figure 7 illustrates sets of hypotheses and assertions used in our discussion.
At a given point in time, the set of generated hypotheses produced by an
algorithm (e.g. cell locations) is defined by the union of accepted (A) and
rejected (R) hypotheses. We assume that at any given time, every hypothesis is
either accepted or rejected, but not both. The validity of individual hypotheses
within A and R is determined using GT , a set of ground truth declarations
which are taken to be valid (e.g. a set of cell locations taken to be valid). The
set of true positives (TP ) is defined by the intersection of accepted hypotheses
and ground truth (A ∩GT ). Similarly, the set of false negatives (FN), which
consists of ground truth elements that have been proposed and rejected, is
defined by the intersection of rejected and ground truth elements (R ∩ GT ).

Also shown in Figure 7 are recall and precision metrics, which describe
the ratio of true positives to recognition targets (|TP |/|GT |) and accepted
hypotheses (|TP |/|A|), respectively. Historical recall and precision describe
the recall and precision of the set of generated hypotheses (A∪R). Together,
the true positives and false negatives comprise the set of ground truth ele-
ments that have been generated (TP ∪ FN). Historical recall is the propor-
tion of ground truth hypotheses that have been generated (|TP ∪FN |/|GT |),
while historical precision is the proportion of generated hypotheses that match
ground truth (|TP ∪ FN |/|A ∪ R|). Note that if no hypotheses are rejected
(i.e. R = {}), then the ‘conventional’ and historical versions of recall and
precision are the same. The key difference here is that the historical metrics
take rejected hypotheses into account, while the conventional ones do not.
For an example of this, compare Figure 11a to Figure 11b; in Figure 11b, cell
hypotheses are never rejected.
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Conventional and historical recall can be directly compared, as they both
describe coverage of the set of ground truth elements. Note that historical
recall will always be greater than or equal to recall (refer again to Figure
11). Also, historical recall never decreases during a recognition algorithm’s
progress, while recall may increase or decrease at any point. The difference
between historical and conventional recall is the proportion of recognition
targets that have been falsely rejected (|FN |/|GT |).

It is harder to relate conventional and historical precision. Precision mea-
sures the accuracy of what is accepted as valid, while historical precision
measures the accuracy (or efficiency) of hypothesis generation. Put another
way, historical precision quantifies the accuracy of hypotheses that the algo-
rithm generates and accepts at some point.

6 Decision-Based Comparison of Algorithms in RSL

In this section we will compare the recognition accuracy of our RSL implemen-
tations of the Handley and Hu et al. table structure recognition algorithms. We
first consider a conventional results-based evaluation, in which the complete
sequence of recognition decisions are evaluated as a whole, without reference
to rejected hypotheses. We then contrast this with a decision-based compari-
son, in which the effects of individual decisions may be observed, and rejected
hypotheses are taken into account. Using this information, we then design a
new strategy which combines the observed strengths of the two algorithms,
to produce a better final result. All metrics presented here are in terms of
‘external’ accuracy, i.e. we compare the state of the interpretation to ground
truth after each decision affecting the hypothesis types in question.

Our goal here is not to evaluate these two algorithms in any real sense, but
to illustrate decision-based comparisons of algorithms. We will consider only
results for a single, reasonably challenging table as input, on which we will
try (informally) to optimize recognition. For a real-world application we would
train these algorithms by optimizing performance metrics such as conventional
and historical recall and precision over a representative sample of the set of
tables that we wish to recognize.

Input to both algorithms is a set of Word regions with an associated text
attribute (set to ‘a’ for words containing mostly alphabetic characters, and
‘1’ otherwise), and a set of Line regions (as seen in Figure 1b). All words in
cells were provided as input; any words not within the table (e.g. the table
title and footnotes) were not provided.

As can be seen in Figure 6, the Hu algorithm does not pay any attention to
the Line regions, and leaves them in the produced interpretation untouched.
As the classification decisions shown in Figure 6 suggest, the Hu algorithm
makes use of the text attribute associated with words; the Handley algorithm
makes its analysis based on region geometry and topology alone, and ignores
these attributes.
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a. Handley Cells b. Hu et al. Cells

Handley Hu et al. Common

TP 25 45 24
FP 13 7 0

S-GT 0 3 0
M-GT 27 4 4

SM-GT 0 0 0
O-GT 0 0 0

FA 0 0 0

Recall 48.1% 86.5%
Precision 65.8% 86.5%

c. Cell Hypothesis Sets and Metrics d. Ground Truth Cells

Fig. 8. Cell Output for UW Database Table (Page a038). Shown in (c) are the cell
hypothesis set sizes (True Positives (TP), False Positives (FP), Split Ground Truth
(S-GT), Merged Ground Truth (M-GT), Split-and-Merged Ground Truth (SM-GT),
Missing Ground Truth (O-GT), and False Alarms (FA)) and recall and precision
metrics. For each hypothesis set type, the size of the intersection of the Handley and
Hu sets is shown in the Common column

6.1 Conventional Evaluation

Normally in the table recognition literature when comparing two algo-
rithms, we consider only the final interpretations, for example as shown in
Figure 8. Shown are the final cell hypotheses for both algorithms, along with
the ground truth interpretation they were evaluated against. Also shown are
the sets of true positive, false positive, and errors along with the resulting re-
call and precision metrics. No errors of omission (cells whose words are entirely
missed) or ‘false alarms’ (cells whose contents do not belong to any ground
truth cells) are made, because we provide all words in cells, and only words
in cells in the input. There are also no ‘spurious’ cells (splitting and merging
of ground truth producing many-to-many matches with ground truth cells).
The approach to error analysis we are using here is based on that of Liang
[44]. However, we are presenting errors in terms of ground truth cells here;
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for example, the Hu algorithm produces seven false positives, which incor-
rectly split three ground truth cells and merge four. The Handley algorithm
produces thirteen false positives, which incorrectly merge 27 cells.

As can be seen at a glance, both algorithms assign words to the appropriate
column. It is the decisions which assign words and cells to rows that have
produced the errors in the final interpretations.

In the rightmost column of Figure 8c, we’ve shown the size of the intersec-
tion of each cell hypothesis set type. 24 of the 25 true positives proposed by
the Handley algorithm are also proposed by the Hu algorithm; the remaining
cell is the ‘Total pore space (percent)’ column header (see Figure 8d). In Fig-
ure 8c we can see that the false positives proposed by the two algorithms are
disjoint; the algorithms make different errors.

Figure 8c also describes how ground truth cells are mis-recognized by the
two algorithms (i.e. what specific errors are associated with the false positives).
All four of the cells incorrectly merged with words from other cells by the Hu
algorithm are also over-merged by the Handley algorithm (M −GT ). Looking
at Figures 8a, 8b, and 8d, two of these over-merged cells are located in the
leftmost column, and two are located in the table body in the fourth and
sixth columns, near the superscripted threes (3). All remaining errors for the
Handley algorithm result from merging cells across rows of the table (M−GT ),
while the Hu algorithm also splits (S − GT ) two cells near the superscripted
threes, and splits the rightmost column header (‘Total pore space (percent)’,
as mentioned earlier).

Looking at the recall and precision metrics, the Hu algorithm has higher
values for both. From this and our prior analysis, it appears that the Hu al-
gorithm performs better recognition of the cells in this particular table (i.e.
makes better decisions) than the Handley algorithm.

6.2 Metrics for Individual Decisions

We now have a reasonably detailed comparison of the outputs of the two
algorithms. We also have determined which types of decisions might be studied
more closely in order to improve recognition of the table shown in Figure 8:
those that affect cells and rows. So our next question is this: which are the
decisions that need to be improved, and where are they within our algorithm
implementations?

Currently in common practice, answering this question would be dealt
with in an ad-hoc way, often by outputting intermediate interpretations at
various points, evaluating them, and then trying to determine which parts of
the algorithm implementation do not generate or filter cell and row hypotheses
as needed. This often produces informal and partial error analyses. We believe
that the flaws in this process are in large part due to the effort required to
detect errors in decision-making when decisions invoking model operations are
not distinguished within the syntax of the implementation language, nor in
the output interpretations.
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b. Cumulative Cell Hypotheses

Decisions

1 All words classified as cells
13 Merge cells with little horizontal separa-

tion which overlap vertically by roughly
more than half the height of the taller
bounding box

19 Merge cells within columns that overlap
vertically by roughly more than half the
height of the taller bounding box

32 Merge cells sharing column and row as-
signments

42 ‘Total pore space (percent)’ header cell
detected in boxhead

59 Merge cell in leftmost column alone in
its row with the cell below (‘Pryoclastic
flow,’)

85 Merge cells sharing estimated line and
whitespace separators for rows and
columns

Fig. 9. Detection of Cells Shown in Figure 1 by the Handley Algorithm. A represents
accepted hypotheses, and R represents rejected hypotheses
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This is where the benefits of decision-based specification become most
apparent. The syntax of a decision-based specification language such as RSL
explicitly represents decisions to invoke model operations; algorithms are spec-
ified as sequences of possible model operation applications. Further, the out-
puts of a decision-based language contain the entire history of model opera-
tion applications, including which decision(s) selected them. Hypotheses are
uniquely identified, and their complete history of creation, rejection, and re-
instatement are available in the output. Detecting decisions that cause errors
and reverting the output to intermediate states is carried out using simple fil-
tering and transformation of the output interpretation, rather than requiring
guesswork.

Changes in accepted cell hypotheses for the Handley algorithm are shown
in Figure 1, with each change indexed by the decision which produced it
(each corresponds to a decision operation in the RSL specification). Decisions
concerning cells which had no effect on the interpretation are not shown.

Figure 9 provides additional information about each decision in the Han-
dley algorithm that changed the cell hypotheses. At the bottom of the figure
a brief summary for each of these decisions is provided. Figure 9a illustrates
the changes made by each decision to the accepted and rejected sets of cell
hypotheses. These are shown as the number of newly proposed or rejected cells
that are accepted by each decision, and the number of accepted hypotheses
which are rejected by each decision. On the far left of the graph the number of
cells in ground truth is shown for comparison. For each decision we show the
decision number (in parentheses), and the number of cell hypotheses added to
the accepted (A) and rejected (R) sets. Ground truth hypotheses are shown
in light gray (true positive for A, false negative for R), and other hypotheses
are shown in dark gray (false positive for A, true negative for R).

Figure 9b illustrates the sets of accepted and rejected hypotheses after
each decision, i.e. the cumulative effects of the changes shown in Figure 9a.
Again, light gray is used to illustrate the number of accepted and rejected
hypotheses that match ground truth.

The cells produced by decisions in the Hu algorithm are shown in Figures
10a and 10b. Unlike the Handley algorithm, the Hu algorithm revises cell
hypotheses only twice for our example table. This is because the Hu algorithm
detects rows and columns before cells, and detects boxhead and stub head cells
before body and stub cells.

Similar to Figure 9a, Figure 10c illustrates changes in the sets of accepted
and rejected cell hypotheses for the Hu algorithm, while Figure 10d illustrates
the cumulative effect of the decisions (similar to Figure 9b). Because the Hu
algorithm never rejects cell hypotheses, R is always empty.

6.3 Evaluation and Error Analysis for Individual Decisions

Let us briefly try to characterize which are the ‘good’ decisions shown in
Figures 9 and 10. As discussed in Section 5, an internal evaluation of decisions
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a. Decision 86 (Column Headers) b. Decision 93 (Stub and Body Cells)

GT A (86) R A (93) R
0 

10

20

30

40

50

60

Decision

N
um

be
r 

of
 H

yp
ot

he
se

s

 

 
Ground Truth (A: TP,R: FN)  
Other (A: FP,R: TN)

GT A (86) R A (93) R
0 

10

20

30

40

50

60

Decision

N
um

be
r 

of
 H

yp
ot

he
se

s
 

 
Ground Truth (A: TP,R: FN)   
Other (A: FP,R: TN)

c. Changes d. Cumulative

Fig. 10. Cell Detection by Hu et al. Over Time. A represents accepted hypotheses,
and R represents rejected hypotheses

is with respect to their associated alternative outcomes, while the type of
metrics presented in Figures 9 and 10 are external evaluations, which compare
interpretations after each decision to goals (i.e. ground truth).

In terms of an internal evaluation, the Handley decision at time 42 is a
perfect decision which is both correct and complete; that is to say, of all the
possible cell merges, only the single valid alternative is selected. All other cells
used to define the possible merges are already correct or over-merged cells (as
can be seen from the cells shown at time 32 in Figure 1). The Handley decision
at time 19 is not a perfect decision, but we will claim that it is quite good,
as it is entirely correct (only valid merges are selected), though incomplete:
some valid merges within the set of alternatives are not selected, e.g. for some
of the column headers.

Both internally and externally, the remaining decisions made by the two
algorithms incorrectly merge cells, and lie somewhere between fairly good,
with a small number of errors (e.g. the Hu decisions, Handley time 13), and
detrimental, producing only errors, as at Handley time 85, when all assertions
and rejections are false. Looking at time 85 in Figure 9a, in the left bar we
see that all cells accepted by the decision are false positives (dark shading
indicates cells not in ground truth), and in the the right bar all cells rejected
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Fig. 11. Performance Metrics for Cell Hypotheses

by the decision are false negatives (light shading indicates cells in ground
truth).

Now let us identify which decisions in our RSL implementations caused
the errors in the final interpretations that we observed in Section 6.1. The
Hu algorithm splits a column header cell at Decision 86, and then proposes
the cells that have been incorrectly merged and split across rows in the stub
and body at Decision 93. We should point out that the errors related to su-
perscripts are caused by our projection-based textline detection addition to
the Hu algorithm, which does not take super and sub-scripts into account;
the original algorithm was designed for text files, which of course come with
textlines already defined. The Handley algorithm completes recognizing the
stub head and boxhead cells correctly, using a series of decisions ending at De-
cision 42, but over-merges cells across rows in the stub and body at Decisions
32, 59, and 85.

These errors may be determined automatically by searching the hypothesis
history for false positive cell hypotheses recorded in the output interpretation.
Here these errors may be found simply by looking at Figures 1 and 10.

6.4 Evaluating and Improving the Decision-Making Process

In addition to this hypothesis-level view, we can also use historical recall and
precision along with conventional recall and precision to give us an external,
higher-level view of the decision-making process. Figure 11 presents all four
of these metrics for each decision shown in Figures 1 and 10.

Most strikingly, note that our implementation of the Handley algorithm
has higher recall after Decision 19 than the recall of the Hu algorithm at any
point; if the algorithm had stopped at this point, it would have fared better
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Fig. 12. Results for Combining Decisions of the Hu et al. and Handley Algorithms.
First the Hu algorithm is applied, stopping after its first cell decision (for boxhead
and stub head cells). The original decision numbers for the Handley algorithm are
shown in brackets in (a). In the output, there are only two false positives, which
split one ground truth cell in the rightmost column (363)

in the conventional evaluation given in Section 6.1. At Decision 19 for the
Handley algorithm, the stub and body cells have all been correctly detected
with the exception of the cell with a prefix superscript (3) in the last column
of the table. Only five cells have not been correctly located: the incorrect body
cell, and four of the header cells (these correspond to the twelve false positives
at Decision 19, shown as the gray portion of the bar for accepted hypothesis
set in Figure 9b).

After Decision 19, the Handley algorithm recall and precision measures
start to decrease, and false negatives start being created. At Decision 32, thir-
teen valid cells are rejected; however, three new ground truth cells (column
headers) are produced, causing an increase in historical recall. As mentioned
earlier, Decision 42 is a perfect decision, and detects the rightmost column
header (increasing all metrics). The final two decisions decrease recall, pre-
cision, and historical precision, as they propose invalid merges. The histor-
ical precision for the Handley algorithm is uniformly low, partly because of
proposing all words as cells initially. This results in many invalid hypotheses
being generated. However, the historical recall is very high, and in fact only
one ground truth cell is never generated and considered: the ‘363’ cell in the
rightmost column of the body.

The Hu algorithm decisions have fairly high precision, and high final recall
(at Decision 93). However, the historical recall is considerably lower than that
of the Handley algorithm (it does not generate the ground truth cell missing
from the Handley algorithm’s hypothesis set, along with other cells). Note
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that the historical and conventional metrics are identical for the Hu algorithm,
because no cell hypotheses are ever rejected.

Can we combine the existing decisions of the Handley and Hu algorithms
to produce a result better than either algorithm in isolation? The answer
is yes, and the result for one such combination is shown in Figure 12. The
combination is produced by first running the Hu algorithm, stopping it after
it finishes identifying cells in the boxhead (Decision 86). In the output, we filter
all but Word, Line, and Cell region types. We then run the Handley algorithm
on the filtered output of the Hu algorithm, after making the following changes
to the Handley algorithm:

Decision 1: only words that do not already belong to a cell are classified as
cells (this preserves the detected header cells)

Decisions 32, 59, 86: are removed along with their supporting decision se-
quences (e.g. estimates of row and column structure)

No decision function parameters were altered.
In the combined strategy all the ground truth cells generated by the Han-

dley algorithm are detected, with identical historical and conventional recall
after each decision (one cell is still mis-recognized, as for the original algo-
rithms). At the final time, precision is higher than it is for either of the in-
dividual algorithms, while the historical precision has been improved relative
to the original Handley algorithm. While effective, this particular decision
sequence is likely over-fit to this particular table.

7 Conclusion

We have presented decision-based methods for specifying and comparing
recognition algorithms. The Recognition Strategy Language (RSL) is a first
attempt at formalizing recognition algorithms as sequences of decisions which
select among alternative model operations at run-time. Decision-based speci-
fications make a table recognition algorithm’s search within the space of pos-
sible interpretations defined by a model explicit, and allow more information
about an algorithms’ decision process to be automatically captured both stat-
ically and at run time. We have illustrated the decision-based approach using
RSL re-implementations of the Handley [1] and Hu et al. [12] table structure
recognition algorithms, and demonstrated by example how we can use the
additional information made available to improve recognition by combining
decisions from both.

Decision-based specification makes it possible to directly determine which
decisions in the recognition process affect a hypotheses. By capturing all hy-
potheses including those that are rejected, we can measure new metrics on the
set of hypotheses generated by an algorithm. We have presented two simple
but useful metrics that characterize generated hypotheses in terms of coverage
of the set of recognition goals (historical recall) and the accuracy/efficiency
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of hypothesis generation (historical precision). We believe that other useful
metrics may be defined, such as some measure of ‘fickleness’ that character-
izes how frequently hypotheses shift from between the sets of accepted and
rejected hypotheses.

In the future we wish to extend RSL to better support feature computa-
tions directly within an RSL program; currently all feature computations are
defined externally within the functions that make decisions at run-time. To
further support studying the combination of recognition strategies, we also
wish to explore new decision types that combine and select among decisions
and decision sequences within RSL programs. This would allow decision com-
binations to be produced automatically or semi-automatically, rather than
manually as we did in Section 6. Ultimately we would like to use decision-
based languages such as RSL for studying the problem of learning recognition
strategies [13, 14, 15].
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