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Abstract. This paper presents a graph-based spatial model which can
serve as a reference for guiding pedestrians inside buildings. We describe
a systematic approach to construct the model from geometric data. In
excess of the well-known topological relations, the model accounts for
two important aspects of pedestrian navigation: firstly, visibility within
spatial areas and, secondly, generating route descriptions. An algorithm
is proposed which partitions spatial regions according to visibility cri-
teria. It can handle simple polygons as encountered in floor plans. The
model is structured hierarchically - each of its elements corresponds to
a certain domain concept (‘room’, ‘door’, ‘floor’ etc.) and can be anno-
tated with meta information. This is useful for applications in which such
information have to be evaluated.

1 Introduction and Related Work

Pedestrian guidance within buildings [6] differs from customary navigation based
on networks. This is due to the following reasons:

1. Features like roads or railways can be commonly modelled by one-dimensional
elements in a clearly defined network. In contrast, features of a building
do not fit so nicely into this schema — a building exhibits a nested, three-
dimensional structure. There are several ways to overlay a floor plan with a
graph [5]. It is arguable which representation to choose: e.g. should a corridor
be mapped to a node, a chain of connected nodes, or rather to an edge?

2. Pedestrians can roam freely between the interior boundaries of buildings.
Their movement is less restricted than those of vehicles (which are often
bound to their networks, e.g. trains). However, spatial orientation and visi-
bility play a vital role for human wayfinding [16]: An L-shaped room, for
example, cannot be perceived as a whole without moving around the cor-
ner. Although the primary concern of navigation is to determine a shortest
(fastest) path, one should not underrate the importance of comprehensible
route descriptions [13] — they tell us how to follow a path in a region.

Floor plans document the interior layout of a building in terms of boundaries.
Particularly in computational geometry [3] and robot motion planning [2], so-
called roadmap methods derive detailed navigational graphs from geometric in-
formation. At the other end of the spectrum, there are symbolic models which



can be classified [1] into topological models like Region Adjacency Graphs [10,
14] or Cell and Portal Graphs [11] and hierarchical models [8,12,15]. All these
abstract away from geometric details; they merely represent qualitative spatial
relations between regions [4]. However, as argued by Hu et al. [8], if the relations
are too abstract or coarse, they are impractical — they cannot model reachability
among regions via different entry and exit points. Finally, cognitive models of in-
door spaces [16, 17] are interesting insofar as they cater for the representation of
space from the perspective of humans. They are well-suited for generating route
descriptions. What is missing is an elegant way to couple these different aspects
into one coherent model, e.g. a high-level topological representation which can
be refined to reveal the inner structure of a region if required.

The main contribution of this paper is the formalisation of a spatial model
which can handle different levels of abstraction and provides a basis for the
generation of route instructions. We describe a systematic approach to construct
the model from floor plan data. It is worth noting that the notion of visibility is
embedded into the model.

The paper is structured as follows: in Sect. 2.1 and 2.2, we formally define
the basic elements of the model based on a floor plan’s geometry. Sect. 2.3
explains the extesion to a hierarchy. The algorithm presented in Sect. 2.4 refines
the hierarchy based on visibility criteria. Sect. 2.5 motivates the potential of
annotating the model with meta information.

2 The Proposed Model

We assume that a set of floor plans of the environment are available in a vector-
based format (these data originate e.g. from a CAD application). The geometric
data structure consists of a (planar) mesh of polygons; each polygon encloses
a spatial region R. In the following we use the terms polygon and spatial region
interchangeably, although we are aware of the subtle difference [4] that a polygon
is only a representation of the boundary 0R of a spatial region.

2.1 Spatial Regions

Definition 1 (Spatial Region). A spatial region R := C1C5..C,>3 is geo-
metrically represented as a list of corners Cicy. . (indices i > z are calculated
modulo z). Corners are ordered counter-clockwise (ccw). Each corner takes
up a position C;.pos = (x,y) in an underlying reference system. Two consecutive
corners fix a boundary line bLine(i) = C;C;y1. Boundary lines do not inter-
sect elsewhere: bLine(i) NbLine(j # i+1) = (). interior(R) := all points p with
odd crossing number (number of times a ray starting from p intersects boundary
lines of R).

Two spatial regions R,, R, touch [4] if 3i,j, bl, := bLine(i) in R,, bl; =
bLine(j) in Ry: bl, = blg, i.e. they share at least one boundary line. A mesh
of polygons is characterised more precisely as a cell complex (cf. Plimer et
al. [14]) by the following axioms:



Condition 1 (pairwise disjoint) Spatial regions may not overlap, but touch:
Vbl, € Ry, bly € Ry: bl, =bly vV bl,Nbly =0V bl,Nbly ={C||C € R, NR,}.

Condition 2 (jointly exhaustive) All n spatial regions make up the envi-

ronment to be modelled: | J;, ,, Ri = Floor Plan.

Whereas convex polygons are not critical for route descriptions, we have to treat
non-convex polygons specially (see Sect. 2.4). This is simply because humans
can’t see what is beyond a corner.

Definition 2 (Concave Corner, Chain). A corner X enclosing an internal
angle greater than 180°(7) is called concave. A non-convez polygon has at least
one concave corner. Concave chains are mazimum sequences X;X;11..Xitk
of consecutive concave corners.

2.2 Boundary Nodes

For the purpose of navigation, we have to define connectivity among spatial
regions. Even though two adjoining spatial regions are touching, they can still
be physically separated by walls or other divisions (loges in a theatre, platforms
on a station). Access and egress are only possible through specific points on their
shared boundary (i.e. doors and other openings), called boundary nodes. In
the literature these elements are also referred to as gateways [17] or exits [§]. A
prototypical setting with two boundary nodes is depicted in Fig. 1.

Definition 3 (Boundary Node). A boundary node B := (id, t, R,, R,,
w, 2) is a waypoint for a path between two adjoining spatial regions R,, Ry:
Ja, b,bl: bl = bLine(a) in R, A bl = bLine(b) in Ry A B in bl. It has exactly one
type t and a unique identifier id. Furthermore, w denotes its total width and {2
the angle/orientation perpendicular to its boundary line bl.
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Fig. 1. Two Exemplary Boundary Nodes

Remarks:

1. Boundary nodes are key points for navigation. Their type t is a concep-
tual representation of the underlying architectural feature, e.g. of a door, a
window or an opening.



2. Two spatial regions can have more than one boundary node in common (see
Fig. 1), thus their connection has a certain multiplicity. The unique identifier
id guarantees that each boundary node can be distinguished as a separate
entity.

A boundary node can be regarded, from a dual perspective, as a transition
relation (or connection) between regions. In Region Adjacency Graphs [12,14]
or Cell and Portal Graphs [11], they are represented as multiedges (remark 2)
between the nodes R, and R,.

2.3 Hierarchical Graphs

Apart from coinciding boundaries, there is another fundamental relation between
spatial regions: they can be nested. Premises are inherently organised into con-
stituent floors, sections, rooms, and so forth. Therefore it makes sense to define a
relation for containment. This relation can be used to extend the aforementioned
flat graphs into hierarchical graphs [1,12,15]:

Definition 4 (Child Relation <). A spatial region R. is child of another
spatial region Ry, denoted as R. < Ry, if 3(C € R.) : C € interior(R,) and
V(Ra # Rp) : [C € interior(R,) = 3(Cp € Rp) : Cp € interior(R,)]. Rp, Ra
are called parent and ancestor region, respectively.
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Fig. 2. An Example for a Hierarchy

Remarks:

1. According to axioms 1 and 2, the first condition of Def. 4 implies that the
other corners Cotpher # C of R lie either in the interior of R, or on a
boundary line shared by R, and R.. The second condition guarantees that
R, is indeed the minimal region containing R, - there is no other region R,
between R, and R, that also contains R, (illustrated in Fig. 2).

2. A further consequence is that only one region R, can be parent of the region
R.. However, an important question arises: How can, for example, rooms
R. be represented which belong to a floor R,; and a wing R,2 at the same



time? There is a way to fit them into the model: one can simply substitute
Ry and Ryo by the three regions R,1 \ Rpz2, Rp1 N Rp2, and Ry \ Rp1. This
method works in general for n overlapping parent regions. They are replaced
by at most 2 — 1 non-overlapping regions.

Definition 5 (Region Graph). G := (Ng, Eg,t) is the region graph of
a spatial region R. The type t of a region graph represents concepts like floors,
sections, rooms, etc. All region graphs Gg with Q < R are nodes in Nr. Com-
prised in the edge set Er are the boundary nodes of R as well as those of all
child regions Q). Local edges of Gg are boundary nodes between @Q1, Q2 € Ng.
Otherwise, if one Qieq1,2y ¢ Nr they are interface edges of Gr.

One can easily see that the relation < is anti-symmetric and irreflexive. It thus
defines a partial ordering on spatial regions. This ordering represents the multiple
levels of the hierarchy, from coarse- to fine-granular spatial regions:

Definition 6 (Level, Root, Leaf).

level(Gr,) := 0 if BR, : R, < R,. Such R, are called roots.

level(Gr,) := 1 + level(Gr,) if Re < Ry, i.e. Gg, € Ng,.

All R; with R, : R. < Ry are leaves. They lie at the bottom of the hierarchy.

Pragmatic considerations speak in favour of using hierarchical graphs as un-
derlying navigation model: Experiments conducted e.g. by Jing et al. [9] and
Shekhar et al. [18] have shown a gain in the processing time of shortest path
queries. Besides, humans can rather make sense of hierarchical structures than
of coordinates returned by a positioning system since the former are qualitative.
The hierarchy is always coined by the floor plans. However, it requires some
reorganisation with respect to reachability between child regions:

— G, € Nr may not be mutually reachable by a sequence of boundary nodes
By € Eg. For instance, two rooms ()1, @2 in fully separated sections of a
floor R can only be reached via another floor. It makes sense to split Ggr
into its connected components, each becoming a new region graph.

— The removal of one articulation edge from Eg (say Bs in Fig. 2 is locked),
leads to having two connected components. Knowing this, one can split Gg
in advance at all articulation edges.

2.4 Partitioning Algorithm and Navigation Process

Hierarchical graphs reflect a building’s topology. Nevertheless, their resolution
is too coarse for navigation: The interior of non-conver leaf regions may be
complex so that several route instructions are necessary (e.g. for a door around
two corners). The path between two boundary nodes (e.g. By and Bz in Fig. 1)
in a leaf region (R,) is not always the line of sight, unless the region is convex.

Visibility depends on the shape of a leaf region. In the following, we present
an algorithm which partitions leaf regions according to visibility criteria: The
principal idea is to connect corners in a non-convex leaf region in such a way



that they partition the region into non-overlapping convex sub-regions (see
Fig. 3). The partitioning is not arbitrary (we could use any triangulation then),
but concave corners play a major role. The actual process of partitioning is
described in the main algorithm:

1 List<Polygon> convexPartitioning(Polygon p)

{ List<Polygon> subPolys = new List<Polygon>(); /* store sub—polygons x/
3 for (ConcaveCorner r in p.concaveCorners()) /* ccw list */
{ ConcaveCorner rNext = p.nextConcaveCorner(r); /* ccw from r %/
5 if (rNext == null) /* (1) the only concave corner of p is r %/
subPolys.add(matchOneConcaveCorner(p,r));
7 else /* (2) more than one concave corner in p */
{ if (p.index(r) + 1 == p.index(rNext)) continue;
9 /* (2.1) r, rNext in concave chain: skip one iteration x/
Polygon sub =
11 p.createSubpolygon(range(p.index(r), p.index(rNext)));
/* puts all corners from r to rNext in sub, rNext points to r =/
13 if (not(sub.isConvex())) //(2.2) match concave in sub with corner
{ List<Polygon> subSplits = convexPartitioning(sub);
15 if (not(p.nextConcaveCorner (rNext) == r))
subSplits.remove (polygons with bLine rNext to r);
17 subSplits.remove (polygons with concave corner of p inside);
subPolys.add (subSplits); }
19 else /* (2.3) sub—polygon is convex x/
{ if (no concave corner of p inside sub)
21 { p = p.splitSubpolygon(sub);
/+ bypass all corners between r, rNext x/
23 subPolys.add(sub); } } } }
p.updateConcaveCorners () ; /* some can fall away now s/
25 if (not(p.isConvex())) /# still non—convex x/
subPolys.add(convexPartitioning(p)); /* recursive call on p =/
27 return subPolys; }

In order to cut off a sub-polygon sub (line 10,11), the algorithm tries to connect
each concave corner r with its next concave corner rNext in ccw (line 4). If
this succeeds, a new boundary line is created between r and rNext. In case r is
the only concave corner (line 5,6), it has to be matched to (ideally) one or two
convex corners (see next listing). If r and rNext are already connected (line 8),
the algorithm skips r and proceeds to rNext.

The polygon sub is only cut off if it is convex and no other concave corners
of p are enclosed in its interior (line 19-23). As a counterexample, the cut rors
on the left of Fig. 3 would enclose ;. However, assuming a cut is allowed, all
corners between r and rNezt are removed from p (line 21).

If sub is non-convex (line 13-18), it implies that r and/or rNext are also
concave in sub. The algorithm is called recursively on sub. The result of this
call is subSplits, a convex partitioning of sub. All polygons of subSplits with a
concave corner of p inside have to be removed (line 17), also the polygon with
the bLine from r to rNext if this cut wouldn’t be done by rNext (line 15,16).
The rest of the polygons in subSplits are then cut off from p (line 18). After one
complete tour around the polygon p, it might have become smaller due to some
successful cuts. The concave corners of p are updated (line 24); if there are still
concave corners in p, the algorithm is called recursively (line 25,26).

The partitioning of a polygon with only one concave corner (line 6) is illus-
trated on the right hand side of Fig. 3 by the description of cut 2, as well as in
the following listing:

1 List<Polygon> matchOneConcaveCorner (Polygon p, ConcaveCorner r)



o

{ int ix = p.index(r); List<Polygon> subPolys = new List<Polygon>();

List<Corner> Cmatches = all cormners c of p with

c leftOf bLine(ix-1) and ¢ leftOf bLine (ix); /* LL: ideal x/
if (Cmatches == null) /* can’t reduce with one ideal cut (LL) x*/
{ Cmatches = corners c,d of p such that d = p.nextCorner(c) and

¢ right0f bLine(ix-1) and c¢ leftOf bLine (ix) /* RL */

and d leftOf bLine(ix-1) and d rightOf bLine(ix); } /* LR =/
for (Corner c in Cmatches)
{ Polygon sub = p.createSubpolygon(range(p.index(r),p.index(c)));

sub.addBoundaryNodeBetween(c, r);

if (no concave corner of p inside sub)

{ p = p.splitSubpolygon(sub);

subPolys.add(sub); } }

return subPolys; }

A corner in the area ‘LL’ would be ideal to connect to (line 4), since the concave
corner would become convex. But if there is none, one can pick the last corner
in the area ‘RL’ (line 7) and the first one in the area ‘LR’ (line 8).
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Fig. 3. Applying the Partitioning Algorithm

On the basis of the partitioning, one can define a navigational graph for rep-
resenting also paths between boundary nodes. This is exemplified, too, in
Fig. 3: paths are indicated by the small dashed lines. Each sub-region is convex,
so all boundary nodes in the same sub-region are per se mutually visible. They
can be directly connected by a path whose distance is simply the Euclidean dis-
tance. For route descriptions, one can make use of the orientations B.f2 encoded
in boundary nodes and divide the space into front, left and right. This is work-
ing also in cases where boundary nodes lie on the same boundary line (e.g. Bs
and By on the right hand side of Fig. 3): With the angles enclosed between the
path BsB4 and Bs.{2 (resp. B4.{2) one can find out that a left turn is required
starting at Bs. A route description such as “Turn left [at Bs] and move along
the wall until you reach the first door [By] on your left” can be obtained.

Boundary nodes in different sub-regions can be directly connected by a path
if they intersect all cutting lines between their sub-regions (on the left hand side
of Fig. 3: B1Bs with cut 5, B3B7 with cuts 2 and 4). Otherwise, they either lie
outside the considered leaf region L (left hand side: B7Bg), or intersect some
boundary line of another sub-region of L (left hand side: ByBg, B4Bs). This
means, in any case, that they are not mutually visible in L. However, they can
be connected by a chain of paths which additionally run through points, e.g.



the centres, of the cutting lines between the involved sub-regions. The centre of
cut 4 (left hand) is added as an intermediary point along the path from Bs to
Bg. When connecting B3 with By, the center of cut 2 is superfluous because the
path between B3 and the centre of cut 3 intersects cut 2 — this means that using
only cut 3 is sufficient.

2.5 Evaluation of Constraints

Although the focus of this paper is on the spatial model, it is worth noting
that the model can be annotated with meta information. Especially the types
t of boundary nodes and region graphs could contain further attributes, e.g.
in form of a list of key-value-pairs. This could be very useful in practise, for
applications which require a more detailed processing of context information. The
notion of distance could be understood in a variety of different ways, depending
on the semantics [19,20] of the application and its context (encoded in these
attributes). Consider the following examples:

— Doors (boundary nodes) can be locked or, more general, access requires
authorisation (key, card, biometric scan etc.).

— Admission of entry can be limited in time, e.g. opening hours of an office.

— Certain sections of a public building (all interface edges into a region graph)
may be restricted in access (“staff only”, high-security wings, laboratories).

— Special exits and base level windows can be used for emergencies.

The examples from above can be modelled as boolean (hard) constraints of
the form A” (attr = value V attr € valuePartition) on boundary nodes and/or
region graphs of a certain type. After evaluation, such a constraint yields a
truth value. Boolean constraints can, hence, be used to determine under which
conditions motion is physically possible (‘can’) or admitted (‘may’) in the envi-
ronment [7]. The environment can be filtered only for the relevant parts which
fulfil these binary constraints before the actual navigation process. A rich indoor
model should take these kinds of constraints into account, but not exclusively.
Person-related properties like roles, privileges, or preferences also have a signif-
icant impact on navigation:

— Imagine a person inside a building, pushing a pram. She intends to get from
the ground floor to an upper floor. This person opts for a path with an
elevator (in case the pram fits in), deliberately accepting a detour.

— In the same building a second person on business has an appointment in an
office. Say it is on the second floor. Rather than waiting for the elevator, this
person uses the staircase in order to arrive timely. Now let us assume a
slightly modified situation: The appointment takes place on the ninth floor.
In this case the person may instead be willing to use the elevator.

Although in both situations, the topology of the building is exactly the same,
there are two interpretations of distance. The personal context of the wayfinder
matters. The trade-off described in these situations can be modelled by soft



constraints: Vpath € Grlof type t] : path.cost = [timeyqi: + | bonus/penalty
* path.time. They alter the costs of traversing certain regions of the environ-
ment (e.g. t = stairs — penalty = 4) in favour of others (e.g. t = elevator —
timeyqir = 20).

3 Conclusion

In this paper we presented a hierarchically structured model of an indoor envi-
ronment which accounts for different entry and exit points of regions. Defined
upon concrete geometries, the model is not abstract but can be implemented
and provided with real data from floor plans. Furthermore, we presented an al-
gorithm which partitions regions according to visibility criteria, so that route
descriptions can be given for their interior. It would be interesting to study
deeper the ties between the spatial entities in the model and their linguistic
counterparts for route descriptions. Another point for research is the further
development of constraints: Semantic Web technologies are appealing for their
specification (annotation of maps in a wiki-like style), and especially their pro-
cessing. It would be also worthwhile to examine inhowfar constraint processing
and hierarchical planning could be intertwined.
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