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Abstract. Biologists usually focus on only a small, individualized, sub-
domain of the huge domain of biology. With respect to their sub-domain,
they often need data collected from various different web resources. In
this research, we provide a tool with which biologists can generate a
sub-domain-size, user-specific ontology that can extract data from web
resources. The central idea is to let a user provide a seed, which con-
sists of a single data instance embedded within the concepts of interest.
Given a seed, the system can generate an extraction ontology, match
information with the user’s view based on the seed, and collect informa-
tion from online repositories. Our initial experimentations indicate that
our prototype system can successfully match source data with an ontol-
ogy seed and gather information from different sources with respect to
user-specific, personalized views.

1 Introduction

To do activities such as performing background research for a field of study,
gaining insights into relationships and interactions among different research dis-
coveries, or building up research strategies inspired by other’s hypotheses, biol-
ogists often need to search several online databases and gather information of
interest. Biologists usually have to traverse different web sources and collect the
data of interest manually. This task is a tedious and time-consuming.

It would be beneficial if we could generate a data-extraction ontology specif-
ically for each individual user that would automatically collect the information
of interest. But generating an ontology, especially an ontological description for
an information repository, is non-trivial; it not only requires domain expertise,
but also requires knowledge of specific ontology language. Data heterogeneity
and different user objectives makes the task even more daunting.

To illustrate the difficulties biologists encounter in gathering information
from a variety of sources and also to illustrate the challenges involved in build-
ing an extraction ontology to automatically collect data, consider some examples.
For chromosome location of a gene, some users might only care about the chro-
mosome on which this gene is located. Other users might care about a more
detailed location like the start and end base pairs. Sources, not knowing user

* Supported in part by the National Science Foundation under Grant #0414644.



2 Cui Tao et al.

objectives, provide their own view of the data. One source could describe a chro-
mosome location of a gene as one concept. Others could describe the location
in terms of multiple concepts such as chromosome number, start location, end
location, orientation, and size. The size is actually an implicative value which is
equal to end minus start, therefore some designer could also choose to omit this
concept. As another example, consider the use of different units for the same
concept. For example, one site could use kilo-dalton as an unit for molecular
weight, one could use dalton, and another could provide both. Still other prob-
lems arise because different sites might provide information directly or indirectly.
A protein database, for example, could use Gene Ontology (GO) terms to de-
scribe molecular functions. In order to obtain information for the description of
the definitions of the terms, a user usually needs to go to the GO database.

In this paper, we introduce a system that can automatically build a data-
extraction ontology given a user’s seed. We call this system SIH (Seed-based
Information Harvester, pronounced “sigh”), because once built, we can use the
ontology to harvest information from web repositories. A seed consists of a single
sample data instance embedded within the concepts of interest. Based on the
ontology seed, STH matches information with the user’s view, builds a personal-
ized ontology, and collects information of interest from online repositories. The
advantages of this system are (1) it does not require knowledge of conceptual
modeling or ontology languages to build ontologies, and (2) it can automatically
harvest information from multiple sites and present the information according
to a user-specified view.

We present the details of STH and our contribution to user-specified ontology
generation and subsequent information harvesting as follows. Section 2 positions
our work within recent work on ontology creation. Section 3 introduces OSM
ontologies, the ontology framework we use in this research. Section 4 describes
the interface used to create a seed ontology for SIH. Section 5 explains how
SIH maps site labels to seed ontology labels and how the generated extraction
ontology collects information from various sources. Section 6 reports the results
of some initial experiments we conducted with our SIH implementation, makes
concluding remarks, and mentions some future directions we wish to pursue in
this research.

2 Related Work

In recent years, many researches have tried to facilitate ontology generation.
Manual editing tools such as Protege [6] and OntoWeb [8] have been developed to
help users create and edit ontologies. It is not trivial, however, to learn ontology
modeling languages and complex tools in order to manually create ontological
description for information repositories.

Because of the difficulties involved in manual creation, researchers have de-
veloped semi-automatic ontology generation tools. Most efforts so far have been
devoted to automatic generation of ontologies from text files. Tools such as On-
toLT [1], Text20nto [2], OntoLearn [5], and KASO [11] use machine learning
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methods to generate an ontology from arbitrary text files. These tools usually
require a large training corpus and use various natural language processing algo-
rithms to derive features to learn ontologies. The results, however, are not very
satisfactory [7]. Tools such as TANGO [10] and the one developed by Pivk [7]
use structured information (HTML tables) as a source for learning ontologies.
Structured information makes it easier to interpret new items and relations.
These approaches, however, derive concepts and relationships among concepts
from source data, not from users. STH, on the other hand, allows users to provide
their own views and generate user-specified ontologies.

Potentially, it should be possible to derive biologist-specific view ontologies
from large biological ontologies such as the Gene Ontology, the NCI Thesaurus,
and the SNOMED Ontology. Our own experience in this direction [3], how-
ever, has not been very successful, mostly because the existing large biological
ontologies are usually more like hierarchial vocabulary lists than the conceptual-
model-based ontologies we need for information extraction.

3 OSM Ontologies

We use OSM [4] as the semantic data model for an extraction ontology. Figure 1
shows a graphical view of a sample ontology. The structural components of
OSM include object sets, relationship sets, and constraints over these object
and relationship sets. An object set in an OSM ontology represents a set of
objects which may either be lexical or non-lexical. A dashed box represents a
lexical object set and a solid box represents a non-lexical object set. A lexical
object set contains concrete values. For example, “T-complex protein 1 subunit
theta” is a possible value of the Name object set in Figure 1. A non-lexical
object describes an abstract concept, such as Protein in Figure 1. Lines among
object sets represent the relationship sets among them. A small circle at one end
of a line indicates optional. For example, a Protein can have zero or more GO
Function Definitions. An arrow indicates functional from domain to range. For
example, a Protein can only have at most one Molecular Weight; the relationship
set is therefore functional from Protein to Molecular Weight. OSM also supports
n-ary relationships with multiple lines connecting the object sets involved.

We have found OSM to be more expressive than other standard ontology
representations, such as RDF and OWL, which, for instance, only supports bi-
nary relationships [10]. In addition, and more important, an OSM ontology can
support data extraction from source documents [4].

4 Seed Ontology Creation

In this section, we explains how SIH generates an ontology based on a user’s
seed. We provide our users with a graphical user interface (GUI) where they
can create a seed easily. We adapt the user interface proposed by Zhou [12].
Through this GUI, a user can generate an ontology seed by creating a form
and then provides the seed values by filling out the form. The form tells STH
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how to generate the ontology structure, and the seed values tell SIH something
about how to collect information from different sources. We discuss information
collection in Section 5.

The GUI provides users with an intuitive method for defining different kind
of form features. There are four basic form fields from which users can choose:
single-label/single-entry fields, single-label/multiple-entry fields, multiple-label/-
single-entry fields, and multiple-label /multiple-entry fields. Users can also recur-
sively nest a form inside any basic form field. Nested forms allow users to describe
their interests in more structured and meaningful ways.

For each new ontology to be built, a user creates a form and gives the form
a meaningful title. Based on this title, STH generates a new ontology and a non-
lexical object set with this title as the name. Every label represents an object set
in the corresponding ontology; the label is the name for the object set. If the label
is for a field containing a nested form, its object is non-lexical; otherwise its object
set is lexical. SIH generates relationship sets among the object sets as follows.
Between the form-title object set and each single-label field, it generates a binary
relationship set; between the form-title object set and each multiple-label field, it
generates an n-ary relationship set; between each field and a single-label object
set nested in side of it, STH generates a binary relationship set; between each
field and a multiple-label object set nested inside of it, SIH generates an n-
ary relationship set. Cardinalities for relationship sets depend on whether the
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form field is single-entry or multiple-entry, which respectively indicates that the
relationship set is functional or non-functional from form title or nested form
title to field or fields. In the reverse direction, the cardinalities are non-functional
except when there is exactly one single-entry field. Thus, for example, we have
a one-to-one relationship set between Chromosome Location and the quadruple
Chromosome Location, Start, End, and Orientation.

Figure 2 shows an example of form generation. Suppose we are interested in
basic information about human proteins (their names, locations, functions, and
sizes). In our example, we choose “Protein” as the base-form title. We know each
protein can have one or more names, so we choose to add a single-label /multiple-
entry field to the form and label it Name. Since we know there is only one
molecular weight for one protein, we choose to use a single-label/single-entry
form field and label it Molecular Weight. We are also interested in the locations
of proteins. We know that each protein can have only one location, so generate
a single-label/single-entry form field and label it Chromosome Location. We also
know that a chromosome location is composed of four parts: chromosome num-
ber, start location, end location, and orientation. In this situation, we choose
to create a nested form field. A nested form field is defined in separate pan-
els in the same way as users define basic form fields. Here we choose to use a
multiple-label /single-entry field as Figure 2 shows. We use the GO (Gene Ontol-
ogy) to describe a protein function. Each protein has a set of GO function terms
to describe their functions. Each GO function term also has an evidence desig-
nator associated with it. We thus create a multiple-label/multiple-entry field as
Figure 2 shows. For each protein, we also want to include the GO function defi-
nitions and use a single-label/multiple-entry to define it. Overall, STH generates
the ontology in Figure 1.!

We complete the creation of a seed by filling in a created form. STH provides
users with a GUI where they can copy values from source pages and paste them
into generated forms. Users can browse the online databases with which they
are familiar or from which they want to collect information and copy and paste
values for one instance into the form. Figure 3 shows an example of copying
values for chromosome location and molecular weight from a source page to the
corresponding form fields in the form in Figure 2. The highlighted values in the
document are the copied values.

5 Data Collection

We explain in this section how we generate data-extraction specifications from
an ontology seed. SIH collects information from source repositories that present
their information in structured/semi-structured ways. SIH first interprets source
pages from these online resources. It then maps the labels in a generated user-
specific ontology to the labels in the source pages. Once the mappings are defined,
SIH can collect source data for the user.

! The optional constraints in Figure 1 are not defined by the user’s form. Instead,
they come from observing source data as explained in Section 5. We may also adjust
reverse cardinalities according to our observations of source data.
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5.1 Source Page Interpretation

Many online repositories present their data in dynamically generated pre-defined
templates in response to submitted queries. Pages from this kind of repository
usually have the same or similar structure. We call pages that are from the same
web site and have similar structures sibling pages and the corresponding tables
in sibling pages sibling tables. Figure 4 shows a sibling page for the page with
Molecular Weight seed values in Figure 3.

We have developed a system called TISP (Table Interpretation with Sibling
Pages) [9], which can automatically interpret the structure of sibling pages and
find the association between labels and values. TISP first decomposes source
sibling pages, unnestes all the HTML tables, and finds sibling tables. TISP then
compares a pair of sibling tables to identify nonvarying components (category
labels) and varying components (data values). After it identifies labels and val-
ues, TISP finds the structure pattern of the table. It checks whether a table
matches any pre-defined pattern template by testing each template until it finds
a match. With a structure pattern for a specific table, TISP can interpret the
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Fig. 4. An Example of a Sibling Page for the Source Page in Figure 3

table and all its sibling tables. We assume that values under the same label from
different sibling tables are for the same or same set of concepts. Using TISP, we
can collect all the values under the same label from a source repository.

5.2 Source-Target Mapping and Data Collection

The next step for SIH is to map source labels to concepts in the generated
ontology. Seed values provide the main means of determining these mappings.
SIH knows both the label for a seed value and the value’s source-page label,
and can therefore link the two labels. The basic idea is that source values for
source-page labels are values that can fill in the form field for the form labels.
Unfortunately, mapping generation is not quite so simple because the labels
may not have exactly the same meaning. Size in Figure 3 and 4, for example,
does not have the same meaning as Molecular Weight in Figure 1 and 2. Size
values include both the number of amino acids and the molecular weight. Thus,
SIH must “split” size values and pick up only the part giving the molecular
weight. In general, we must handle five different cases we encountered during
the mapping process: direct mappings, unions, selections, splits, and merges.

Direct Mapping. When a seed value matches a source value exactly, STH infers
a direct mapping. For example, the highlighted value “21” under the source label
Chromosome in Figure 3 matches the seed value “21” in the form under seed
label Chromosome Number; thus SIH infers a direct mapping from Chromosome
to Chromosome Number. For information harvesting, SIH just collects all the
information under the same label from all the sibling pages.
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Union/Selection. When individual source values under different source labels
match individual seed values under one label, STH infers a union mapping. For
example, suppose a user creates seed values for Name (of Protein) by copy-and-
paste of “T-complex protein 1 subunit theta”, “TCP-1-theta”, “CCT-theta”, and
“Renal carcinoma antigen NY-REN-15" from Figure 5. Then, in this case, STH
detects a union mapping from Protein name and Synonyms to Name. When
individual seed values under a seed label match a subset of individual source
values under only one source label, STH infers a selection mapping. For example,
in Figure 6, suppose that the seed values only include the first three values under
Annotation because the user only cares about protein functions. SIH then can
infer a selection mapping from the source label Annotation for only Molecular
Function annotations. For information harvesting for a union mapping, SIH
collects information from all source fields. For selection, if the desired values are
labeled in the source pages as they are in Figure 6, SIH collects the information
under the proper, restricted label. If not, the user needs to provide a selection
expression to filter the values (see future work).

Split/Merge. When part of a seed value matches an individual source value,
SIH detects a split mapping. For example, in Figure 3, only part of the source
value “29,350,518 bp from pter” under the source label Start matches the seed
value “29,350,518”. In this case, STH detects a split mapping. Sometimes, one
source value could be split into multiple seed values. For example, the value
under the label base in Figure 7 matches seed values for labels Start and End
and thus should be split and mapped to two ontology concepts. To do the split,
SIH stores and uses patterns. The pattern “<start> bp from pter” works for
extracting Start values for the site of Figures 3 and 4, and the pattern “from
<Start>to <End>" works for extracting Start and End values from the site from
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which Figure 7 was taken. A merge mapping is the opposite of a split mapping. If
the user’s form had a single-label/single-entry field for base that expected values
like the base value in Figure 7, then for the site of Figure 3 and 4, SIH would need
to merge Start and End values. For information harvesting, STH collects values
to be split by filtering them through generated patterns and collects values to
be merged by obtaining all of them and concatenating them, separated by a
delimiter (e.g. “- 7).

To harvest information from multiple sites, the user specifies multiple seeds.
The user does not specify another form, but does fill in the form with seed values
from each new site. If, however, STH can find a match in a new site with either
the original seed values, or with any seed values it has already collected, the user
need not even specify new seed values for the new site.

After SIH collects information, it checks cardinality constraints. For example,
if STH finds that each value under a single-label/single-entry field is unique, it
marks this concept as a unique identifier for the base form or subform concept.
If STH observes that values for some fields are not available, it marks the field
as optional. For example, if STH finds that some web site does not provide infor-
mation about Molecular Weight for a protein, it marks this concept as optional.
If data collected contradicts user-provided constraints, STH warns the user and
allows the user to determine if any adjustment needs to be made.

6 Experimental Results, Conclusion, and Future Work

We have conducted some preliminary tests for SIH by creating the sample on-
tology in Figure 1 and extracting information form seven different web sites.
Although there were seven web sites, we only needed to create three sets of
seed values. Some web site had various values or values in different formats for
the same concept. For example, some web sites used “minus” for Orientation,
whereas other sites used “-”. There were a total of 31 concept mappings. Among
these 31 mappings, 11 were direct mappings, which STH was able to handle 100%
correctly. STH also successfully detected and correctly processed all 4 union map-
pings it encountered. There were 15 split mappings, STH detected and found the
correct patterns for 12 of them. One error was due to the use of different delim-
iters in the same site, and two errors were due to the seed value being only a
small subset of the source field. (Additional work on finding delimiters is needed.)
SIH did not encounter any merge mapping—our specified fields were always at
the lowest granularities. For selection mappings, we only tested the part where
a source page uses a label to mark the selection. STH encountered one selection
mapping and was able to detect it successfully.

As a conclusion, we can say that seed-based harvesting of information via
bio-ontologies appears to be both possible and reasonable. STH can match source
data with an ontology seed and gather information from different sources with
respect to user-specific, personalized views.

Several directions remain to be pursued. First, we would like to support
additional form features such as allowing the user to specify filter functions or
desired units for form fields. Second, we want to integrate the data, not just
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harvest it. Finally, we want to improve SIH, so that the users do not need to
create and fill our forms. We plan to have the users just highlight the values they
want from sample pages; our future system would generate ontologies directly
from these highlighted values.
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