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Abstract. The complexity of dynamical laws governing 3D atmospheric
flows associated to incomplete and noisy observations makes very difficult
the recovery of atmospheric dynamics from satellite images sequences. In
this paper, we face the challenging problem of joint estimation of time-
consistent horizontal motion fields and pressure maps at various atmo-
spheric depths. Based on a vertical decomposition of the atmosphere,
we propose a dense motion estimator relying on a multi-layer dynamical
model. Noisy and incomplete pressure maps obtained from satellite im-
ages are reconstructed according to shallow-water model on each cloud
layer using a framework derived from data assimilation. While recon-
structing dense pressure maps, this variational process estimates time-
consistent horizontal motion fields related to the multi-layer model. The
proposed approach is validated on a synthetic example and applied to a
real world meteorological satellite image sequence.

1 Introduction

Geophysical motion characterization and image sequence analysis are crucial is-
sues for numerous scientific domains involved in the study of climate change,
weather forecasting, climate prediction or biosphere analysis. The use of sur-
face station, balloon, and more recently in-flight aircraft measurements and low
resolution satellite images has improved the estimation of wind fields and has
been a subsequent step for a better understanding of meteorological phenomena.
However, the network’s temporal and spatial resolutions may be insufficient for
the analysis of mesoscale dynamics. Recently, in an effort to avoid these limita-
tions, another generation of satellites sensors has been designed, providing image
sequences characterized by finer spatial and temporal resolutions. Nevertheless,
the analysis of motion remains particularly challenging due to the complexity of
atmospheric dynamics at such scales.

Tools are needed to exploit this new generation of satellite images and we
believe that it is very important that the computer vision community gets in-
volved in such domain as they can potentially bring relevant contributions with
respect to the analysis of spatio-temporal data.

Nevertheless, in the context of geophysical motion analysis, standard tech-
niques from computer vision, originally designed for bi-dimensional quasi-rigid
motions with stable salient features, appear to be not well adapted [1, 2]. The



design of techniques dedicated to fluid flow has been a step forward, towards
the constitution of reliable methods to extract characteristic features of flows [3,
4]. However, for geophysical applications, existing fluid-dedicated methods are
all limited to frame to frame estimation and do not use the underlying phys-
ical laws. Moreover, geophysical flows are quite well described by appropriate
physical models. As a consequence in such contexts, physic-based approach can
be very powerful for analyzing incomplete and noisy image data, in comparison
to standard statistical methods. The inclusion of physical a priori leads to un-
usual advanced techniques for motion analysis which may be of interest for the
computer vision community. This yields to new application domains impacting
potentially studies of capital interest for our everybody life, and obviously to the
devise of proper efficient techniques. This is thus a research domain with wide
perspectives. Our work is a contribution towards this direction.

The method proposed in this paper is significantly different from previous
works on motion analysis by satellite imagery. Indeed our method estimates phys-
ical sound and time consistent motion fields retrieved at different atmospheric
levels for the whole image sequence. More precisely, we use a shallow-water for-
mulation of the Navier-Stokes equations to control the motion evolution across
the sequence. This is done through a variational approach derived from data as-
similation principle which combines the a priori exact dynamic and the pressure
difference observations obtained from satellite images.

2 Data assimilation principle

2.1 Introduction

Data Assimilation is a technique related to optimal control theory which allows
estimating over time the state of a system of variables of interest [5–8]. This
method enables a smoothing of the unknown variables according to an initial
state of the system, a dynamic law and noisy measurements of the system’s state.

Let V be a Hilbert space identified to its dual defined over Ω. The evolution of
the state variable X ∈ W(t0, tf ) = {f |f ∈ L2(t0; tf ;V} is assumed to be described
through a (possibly non linear) differential dynamical model M : V 7→ V :

‚

‚

‚

‚

∂tX(x, t) + M(X(x, t)) = 0
X(t0) = X0

(1)

where X0 is a control parameter. We then assume that noisy observations Y ∈ O
are available. These observations may live in a different space (a reduced space
for instance) from the state variable. We will nevertheless assume that there
exists a differential operator H : V 7→ O, that goes from the variable space to the
observation space. A least squares estimation of the control variable regarding
the whole sequence of measurements available within a considered time range
comes to minimize with respect to the control variable X0 ∈ V, a cost function
of the following form:

J(X0) =
1

2

Z tf

t0

||Y − HX(X0)||
2
R dt, (2)



where R is the covariance matrix of the observations Y . A first approach consists
in computing the functional gradient through finite differences. Denoting N the
dimension of the control parameter X0, such a computation is impractical for
control space of large dimension since it requires N integrations of the evolution
model for each required value of the gradient functional. Adjoint models as in-
troduced first in meteorology by Le Dimet and Talagrand in [7] authorize the
computation of the gradient functional in a single backward integration of an
adjoint variable. The value of this adjoint variable at the initial time provides
the value of the gradient at the desired point. This first approach is widely used
in environmental sciences for the analysis of geophysical flows [7, 8].

2.2 Differentiated model

To obtain the adjoint model, the system of equations (1) is firstly differentiated
with respect to a small perturbation dX = ∂X

∂X0
dX0:

‚

‚

‚

‚

∂tdX(x, t) + ∂XMdX = 0
dX(t0) = dX0

(3)

where ∂XM is the tangent linear operator of M defined by its gâteaux derivative.
The gradient of the functional in the direction dX0 must also be computed:

fi

∂J

∂X0
, dX0

fl

=

Z tf

t0

fi

(Y − HX(X0), H
∂X

∂X0
dX0

fl

R

dt

=

Z tf

t0

〈H∗R(Y − HX(X0), dX〉
V

dt,

(4)

where H
∗ is the adjoint operator of H defined by:

∀X∈V, Y ∈O; 〈X, HY 〉
V

= 〈H∗X, Y 〉
O

.

2.3 Adjoint model

We then introduce the adjoint variable λ ∈ W(t0, tf ). The first equation of the
differentiated model (3) is multiplied by this adjoint variable and integrated in
the time interval [t0; tf ]:

Z tf

t0

〈∂tdX(x, t) + ∂XMdX,λ〉
V

= 0.

After an integration by parts, we have:

Z tf

t0

〈−∂tλ + ∂XM
∗λ, dX(x, t)〉

V
dt = 〈λ(t0), dX(t0)〉V − 〈λ(tf ), dX(tf )〉

V
. (5)

where the adjoint operator ∂XM
∗ is defined by:

∀X, Y ∈V; 〈X, ∂XMY 〉
V

= 〈∂XM
∗X, Y 〉

V
.



To perform the computation of the gradient functional, we assume that λ(tf ) = 0
and define the following adjoint problem:

‚

‚

‚

‚

−∂tλ + ∂XM
∗λ = H

∗R(Y − HX(X0))
λ(tf ) = 0.

(6)

2.4 Functional gradient

Combining (4), (5) and (6), we finally obtain the gradient functional as:

∂J

∂X0
= λ(t0). (7)

Hence, assimilation principle enables to compute the functional gradient with
a single backward integration. In the next section, we adapt this process to
the control of high dimensional state variables, characterizing the dynamics of
layered atmospheric flows.

3 Application to atmospheric layer motion estimation

3.1 Layer decomposition

The layering of atmospheric flow in the troposphere is valid in the limit of hori-
zontal scales much greater than the vertical scale height, thus roughly for hori-
zontal scales greater than 100 km. In order to make the layering assumption valid
in the case of satellite images of kilometer order, low resolution observations rele-
vant of a coarser grid are considered. Thus, one can decompose the 3D space into
elements of variable thickness, corresponding to layers. Analysis based on such
decomposition presents the main advantage of operating at different atmospheric
pressure ranges and avoids the mix of heterogeneous observations.

Let us present the 3D space decomposition that we chose for the definition
of the K layers. The k-th layer corresponds to the volume lying in between an
upper surface sk+1 and a lower surface sk. These surfaces sk are defined by
the height of top of clouds belonging to the k-th layer. They are thus defined
only in areas where there exists clouds belonging to the k-th layer, and remains
undefined elsewhere. The membership of top of clouds to the different layers is
determined by cloud classification maps. Such classifications which are based on
thresholds of top of cloud pressure, are routinely provided by the EUMETSAT
consortium, the European agency which supplies the METEOSAT satellite data.

3.2 Sparse pressure difference observations

Top of cloud pressure images are also routinely provided by the EUMETSAT
consortium. They are derived from a radiative transfer model using ancillary data
obtained by analysis or short term forecasts. Multi-channel techniques enable the
determination of the pressure at the top of semi-transparent clouds [9].



We denote by Ck the class corresponding to the k-th layer. Note that the
top of cloud pressure image denoted by pS is composed of segments of top of
cloud pressure functions p(sk+1) related to the different layers. That is to say:
pS = {

S

k p(sk+1, s); s ∈ Ck}. Thus, pressure images of top of clouds are used
to constitute sparse pressure maps of the layer upper boundaries p(sk+1). As
in satellite images, clouds lower boundaries are always occluded, we coarsely
approximate the missing pressure observations p(sk) by an average pressure value
pk observed on top of clouds of the layer underneath. Finally, for layer k ∈ [1, K],
we define observations hk

obs as pressure differences in Pascal (Pa) units:

hk
obs



= pk(s) − pS if s ∈ Ck

= 0 if s ∈ C̄k,
(8)

3.3 Shallow-water model

In order to provide a dynamical model for the previous pressure difference ob-
servations, we use the shallow-water approximation (horizontal motion much
greater than vertical motion) derived under the assumption of layer incompress-
ibility (layers are characterized by mean densities ρk). The shallow-water ap-
proximation is valid for mesoscale analysis in a layered atmosphere. As friction
components can be neglected, the vertical integration of the momentum equa-
tion between boundaries sk and sk+1 yields for the k-th layer to the equation [6,
10, 11]:

∂(qk)

∂t
+ div(

1

hk
q

k ⊗ q
k) +

1

2ρk
∇xy(hk)2 + ghk∇xy(sk+1) +

»

0 −1
1 0

–

fφ
q

k = 0 (9)

with

hk = p(z = sk) − p(z = sk+1), (10)

v
k = (uk, vk) =

1

hk

Z p(z=sk)

p(z=sk+1)

vdp, (11)

q
k = hk

v
k, (12)

div(
1

hk
q

k ⊗ q
k) =

"

∂(hk(uk)2)
∂x

+ ∂(hkukvk)
∂y

∂(hkukvk)
∂x

+ ∂(hk(vk)2)
∂y

#

. (13)

By adding the integrated continuity equation to Eq. 9, we obtain independent
shallow-water equation systems [11] for layers k ∈ [1, K]:

8

<

:

∂hk

∂t
+ div(qk)) = 0

∂(qk)
∂t

+ div( 1
hk qk ⊗ qk) + 1

2ρk ∇xy(hk)2 +

»

0 −1
1 0

–

fφqk = 0,
(14)

where we have assumed that surfaces sk and sk+1 are locally flat in the vicinity of
a pixel. This expression is discretized spatially with non oscillatory schemes [12]
and integrated in time with a third order Runge-Kutta scheme. This equation
system describes the dynamics of physical quantities expressed in standard units.



Thus, some dimension factors appear in the equation when it is discretized on
a pixel grid with velocities expressed in pixels per frame and pressure in hecto
pascal hPa. As one pixel represents ∆x meters and one frame corresponds to ∆t

seconds, the densities ρk expressed in pascal by square seconds per square meter
(Pa s2/m2) must be multiplied by 10−2∆x2/∆t2, and coriolis factor fφ expressed
per seconds must be multiplied by ∆t. By a scale analysis and as also observed
in our experiments, for ∆t = 900 seconds, the third term of equation 9 has a
magnitude similar to other terms if ∆x ≥ 25km. This is in agreement with the
shallow water assumption.

3.4 Assimilation of layer motion and pressure differences

We can now define all the components of the assimilation system allowing the
recovery of pressure difference observations obtained from section 3.2 through the
dynamical model presented in section 3.3. The final system enables the tracking
of pressure difference hk and average velocities qk related to the set of k ∈ [1, K]
layers. Referring to section 2, we then have Xk = [hk,qk]T . The evolution model
M is given by the mesoscale dynamics (14). The only observations available are
the pressure difference maps hk

obs. For each layer k, the observation operator
then reads: H = [1, 0] and the process minimizes:

Jk(hk
0 ,qk

0) =

Z tf

t0

||hk
obs − hk(hk

0 ,qk
0)||2Rkdt, (15)

through a backward integrations of the adjoint model (∂XM)∗ defined by:

8
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:

−∂tλ
k
h(t) + w

k · (wk · ∇)λk
q − hk

̺k div(λk
q) = Rk(hk

obs(t) − hk(t)),

−∂tλ
k
q(t) − (wk · ∇)λk

q − (∇λk
q)wk −∇λk

h +

»

0 1
−1 0

–

fφλk
q = 0,

λk
h(tf ) = 0,

λk
q(tf ) = 0.

(16)

In this expression, λk
h and λk

q
are the two components of the adjoint variable λk

of layer k [10]. More details on the construction of adjoint models can be found
in [8].

One can finally define a diagonal covariance matrix Rk using the mask of
observation Ck:

Rk(s, s) =



= α if s ∈ Ck

= 0 if s ∈ C̄k,
(17)

where α is a fixed parameter (set to 0.1 in our applications) defining the obser-
vation covariances. However, as observations are sparse, a nine-diagonal covari-
ance matrix is employed to diffuse information in a 3x3 pixel vicinity. As the
assimilation process is not insured to reach a global minima, results depend on
initialization. Thus, state variables hk

0 are initialized with a constant value while
initial values for variables qk

0 are provided by an optic-flow algorithm dedicated
to atmospheric layers [3].



4 Results

4.1 Synthetic experiments

For an exhaustive evaluation, we have relied on image observations generated
by short time numerical simulation of atmospheric layer motion according to
shallow-water dynamical model (Eq. 14). Realistic initial conditions on layer
pressure function and motion have been chosen to derive a synthetic sequence of
10 images. The sequence has then been deteriorated by different noises and by
a masking operation to form 4 different data sets. The two first synthetic image
sequences named e1 and e2 are thus composed of dense observations of hk

obs in
hecto-pascal units (hPa) corrupted by Gaussian noises with standard deviation
respectively equal to 10 and 20% of the pressure amplitude. A real cloud classifi-
cation map (used in the next experiment) has been employed to extract regions
of data sets e1 and e2 in order to create two noisy and incomplete synthetic
sequences e3 and e4 (see figure 2). For initializing the assimilation system, we
have not relied on an optic-flow algorithm in this synthetic case. We have used
instead known values of variables hk

0 and qk
0 deteriorated by Gaussian noises.

Results of the joint motion-pressure estimation performed by image assimilation
are evaluated in table 1.

Mask Noise hk
obs RMSE final hk RMSE initial |vk

0 | RMSE final |vk
0 | RMSE

% (hPa) (hPa) (pixel/frame) (pixel/frame)

e1 10 15.813880 5.904791 0.22863 0.03457

e2 20 22.361642 8.133384 0.21954 0.05078

e3 x 10 15.627055 6.979769 0.22351 0.04978

e4 x 20 22.798671 10.930078 0.21574 0.05944

Fig. 1. Numerical evaluation. Decrease of the Root Mean Square Error (RMSE) of
estimates hk and |vk

0 | by image assimilation for noisy (experiments e1, e2, e3 and e4)
and sparse observations (experiments e3 and e4).

It clearly appears that for noisy observations, the assimilation process in-
duces a significant decrease of the RMSE between real and estimated velocities
and pressure. Moreover, this table evaluates and demonstrates the efficiency
of the proposed estimator for incomplete and noisy observations for both esti-
mating dense motion fields and reconstructing pressure maps hk. Examples of
reconstruction for experiments e2 and e3 are presented in figure 2.

4.2 Real meteorological image sequence

We then turned to qualitative comparisons on a real meteorological image se-
quence. The benchmark data was composed by a sequence of 10 METEOSAT
Second Generation (MSG) images, showing top of cloud pressures with a corre-
sponding cloud classification sequence. The 1024 × 1024 pixel images cover an
area over the north Atlantic Ocean during part of one day (5-June-2004), at a



e2

e3

(a) Actual (b) Noised (c) Estimated
maps (and masked) maps maps

Fig. 2. Synthetic sequences: Results of experimentations e2 and e3, where the pres-
sure maps have been noised (e2 and e3) and masked (e3).

rate of one image every 15 minutes. The spatial resolution is 3 kilometers at the
center of the whole Earth image disk. Clouds from a cloud-classification were
used to segment images into K = 3 broad layers, at low, intermediate and high
altitude. In order to make the layering assumption valid, low resolution obser-
vations on an image grid of 128 × 128 pixels are obtained by smoothing and
sub-sampling for each layer the original data.

By applying the methodology described in section 3.4 to the image at this
coarser resolution, average motion and pressure difference maps are estimated
from the image sequence for these 3 layers. Estimated vector fields superim-
posed on observed pressure difference maps are displayed in figure 3 for each of
the 3 layers. The motion fields estimated for the different layers on the cloudy
observable parts are consistent with the visual inspection of the sequence. In
particular, several motion differences between layers are very relevant. For in-
stance, near the bottom left corner of the images, the lower layer possesses a
southward motion while the intermediate layer moves northward. Moreover, the
temporal coherence of the retrieved motion demonstrates the efficiency of this
spatio-temporal method under physical constraints.

5 Conclusion

In this paper, we have presented a new method for estimating time-consistent
horizontal winds in a stratified atmosphere from satellite image sequences of top
of cloud pressure.

The proposed estimator applies on a set of sparse image observations related
to a multi-layer atmosphere, which verify independent shallow-water models. In



order to manage the incomplete and noisy observations while considering this
non-linear physical model, a variational assimilation scheme is proposed. This
process estimates time-consistent motion fields related to the layer components
while performing the reconstruction of dense pressure difference maps.

The merit of the joint motion-pressure estimator by image assimilation is
demonstrated on both synthetic images and real satellite images. In view of the
various meteorological studies relying on the analysis of experimental data of
atmospheric dynamics, we believe that the proposed multi-layer horizontal wind
field estimation technique constitutes a valuable tool.
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Fig. 3. First (left) and last (right) estimated horizontal wind fields superimposed on
observed pressure difference maps (original images have been subsampled into images
of 128 × 128 pixels).


