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Abstract. We consider the problem of L2-optimal triangulation from
three separate views. Triangulation is an important part of numerous
computer vision systems. Under gaussian noise, minimizing the L2 norm
of the reprojection error gives a statistically optimal estimate. This has
been solved for two views. However, for three or more views, it is not clear
how this should be done. A previously proposed, but computationally
impractical, method draws on Gröbner basis techniques to solve for the
complete set of stationary points of the cost function. We show how
this method can be modified to become significantly more stable and
hence given a fast implementation in standard IEEE double precision.
We evaluate the precision and speed of the new method on both synthetic
and real data. The algorithm has been implemented in a freely available
software package which can be downloaded from the Internet.

1 Introduction

Triangulation, referring to the act of reconstructing the 3D location of a point
given its images in two or more known views, is a fundamental part of numer-
ous computer vision systems. Albeit conceptually simple, this problem is not
completely solved in the general case of n views and noisy measurements.

There exist fast and relatively robust methods based on linear least squares [1].
These methods are however sub-optimal. Moreover the linear least squares for-
mulation does not have a clear geometrical meaning, which means that in un-
fortunate situations, this approch can yield very poor accuracy.

The most desirable, but non-linear, approach is instead to minimize the L2

norm of the reprojection error, i.e. the sum of squares of the reprojection errors.
The reason for this is that the L2 optimum yields the maximum likelihood es-
timate for the 3D point under the assumption of independent gaussian noise on
the image measurements [2]. This problem has been given a closed form solution1

by Hartley and Sturm in the case of two views [2]. However, the approach of
Hartley and Sturm is not straightforward to generalize to more than two views.

1 The solution is actually not entirely on closed form, since it involves the solution
of a sixth degree polynomial, which cannot in general be solved on closed form.
Therefore one has to go by e.g. the eigenvalues of the companion matrix, which
implies an iterative process.



In the case of n views, the standard method when high accuracy is needed is
to use a two-phase strategy where an iterative scheme for non-linear least squares
such as Levenberg-Marquardt (Bundle Adjustment) is initialised with a linear
method [3]. This procedure is reasonably fast and in general yields excellent
results. One potential drawback, however, is that the method is inherently local,
i.e. it finds local minima with no guarantee of beeing close to the global optimum.

An interesting alternative is to replace the L2 norm with the L∞, norm cf. [4].
This way it is possible to obtain a provably optimal solution with a geomtrically
sound cost function in a relatively efficient way. The drawback is that the L∞

norm is suboptimal under gaussian noise and it is less robust to noise and outliers
than the L2 norm.

The most practical existing method for L2 optimization with an optimality
guarantee is to use a branch and bound approach as introduced in [5], which,
however, is a computationally expensive strategy.

In this paper, we propose to solve the problem of L2 optimal triangulation
from three views using a method introduced by Stewenius et al. in [6], where the
optimum was found by explicit computation of the complete set of stationary
points of the likelihood function. This approach is similar to that of Hartley and
Sturm [2]. However, whereas the stationary points in the two view case can be
found by solving a sixth degree polynomial in one variable, the easiest known
formulation of the three view case involves solving a system of three sixth degree
equations in three unknowns with 47 solutions. Thus, we have to resort to more
sofisticated techniques to tackle this problem.

Stewenius et al. used algebraic geometry and Gröbner basis techniques to
analyse and solve the equation system. However, Gröbner basis calculations are
known to be numerically challenging and they were forced to use emulated 128
bit precision arithmetics to get a stable implementation, which rendered their
solution too slow to be of any practical value.

In this paper we develop the Gröbner basis approach further to improve the
numerical stability. We show how computing the zeros of a relaxed ideal, i.e.
a smaller ideal (implying a possibly larger solution set/variety) can be used to
solve the original problem to a greater accuracy. Using this technique, we are able
to give the Gröbner basis method a fast implementation using standard IEEE
double precision. By this we also show that global optimization by calculation of
stationary points is indeed a feasible approach and that Gröbner bases provide
a powerful tool in this pursuit.

Our main contributions are:

– A modified version of the Gröbner basis method for solving polynomial equa-
tion systems, here referred to as the relaxed ideal method, which trades some
speed for a significant increase in numerical stability.

– An effecient C++ language implementation of this method applied to the
problem of three view triangulation.

The source code for the methods described in this paper is freely available for
download from the Internet[7].



2 Three View Triangulation

The main motivation for triangulation from more than two views is to use the
additional information to improve accuracy. In this section we briefly outline the
approach we take and derive the equations to be used in the following sections.
This part is essentially identical to that used in [6]. We assume a linear pin-hole
camera model, i.e. projection in homogeneous coordinates is done according to
λixi = PiX , where Pi is the 3 × 4 camera matrix for view i, xi is the image
coordinates, λi is the depth and X is the 3D coordinates of the world point to
be determined. In standard coordinates, this can be written as

xi =
1

Pi3X

[

Pi1X
Pi2X

]

, (1)

where e.g. Pi3 refers to row 3 of camera i.
As mentioned previously, we aim at minimizing the L2 norm of the repro-

jection errors. Since we are free to choose coordinate system in the images, we
place the three image points at the origin in their respective image coordinate
systems. With this choice of coordinates, we obtain the following cost function
to minimize over X

ϕ(X) =
(P11X)2 + (P12X)2

(P13X)2
+

(P21X)2 + (P22X)2

(P23X)2
+

(P31X)2 + (P32X)2

(P33X)2
. (2)

The approach we take is based on calculating the complete set of stationary
points of ϕ(X), i.e. solving ∇ϕ(X) = 0. By inspection of (2) we see that ∇ϕ(X)
will be a sum of rational functions. The explicit derivatives can easily be calcu-
lated, but we refrain from writing them out here. Differentiating and multiplying
through with the denominators produces three sixth degree polynomial equa-
tions in the three unknowns of X = [X1 X2 X3 ]. To simplify the equations we
also make a change of world coordinates, setting the last rows of the respective
cameras to

P13 = [1 0 0 0 ], P23 = [0 1 0 0 ], P33 = [0 0 1 0 ]. (3)

Since we multiply with the denominator we introduce new stationary points
in our equations corresponding to one of the denominators in (2) being equal
to zero. This happens precisely when X coincides with the plane through one
of the focal points parallel to the corresponding image plane. Such points have
infinite/undefined value of ϕ(X) and can therefore safely be removed.

To summarise, we now have three sixth degree equations in three unknowns.
The remainder of the theoretical part of the paper will be devoted to the problem
of solving these.

3 Using Gröbner Bases To Solve Polynomial Equations

In this section we give an outline of how Gröbner basis techniques can be used
for solving systems of multivariate polynomial equations. Gröbner bases are a



concept within algebraic geometry, which is the general theory of multivariate
polynomials over any field. Naturally, we are only interested in real solutions,
but since algebraic closedness is important to the approach we take, we seek
solutions in C and then ignore any complex solutions we obtain. See e.g. [8] for
a good introduction to algebraic geometry.

Our goal is to find the set of solutions to a system f1(x) = 0, . . . , fm(x) = 0
of m polynomial equations in n variables. The polynomials f1, . . . , fm generate
an ideal I in C[x], the ring of multivariate polynomials in x = (x1, . . . , xn) over
the field of complex numbers.

To find the roots of this system we study the quotient ring C[x]/I of poly-
nomials modulo I. If the system of equations has r roots, then C[x]/I is a linear
vector space of dimension r. In this ring, multiplication with xk is a linear map-
ping. The matrix mxk

representing this mapping (in some basis) is referred to
as the action matrix and is a generalization of the companion matrix for one-
variable polynomials. From algebraic geometry it is known that the zeros of the
equation system can be obtained from the eigenvectors/eigenvalues of the ac-
tion matrix just as the eigenvectors/eigenvalues of the companion matrix yields
the zeros of a one-variable polynomial [9]. The solutions can be extracted from
the eigenvalue decomposition in a few different ways, but easiest is perhaps to
use the fact that the vector of monomials spanning C[x]/I evaluated at a zero
of I is an eigenvector of mt

xk
. An alternative is to use the eigenvalues of mt

xk

corresponding to the values of xk at zeros of I.
C[x]/I is a set of equivalence classes and to perform calculations in this space

we need to pick representatives for the equivalence classes. A Gröbner basis G
for I is a special set of generators for I with the property that it lets us compute
a well defined, unique representative for each equivalence class. Our main focus
is therefore on how to compute this Gröbner basis in an efficient and reliable
way.

4 Numerical Gröbner Basis Computation

There is a general method for constructing a Gröbner basis known as Buch-

berger’s algorithm [9]. It is a generalization of the Euclidean algorithm for com-
puting the greatest common divisor and Gaussian elimination. The general idea
is to arrange all monomials according to some ordering and then succesively
eliminate leading monomials from the equations in a fashion similar to how
Gaussian elimination works. This is done by selecting polynomials pair-wise and
multiplying them by suitable monomials to be able to eliminate the least com-
mon multiple of their respective leading monomials. The algorithm stops when
any new element from I reduces to zero upon multivariate polynomial division
with the elements of G.

Buchberger’s algorithm works perfectly under exact arithmetic. However, in
floating point arithmetic it becomes extremely difficult to use due to accumulat-
ing round off errors. In Buchberger’s algorithm, adding equations and eliminating
is completely interleaved. We aim for a process where we first add all equations



we will need and then do the full elimination in one go, in the spirit of the
f4 algorithm [10]. This allows us to use methods from numerical linear algebra
such as pivoting strategies and QR factorization to circumvent (some of) the
numerical difficulties.

This approach is made possible by first studying a particular problem using
exact arithmetic2 to determine the number of solutions and what total degree we
need to go to. Using this information, we hand craft a set of monomials which
we multiply our original equations with to generate new equations. We stack
the coefficients of our expanded set of equations in a matrix C and write our
equations as

Cϕ = 0, (4)

where ϕ is a vector of monomials. Putting C on reduced row echelon form then
gives us the reduced minimal Gröbner basis we need. In the next section we go
in to the details of constructing a Gröbner basis for the three view triangulation
problem.

5 Constructing a Gröbner Basis For the Three View

Triangulation Problem

As detailed in Section 2, we optimize the L2 cost function by calculation of
the stationary points. This yields three sixth degree polynomial equations in
X = [X1, X2, X3]. In addition to this, we add a fourth equation by taking the
sum of our three original equations. This cancels out the leading terms, producing
a fifth degree equation which will be useful in the subsequent calculations [6].
These equations generate an ideal I in C[X ]. The purpose of this section is to
give the details of how a Gröbner basis for I can be constructed.

First, however, we need to deal with the problem where one or more of
Xi = 0. When this happens, we get a parametric solution to our equations.
As mentioned in Section 2, this corresponds to the extra stationary points in-
troduced by multiplying up denominators and these points have infinite value
of the cost function ϕ(X). Hence, we would like to exclude solutions with any
Xi = 0 or equivalently X1X2X3 = 0. The algebraic geometry way of doing this
is to calculate the saturation sat(I, X1X2X3) of I w.r.t. X1X2X3, consisting of
all polynomials f(X) s.t. (X1X2X3)

k · f ∈ I for some k.
Computationally it is easier to calculate sat(I, Xi) for one variable at a time

and then joining the result. This removes the same problematic parameter family
of solutions, but with the side effect of producing some extra (finite) solutions
with Xi = 0. These do not present any serious difficulties though since they can
easily be detected and filtered out.

Consider one of the variables, say X1. The ideal sat(I, X1) is calculated in
three steps. We order the monomials according to X1 but take the monomial
with the highest power of X1 to be the smallest, e.g. X1X

2
2
X3 ≥ X2

1
X2

2
X3. With

the monomials ordered this way, we perform a few steps of the Gröbner basis

2 Usually with the aid of some algebraic geometry software as Macaulay 2 [11]



calculation, yielding a set of generators where the last elements can be divided
by powers of X1. We add these new equations which are “stripped” from powers
of X1 to I.

More concretely, we multiply the equations by all monomials creating equa-
tions up to degree seven. After the elimination step two equations are divisible
by X1 and one is divisible by X2

1
.

The saturation process is performed analogously for X2 and X3 producing
the saturated ideal Isat, from which we extract our solutions.

The final step is to calculate a Gröbner basis for Isat, at this point generated
by a set of nine fifth and sixth degree equations. To be able to do this we multiply
with monomials creating 225 equations in 209 different monomials of total degree
up to nine (refer to [6] for more details on the saturation and expansion process
outlined above). The last step thus consists of putting the 225 by 209 matrix C

on reduced row echelon form.
This last part turns out to be a delicate task though due to generally very

poor conditioning. In fact, the conditioning is often so poor that roundoff errors
in the order of magnitude of machine epsilon (approximately 10−16 for doubles)
yield errors as large as 102 or more in the final result. This is the reason one had
to resort to emulated 128 bit numerics in [6]. In the next section, we propose
a strategy for dealing with this problem which drastically improves numerical
precision allowing us to use standard IEEE double precision.

6 The Relaxed Ideal Method

After the saturation step, we have a set of equations which “tightly” describe
the set of solutions and nothing more. It turns out that by relaxing the con-
straints somewhat, possibly allowing some extra spurious solutions to enter the
equations, we get a significantly better conditioned problem. We thus aim at
selecting a subset of the 225 equations. This choice is not unique, but a natu-
ral subset to use is the 55 equations with all possible 9th degree monomials as
leading terms, since this is the smallest set of equations which directly gives us a
Gröbner basis. We do this by QR factorization of the submatrix of C consisting
of the 55 first columns followed by multiplying the remaining columns with Qt.
After these steps we pick out the 55 first rows of the resulting matrix. These rows
correspond to 55 equations forming the relaxed ideal Irel ⊂ I which is a subset
of the original ideal I. Forming the variety/solution set V of an ideal is an inclu-
sion reversing operation and hence we have V (I) ⊂ V (Irel), which means that
we are guaranteed not to lose any solutions. Moreover, since all monomials of
degree nine are represented in exactly one of our generators for Irel, this means
that by construction we have a Gröbner basis for Irel. The set of eigenvalues
computed from the action matrices for C[X ]/I and C[X ]/Irel respectively are
shown if Fig. 1.

The claim that the number of solutions is equal to the dimension of C[X ]/I
only holds if I is a radical ideal. Otherwise, the dimension is only an upper

bound on the number of solutions [8]. Furthermore, as mentioned in Section 3, a



necessary condition for a specific point to be a solution is that the vector of basis
monomials evaluated at that point is an eigenvector of the transposed action
matrix. This condition is however not sufficient and there can be eigenvectors
that do not correspond to zeros of the ideal. This will be the case if I is not a
radical ideal. This can lead to false solutions, but does not present any serious
problems since false solutions can easily be detected by e.g. evaluation of the
original equations.

Since we have 55 leading monomials in the Gröbner basis, the 154 remaining
monomials (of the totally 209 monomials) form a basis for C/Irel. Since Irel was
constructed from our original equations by multiplication with monomials and
invertible row operations (by Qt) we expect there to be no new actual solutions.
This has been confirmed empirically.

One can therefore say that starting out with a radical ideal I, we relax the
radicality property and compute a Gröbner basis for a non-radical ideal but
with the same set of solutions. This way we improve the conditioning of the
elimination step involved in the Gröbner basis computation considerably. The
price we have to pay for this is performing an eigenvalue decomposition on a
larger action matrix.
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Fig. 1. Eigenvalues of the action matrix using the standard method and the relaxed
ideal method respectively, plotted in the complex number plane. The latter are a strict
superset of the former.

7 Experimental Validation

The algorithm described in this paper has been implemented in C++ making
use of optimized LAPACK and BLAS implementations [12] and the code is



available for download from [7]. The purpose of this section is to evaluate the
algorithm in terms of speed and numerical precision. We have run the algorithm
on both real and synthetically generated data using a 2.0 Ghz AMD Athlon X2
64 bit machine. With this setup, triangulation of one point takes approximately
60 milliseconds. This is to be contrasted with the previous implementation by
Stewenius et al. [6], which needs 30 seconds per triangulation with their setup.
The branch and bound method of [5] is faster than [6] but exact running times
for triangulation are not given in [5]. However, based on the performance of this
algorithm on similar problems, the running time for three view triangulation is
probably at least a couple of seconds using their method.

7.1 Synthetic Data

To evaluate the intrinsic numerical stability of our solver the algorithm has been
run on 50.000 randomly generated test cases. World points were drawn uniformly
from the cube [−500, 500]3 and cameras where placed randomly at a distance
of around 1000 from the origin with focallength of around 1000 and pointing
inwards. We compare our approach to that of [6] implemented in double precision
here referred to as the standard method since it is based on straightforward
Gröbner basis calculation. A histogram over the resulting errors in estimated
3D location is shown in Fig. 2. As can be seen, computing solutions of the
smaller ideal yields an end result with vastly improved numerical precision. The
error is typically around a factor 105 smaller with the new method.
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Fig. 2. Histogram over the error in 3D location of the estimated point X. As is evident
from the graph, extracting solutions from the smaller ideal yields a final result with
considerably smaller errors.



Since we consider triangulation by minimization of the L2 norm of the error,
ideally behaviour under noise should not be affected by the algorithm used. In
the second experiment we assert that our algorithm behaves as expected under
noise. We generate data as in the first experiment and apply gaussian noise to
the image measurements in 0.1 pixel intervals from 0 to 5 pixels. We triangulate
1000 points for each noise level. The median error in 3D location is plotted versus
noise in Fig. 3. There is a linear relation between noise and error, which confirms
that the algorithm is stable also in the presence of noise.
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Fig. 3. Error in 3D location of the triangulated point X as a function of image-point
noise. The behaviour under noise is as expected given the problem formulation.

7.2 A Real Example

Finally, we evaluate the algorithm under real world conditions. The Oxford di-
nosaur [13] is a familiar image sequence of a toy dinosaur shot on a turn table.
The image sequence consists of 36 images and 4983 point tracks. For each point
visible in three or more views we select the first, middle and last view and tri-
angulate using these. This yields a total of 2683 point triplets to triangulate
from. The image sequence contains some erroneus tracks which we deal with by
removing any points reprojected with an error greater than two pixels in any
frame. The whole sequence was processed in approximately 2.5 minutes and the
resulting point cloud is shown in Fig. 4.

We have also run the same sequence using the previous method implemented
in double precision, but the errors were too large to yield usable results. Note that
[6] contains a successful triangulation of the dinosaur sequence, but this was done
using extremely slow emulated 128 bit arithmetic yielding an estimated running
time of 20h for the whole sequence.



Fig. 4. The Oxford dinosaur reconstructed from 2683 point triplets using the method
described in this paper. The reconstruction was completed in approximately 2.5 min-
utes.

8 Conclusions

In this paper we have shown how a typical problem from computer vision, trian-
gulation, can be solved for the globally optimal L2 estimate using Gröbner basis
techniques. With the introduced method of the relaxed ideal, we have taken this
approach to a state where it can now have practical value in actual applications.
In all fairness though, linear initialisation combined with bundle adjustment will
probably remain the choice for most applications since this is still significantly
faster and gives excellent accuracy. However, if a guarantee of finding the prov-
ably optimal solution is desired, we provide a competetive method.

More importantly perhaps, by this example we show that global optimisation
by calculation of the stationary points using Gröbner basis techniques is indeed
a possible way forward. This is particularly interesting since a large number of
computer vision problems ultimately depend on some form of optimisation.

Currently the limiting factor in many applications of Gröbner bases is nu-
merical difficulties. Using the technique presented in this paper of computing
the Gröbner basis of a smaller/relaxed ideal, we are able to improve the numer-
ical precision by approximately a factor 105. We thus show that there is room
for improvement on this point and there is certainly more to explore here. For
instance, our choice of relaxation is somewhat arbitrary. Would it be possible
to select more/other equations and get better results? If more equations can
be kept, but with retained accuracy this is certainly a gain since it allows an
eigenvalue decomposition of a smaller action matrix and this operation in most
cases has O(n3) time complexity.
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