Int J Comput Vis (2009) 83: 195-209
DOI 10.1007/s11263-008-0189-6

Stereo Matching Using Population-Based MCMC

Wonsik Kim - Joonyoung Park - Kyoung Mu Lee

Received: 7 February 2008 / Accepted: 14 October 2008 / Published online: 31 October 2008

© Springer Science+Business Media, LLC 2008

Abstract In this paper, we propose a new stereo matching
method using the population-based Markov Chain Monte
Carlo (Pop-MCMC), which belongs to the sampling-based
methods. Since the previous MCMC methods produce only
one sample at a time, only local moves are available. In con-
trast, the proposed Pop-MCMC uses multiple chains in par-
allel and produces multiple samples at a time. It thereby
enables global moves by exchanging information between
samples, which in turn, leads to faster mixing rate. In the
view of optimization, it means that we can reach a lower
energy state rapidly. In order to apply Pop-MCMC to the
stereo matching problem, we design two effective 2-D mu-
tation and crossover moves among multiple chains to ex-
plore a high dimensional state space efficiently. The exper-
imental results on real stereo images demonstrate that the
proposed algorithm gives much faster convergence rate than
conventional sampling-based methods including SA (Simu-
lated Annealing) and SWC (Swendsen-Wang Cuts). And it
also gives consistently lower energy solutions than BP (Be-
lief Propagation) in our experiments. In addition, we also
analyze the effect of each move in Pop-MCMC and examine
the effect of parameters such as temperature and the number
of the chains.
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1 Introduction

Stereo matching is one of the classical problems in com-
puter vision (Scharstein and Szeliski 2002). The goal of
stereo matching is to determine disparities, which are the
differences in the horizontal coordinates of corresponding
pixels in a pair of rectified images. If we obtain an accu-
rate disparity map, we can recover 3-D scene information.
However, it remains challenging problem because of oc-
cluded regions, noise of camera sensor, textureless regions,
etc. Stereo matching algorithms can be classified into two
approaches. One is the local approach, and the other is the
global approach. In the local approach, disparities are deter-
mined by comparing the intensity values in local windows
by some measures such as Sum of Absolute Differences
(SAD), Sum of Squared Differences (SSD), and Birchfield-
Tomasi measure (Birchfield and Tomasi 1998). Although
local approaches are fast, they have difficulties in obtain-
ing an accurate disparity map due to some intrinsic difficul-
ties including the noise and choosing appropriate window
size problems. To overcome those difficulties, in general,
global approaches employ the smoothness constraint that re-
flects the smoothly varying surface assumption. Usually, an
energy function that is composed of local (likelihood) and
global (prior) constraint is defined and solved by various en-
ergy minimization techniques. Recently, deterministic meth-
ods such as dynamic programming (Ohta and Kanade 1985;
Veksler 2005), Graph cuts (Boykov et al. 2001; Kolmogorov
and Zabih 2001, 2002, 2004; Boykov and Kolmogorov
2004), message passing method and its variants (Yedidia
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et al. 2000; Sun et al. 2003; Kolmogorov 2006), and lin-
ear programming-based methods (Komodak et al. 2007a,
2007b) are widely used for the global optimization and
achieve good performances (Szeliski et al. 2006).

Graph cut methods are fast and provides very low energy
solution with standard 4-neighborhood benchmark prob-
lems. However, it can be applied to a limited class of en-
ergy functions (Kolmogorov and Zabih 2004). Szeliski et al.
(2006) showed that «-expansion move method was faster
and slightly better than «--swap move method in all cases
in their experiments. However, o-expansion move method
can be applied to more limited class of energy functions than
a-B-swap move. Belief Propagation (BP) is a message pass-
ing method originally developed for graphs without cycles.
In general, although it is not guaranteed to converge, it has
been successfully applied to loopy graphs (Sun et al. 2003).
Tree-reweighted message passing (TRW) is also a message
passing method (Kolmogorov 2006). It finds lower energy
solution than Graph cuts in many problems. An important
property of TRW is that it gives a lower bound on the en-
ergy which can be used to check how close our solution to
the global minimum energy. All of the deterministic meth-
ods are approximation algorithms. Although Graph cuts pro-
vides global minimum for some restricted energy models,
none of these methods guarantee to obtain the global min-
imum solution for a general stereo model in practical time
since it is known to be an NP hard problem.

In contrast to the deterministic methods, stochastic ap-
proaches such as sampling-based methods can be used to
find global optimum. Sampling-based methods were origi-
nally developed to generate samples from a given target dis-
tribution or to integrate functions in high dimensional space.
These Sampling-based methods are also have been used for
statistical estimation and optimization. In this paper, we use
a sampling-based method for energy minimization to solve
the stereo matching problem.

The Monte-Carlo method is the most primitive sampling-
based method. In this method, a new sample is drawn de-
pending on a pre-determined proposal distribution. This
distribution is independent on previous samples. However,
there are some difficulties in applying the Monte Carlo
methods to vision problems as an optimizer. In general, we
need to solve vision problems in very high-dimensional so-
lution spaces. Even if it is assumed to be 100 pixels in the
width and height, respectively, the dimension of the image
space can be as high as 10*. Monte Carlo methods would
take infinitely long time since the acceptance rate would be
almost zero in such a high-dimensional case. Moreover, we
need to design a proper proposal distribution close to the tar-
get distribution. To resolve these problems, Markov Chain
Monte Carlo (MCMC) methods had been tried. In MCMC,
a new sample is drawn from the previous sample with a lo-
cal transition probability, based on the Markov chain. Con-
trary to simple Monte Carlo methods, the acceptance rates
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of MCMC methods are high enough, and the proposal distri-
butions are designable even in high-dimensional problems.
Therefore, MCMC methods are more appropriate for the ap-
plication to vision problems than the Monte Carlo methods.
However, difficulties still remain in applying MCMC to vi-
sion problem as an optimizer. Since most MCMC methods
allow only local moves in a large solution space, it still takes
very long time to reach the global optimum.

To overcome the limitations of MCMC methods as an
optimizer, recently Swendsen-Wang Cuts (SWC) was pro-
posed (Barbu and Zhu 2004, 2005). In SWC, it is shown
that bigger local moves are possible than in previous meth-
ods while maintaining the detailed balance. SWC uses Sim-
ulated Annealing (SA) (Kirkpatrick et al. 1983) to find the
global optimum. Although SWC allows bigger local moves,
a very slow annealing process is needed to approach the
global optimum with probability 1. This is an apparent draw-
back of SWC. Therefore, we need a faster annealing process
for real vision applications. However, fast annealing does
not always guarantee the global optimum and the samples
are often trapped in local optima.

In this paper, we propose a new MCMC method called
Population-Based MCMC (Pop-MCMC) (Liang and Wong
2000; Jasra and Stephens 2007) that can overcome the draw-
backs of SWC for stereo matching problem. Our goal is
to obtain the lower energy state faster than other sampling
methods including SWC which have been previously ap-
plied to this problem. In Pop-MCMC, two or more samples
are drawn at the same time. Samples can exchange infor-
mation with each other. This makes it possible to perform
global moves of samples. It means that the mixing rate of
drawn samples becomes faster. And in the view of optimiza-
tion, the faster mixing rate means that it takes shorter time
for the samples to approach the global optimum than con-
ventional methods. A preliminary version of this paper has
been appeared in Park et al. (2007).

This paper presents the design of Pop-MCMC for stereo
matching and comparison of performance with the other
methods such as SA, SWC and BP. The paper is organized
as follows: In Sect. 2, SWC and Pop-MCMC are briefly in-
troduced. Then, we present how Pop-MCMC is applied to
stereo matching in Sect. 3. Section 4 gives the experimen-
tal results. In the final Sect. 5, we conclude the paper with
discussions.

2 Related Works

In this section, we first describe the SWC, which has been
applied to vision problems (Barbu and Zhu 2004, 2005).
Then, we present the description of Pop-MCMC.
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2.1 Swendsen-Wang Cuts (SWC)

SWC originated from the Swendsen-Wang (SW) method.
Swendsen and Wang proposed SW method in 1987 (Swend-
sen and Wang 1987). It overcame the slow convergence of
previous sampling-based methods such as Gibbs sampler.
Let us explain SW briefly.

We consider a 2-D lattice graph G = (V, E), where V
is the set of nodes and E is the set of edges connecting
neighboring nodes. Each node v; € V is assigned a label
x;i € {1,2,..., L}. The number of possible labels is L. In
a 2-D lattice graph, each node has four edges. We assume
that this graph follows the Potts model, which is often used
in vision as a prior model. The formulation of Potts model
is as follows.

1
T(X)=_expf Y 10 =x)), e

(i,j)eE

where X represents (xi1,...,xy) and N is the number of
nodes. Z and B are constants. 1(-) represents a Boolean
function. When the graph follows the Potts model, a global
minimum should be the states in which all the nodes have
the same labels.

In Gibbs sampler, the label of only one node can be
flipped to generate the next sample. So it needs a generation
of O(L") samples to reach the global optimum. In contrast,
in SW the labels of a cluster of nodes are flipped at the same
time.

However SW has several drawbacks. It assumes fixed
number of labels, and does not create new labels in the case
when the number of labels is unknown. And it is only ap-
plicable to Ising/Potts model. In addition, it does not con-
sider the external field, such as the observed visual data in
vision.

To overcome the above limitations of SW, SWC has been
proposed by extending SW from the Metropolis-Hastings
perspective (Barbu and Zhu 2004, 2005). SWC can be ap-
plicable to arbitrary posterior probabilities, and can incorpo-
rate external data easily. The summary of SWC is described
in the following:

Assume that a current state is A, repeat the process be-
low.

1. If the labels of two neighboring nodes s and ¢ are dif-
ferent, the edge connecting two nodes is removed. If the
labels are the same, we determine whether the edge is
retained or not with the probability g,. If there exists ex-
ternal field, we consider it in designing the probability g.
This process is repeated for all edge e = (s, t) € E. Then
nodes connected by remaining edges are considered as a
cluster.

2. One cluster Vj is randomly selected.

3. New label !’ of the chosen cluster Vj is proposed with a
proposal distribution g (I'| Vg, A).

4. Determine whether we accept the newly generated sam-
ple (or state B) with acceptance probability « by the fol-
lowing Metropolis-Hastings rule

q(Vo | B)q(l | Vo, B)x(B | I) ) o

oa=min| 1,
( gVo | A)g"| Vo, A)mc (A | I)

where [ represents the external field, that is, the observed
input image. No matter how ¢, and the proposal dis-
tribution g (I'|Vy, A) are designed, the detailed balance
is maintained by Metropolis-Hastings kernel. Therefore,
we can appropriately design g, and the proposal distrib-
ution of the new label freely, so as to use the information
of input image properly.

In order to reduce the complexity of SWC, a modified
clustering method, SWC-2 has been proposed (Barbu and
Zhu 2005). In SWC-2, a connected node cluster Vj is deter-
mined by a recursive method as described in the following.

1. Select a seed node v € V randomly, and assign it to a
cluster V.
2. Repeat until no more node is added to Vj.
For any edge e = (s, t) € E between the node s € V
and its neighboring node ¢ ¢ Vj,
(a) If the labels of the two nodes s and ¢ are deferent,
remove the edge. Otherwise, determine whether the
edge e should be retained or not with probability g,
same as in SWC.
(a) If the edge e is not removed, add the node ¢ to the
cluster Vj.

Note that in constructing Vj, we need to calculate g, only
for the edges at the border of the cluster Vj. It leads to saving
of computational costs. In our work, we adopt SWC-2 as a
part of the proposed algorithm.

2.2 Population-Based MCMC (Pop-MCMC)

Pop-MCMC or evolutionary Monte Carlo is a stochastic
simulation method that combines a population of Metropolis-
Hastings samplers and Evolutionary Algorithm to improve
the performance of MCMC samplers. Pop-MCMC gen-
erates multiple chains in parallel with different tempera-
tures, and exchanges information among them to accelerate
the mixing rate. This method can be considered as a vari-
ant of the Parallel Tempering (PT), that was proposed by
Geyer (1991) and modified by others later (Hukushima and
Nemoto 1996). PT aims to overcome the problems of tra-
ditional single process MCMC using a Metropolis-Hastings
update, which has low mixing rate. The basic idea of PT is
to simulate multiple replicas of the original system in par-
allel at a series of different temperatures, and swap the con-
figurations with a Metropolis-Hastings criterion. The target
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Fig. 1 Chains in Parallel

T
Tempering N

distribution of ith chain is defined as follows.
1
T X)=nX)", 3)

where 7 (X) is an original target distribution, and 7; is the
temperature of the ith chain. In the chain with high tem-
perature, the target distribution is nearly flat as depicted in
Fig. 1, where the heights of barriers between local optima
are very low. Therefore, the samples in such chain can freely
wander in contrast to the samples in a chain with low tem-
perature. By exchanging these higher-temperature configu-
rations with the configuration of a low temperature of our
interest, we can allow the low temperature simulation to
sample configurations much more efficiently than with local
Metropolis updates only. This leads to a faster mixing rate
between samples, and helps to escape from local minima.

Pop-MCMC allows chains to exchange information more
actively than PT by introducing a new move called the
crossover move. It originated from the genetic algorithm and
then modified to fit the MCMC framework (Liang and Wong
2000). In Pop-MCMC, the Markov chain state is augmented
as the population of all chains. Given an original target dis-
tribution 7 (X), a new expanded target distribution is defined
as follows.

N
7 Xin) =] [ X, )

i=1

where N is the number of chains to use. We assume that
mr =  for at least one chain k € {1,...,N}. Xi.y =
{X1,..., Xy} is a population composed of samples of N
chains. Each component X; in the vector Xj.y is called as
a chromosome. The term chromosome is borrowed from ge-
netic algorithm. The goal of Pop-MCMC is to generate sam-
ples Xi.n which follow the new target distribution 7 *. And
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a collection of chromosomes from the kth chain, which has
the target distribution my = 7, is what we want to obtain
finally.

Pop-MCMC has three different types of moves; mutation,
exchange and crossover, which are described below in de-
tail.

Mutation Move The mutation move updates a chromo-
some of a single chain using a Markov kernel, while other
chains keep unchanged. We can use a conventional MCMC
algorithm. Let us suppose that the current population is
X1y ={Xy,...,X;,...,Xy}. Among N chains, we ran-
domly select ith chain and generate a new chromosome Y;
from the current chromosome X; by an MCMC algorithm.
Then, a new population Yi.y = {X1,...,Y;,.... Xy} is
proposed, and is accepted according to the Metropolis-
Hastings rule with probability

o =min(l, yim), 5)

where
*(Yin) T(Yin = Xin)
7*(Xy:v) TXv = Yin)
_mY) T — X))

X)) TX;i—>Y)'

Ym =

(6)

where T denotes the transition probability between popula-
tions. In short, in the mutation move an MCMC move is per-
formed at a specific chain independently, while other chains
are kept unchanged. The irreducibility of Pop-MCMC is
guaranteed by this mutation move.

Exchange Move The exchange move is the same as that
used in PT. In this move, two different chains are ran-
domly chosen first. And then the chromosomes of those
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two chains are exchanged to propose a new population.
Let us suppose that the current population is Xi.y =
X1,....X;,...,Xj,..., Xy}, and the ith and jth chains
are selected. Then, the newly proposed population will be
Yiv={Xy,....X;,....,X,..., Xy} Similar to the muta-
tion move, the new population is accepted according to the
acceptance probability:

o =min(l, y,), (7)

Ve = 7 (Yin) T(Yin = Xiw)

‘T X)) TXiw — Yin)
_ i (X)) (Xp)
7 X (X;)'

®)

The last equality holds due to the definition of the tar-
get distribution and the symmetry property of the transition
probability.

In general, to obtain the higher acceptance rate, exchange
moves are performed on chains that have similar target dis-
tributions with neighboring temperatures.

Crossover Move The crossover move is newly introduced
in Pop-MCMC. The main concept of this move is borrowed
from the genetic algorithm. The design of this move is the
main contribution of Pop-MCMC. There are several varia-
tions of the crossover moves. One of the popular moves is
the 1-point crossover move. The basic idea of it is as fol-
lows: As in the exchange move, two different chains, say ith
and jth chains, are randomly selected. If the chromosome
is a d-D vector, we randomly choose a natural number k
between 1 and (d — 1). And new chromosomes Y; and Y
are proposed by swapping the same part of chromosomes X;
and X; as follows.

[ Xi = (Xi1s v s Xiks Xi(k+1)s - - - » Xid) }
X=X 1,y Xjks Xjlh D)o -0 Xjd)
| Y= e Xk Xt 1) -5 X ) )
Y= (X1, o, Xk Xi(kt1)s - - - » Xid)

In this case, the ratio of proposal distributions in the ac-
ceptance probability is canceled by symmetry. We only need
to calculate the ratio of the target distributions. A new popu-
lation is proposed as Y.y = {Xy,..., Y;, ..., Y, ..., Xp},
and according to the Metropolis-Hastings rule, it is accepted
with probability

a =min(l, y.), (10)

where

7*(Y1.N) . T(Y1:n — Xi:n)

7*Xen) TXpny = Yiy)

_ m(Yori(Y)) qXi, Xj1Yi, Yj)
i Xm (X)) q(Yi, Y1X, X))

Ve =

(11)

where T (X:xy — Yi:n) is p(, jIXn) - (Y, Y;1X;, X)),
p(i, j1X1.n) denotes the probability that ith and jth chains
are chosen and ¢(Y;, Y;|X;, X;) indicates the probability
that the chromosomes Y; and Y; are proposed, when cur-
rent chromosomes X; and X; are given. Choosing chains
is independent of the current state, so p(i, j|X;.ny) and
p(i, jIY1.n) are canceled out in the second equality.

In order to include various ways of exchanging informa-
tion between chromosomes, the 2-point crossover move, k-
point crossover move, and adaptive crossover move were
also proposed in the literature (Liang and Wong 2000,
2001).

3 Proposed Algorithm

In this paper, we apply the Pop-MCMC method to stereo
matching. For this purpose, we design new effective 2-D
mutation and crossover moves to explore the high dimen-
sional state space efficiently. In order to improve the ac-
curacy of the disparity map, various energy models have
been newly proposed for the stereo problem. Among them,
we choose the segment-based energy model since it is
known as one of the best energy models and it is ro-
bust to noise (Tao et al. 2001; Bleyer and Gelautz 2005;
Hong and Chen 2004; Klaus et al. 2006). This model as-
sumes that each segment corresponds to a planar patch in
the scene. In a segment-based energy model, the reference
image is first over-segmented. This segment-based energy
model also reduces running time since the number of nodes
is much smaller than pixel-based model. Mean-shift algo-
rithm is often used for the segmentation (Comanicu and
Meer 2002).

3.1 Segment-Based Stereo Energy Model

Each segment is defined as a node v € V, and neighboring
nodes s and ¢ are connected with edges (s, ) € E. Then we
construct a graph G = (V, E). And the energy function is
defined by

EX)=Y Csec(f)+ Y Bul(fs # fi), (12)

veV (s,t)eN

where X represents the current state of every segment, f;, is
an estimated plane for each segment, Csgg(fy) is a match-
ing cost, and B ; is a penalty for different neighboring nodes
of s and ¢, which are defined by

Csec(f)= Y Cx,y, fulx, ), (13)
(x,y)eV
B =y -BL(s,1) - S(s,0), (14)
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where function C(x, y, f,(x, y)) is the Birchfield-Tomasi
cost, BL(s, t) is the shared border length, and S(s, t) is the
mean color similarity defined by

1 Ry, — R Gy, -G By, — B
S(s,1) = L(1 = min 1’| v, — Ry, [ +1Gv, — Gy, [ + By, — By,|
2 255

1
+ 3 (15)

where Ry, , Gy, and By, are average intensity values of seg-
ment V,, which are between 0 and 255. Mean color simi-
larity has a value between % and 1. When two neighboring
segments have similar intensities, it becomes closer to 1. By
varying y, we can control the relative effect of matching cost
and smoothness cost.

We first need to make a list of the planes for assign-
ing each segment to a plane by examining segment by seg-
ment. For each pixel, we calculate the initial disparity by us-
ing SAD (Sum of Absolute Differences) and WTA (Winner
Takes All) schemes. Using these initial disparities, we fit a
plane for each segment. The equation of a plane in 3D-space
can be written by

d(x,y)=cix +c2y +c3, (16)

where x and y are the coordinates of a pixel, and d(x, y) is
its disparity. Based on the above equation, we construct the
following algebraic equation for each segment.

Alcy, 2, c3]T =B, A7)

where the ith row of the matrix A is the coordinates
[xi, yi, 1] of the ith pixel, and the ith row of the matrix
B is the disparity d(x;,y;) of that pixel. Then, the val-
ues of cy, c2, c3 are obtained as a least squares solution by
solving (17). In this method, the outlier disparities are ini-
tially detected and removed by a disparity crosschecking
method (Hong and Chen 2004). Once we find the plane pa-
rameters, we can further identify more outlier disparities that
are not close to the fitted plane. For those pixels with outlier
disparities, we re-estimate the correct disparities by confin-
ing the search range to be small near the fitted plane. Then,
the least squares method is repeated to update parameters
c1, ¢2, ¢3 based on the modified disparities.

The above plane fitting process is repeated for each seg-
ment and newly found planes are added to a list. After that,
each segment is assigned to a plane in the list that has low-
est Csgg value. Then we group the segments assigned to the
same plane. And for each group, the above plane fitting is
repeated in order to improve the accuracy of a plane. At last,
we have the final list of the planes to use. Although, this
plane-based model does not explicitly handle the occlusion,
occluded pixels are likely to be detected as outlier through
the crosscheck in plane estimation.
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Fig. 2 The overall flow chart of the proposed Pop-MCMC algorithm
applied to stereo matching

3.2 Design of Pop-MCMC

Given a target probability distribution 7 (X) o< exp{—E (X)},
our aim is to find the state X where the probability is maxi-
mized. In Pop-MCMC, we draw multiple samples from mul-
tiple chains at the same time with respect to the following
distributions.

(18)

1 E(X;)
i (X)) =m(X;) i CXeXP{— }

i

where T; is the temperature of ith chain. The appropriate
sequence of the temperatures can be designed empirically
according to the target distribution. Each sample from each
chain is a chromosome, and chromosomes interact with each
other, which helps perform global moves.

The overall flow of Pop-MCMC is illustrated in Fig. 2.
The three moves, mutation, crossover, and exchange moves
are repeatedly performed and samples are generated at each
iteration. In this process, we first choose a random number U
between 0 and 1, and compare U with the mutation rate Q,,.
Depending on the value of U, we choose one move between
mutation and crossover. So, by varying Q,,, we can con-
trol the rates between the global move (crossover) and lo-
cal move (mutation) easily. This means that Q,, adjusts the
trade-off between exploration and convergence of the algo-
rithm (Spears 1992). A proper value of Q,, can be chosen
according to the given problem, the model, or the number
of chains. For example, if a large number of chains are used,
O, is usually set to a small value for faster convergence. Let
us describe the detailed design of each move for the stereo
problem.
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Fig. 3 An example of mutation n th sample n+1 th sample
move
i th chain
Mutation Move In this paper, we employ the MCMC ker-  ceptance probability:
nel of SWC-2 for the mutation move of a randomly selected
chain. At first, we construct a random cluster V as in SWC- o = min(l, ym)
2 for a selected chain. For clustering, we need to design edge — mi < | i (Y;) . TY; = X)) )
probability g., which determines whether the edge should be 'TiX) TX =Y
retained or not. We define the edge probability, ' EX) — E(Y;)
= min <1, exp{ — 7 }
K;-S(s,1) '

ge =1 —eXP<— Csio ), Cstolln) 2>’ (19) a(Vo | Yi)q(l| Vo,Y,->> o

N T NG T g 1 Xg (Vo X))’

where v; and v, represent neighboring nodes, N (v) is the
number of the pixels in the node (segment) v, and K; repre-
sents a weighting factor for the chosen ith chain. The more
similar the intensities of the connected nodes and the lower
the matching costs are, the higher the probability that the
edge remains. Note that the matching costs are normalized
by the sizes of the corresponding segments. By varying K;,
we can control the average size of clusters. A bigger K;
tends to generate bigger clusters. We set K; to increase as
i increases. Consequently, clusters are likely to be small
in lower-temperature chains and big in higher-temperature
chains. It helps more effective exploration and also prevents
chromosomes from correlating with each other.

The new label I’ for the selected cluster Vj is proposed
according to the following proposal distribution.

> vev, Csec(fu =1)
2 vev, N

+1- I

(v1,1:2)eN,v1eVh,12¢ V)

g’ | Vo, Xi) = exp[—{

1('= fvz)”,
(20)

where [’ is the newly proposed label for Vy, and X; is the
current state of selected ith chain. When the nodes in the
cluster V have low matching costs and there exist neighbor-
ing nodes of same label, the value of ¢(I’ | Vo, X;) becomes
high. After a new label is proposed, it is accepted according
to the Metropolis-Hastings rule. By substituting (18) and the
transition probability in (2) into (6), we can calculate the ac-

where Y; is the proposed state of the ith chain, and g (Vp |
X;) is the probability for selecting cluster Vy when current
state is X;. Figure 3 illustrates an example of mutation move
on the ith chain.

Exchange Move 1In this move, we choose two chains and
propose to exchange the chromosomes of two chains. The
proposal is accepted or not by the Metropolis-Hastings rule.
Figure 4 shows an example of exchange move. Note that for
the exchange move, there is no need for a special design for
stereo matching problem. So, when the ith and jth chains
are selected, by substituting (18) into (8), we can obtain the
acceptance probability by

o =min(l, y,)
_ < m(Xj)Nj(Xi)>
=min| 1, —X—~ -
i (X)) (X))

= min <1, exp[{E(Xi) - E(X))}

G-3))

where X; and 7; are the current state and temperature of the
ith chain. In order to achieve faster mixing rate, we need
to raise the acceptance rate, and this can be accomplished
by choosing two neighboring chains that have similar tem-
peratures. Then, from the above equation, the Metropolis-
Hastings ratio tends to get bigger.

Crossover Move Typical crossover moves commonly used
in conventional Pop-MCMC are the 1-point crossover and
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Fig. 4 An example of exchange
move

i th chain

Jj th chain

2-point crossover moves. However, since these methods are
designed for the chromosomes of 1-D vectors, it is inappro-
priate to apply them directly to the stereo matching prob-
lem, in which the chromosomes are 2-D state configurations.
Nonetheless, the 1-point and 2-point crossover moves have
an advantage of low computational complexity because the
most of terms in the Metropolis-Hastings ratio cancel out
each other. Therefore, in this work, we introduce a new 2-D
crossover move that maintains this advantage. Detailed de-
scription of the proposed crossover move is as follows.

We first choose two chains randomly and construct a
cluster Vp in a similar way as in SWC-2 (or the mutation
move). However, there are two differences in constructing
Vo compared with SWC-2. First, g, is set constant, not adap-
tively determined with the matching costs or the intensities
of the input image, since there is no need for the nodes of the
cluster Vj to be homogeneous in this case. It is also compu-
tationally efficient to use g, as a constant value because the
proposal distribution part in the Metropolis-Hastings ratio is
canceled out. Second, when we calculate the probability g.,
we do not have to check whether the labels of the nodes are
the same or not, so the resulting cluster Vj can have nodes
with different labels. Therefore, compared with the mutation
move that requires the identifying and removing processes
of all the edges connecting the nodes with different labels,
the selecting scheme and the calculation of the acceptance
probability of Vj in the crossover move is much simpler.
Eventually this property enables high efficiency in compu-
tation, and also the freedom in the construction of Vj helps
to achieve faster convergence.

The process after constructing a cluster Vp is similar
to the 1-point crossover move. From the chromosomes X;
and X; of two selected chains, new chromosomes Y; and
Y, are proposed by exchanging the labels of the nodes
which belong to the cluster Vj as shown in Fig. 5. The ac-

@ Springer

n th sample

n+1 th sample

ceptance probability ¢ = min(1, y,) of the newly proposed
chromosomes is calculated, and the next population of sam-
ples is determined. By substituting (18) into the Metropolis-
Hastings rule in (11), we can obtain y, as follows.

o = min(1, )

o <1 ﬂi(Yi)ﬂj(Yj)_CI(Xi,XjIYi,Yj))
XX q(Yi Yi1XL X))

_ < ﬂ;(Yi)ﬂj(Yj)>
=min| 1, —————~
7 (Xi)mj(X;)
, < [E(Xi) — E(Y))
min | 1, exp —

EX;)— E(Y))
" T; D

(23)

where we used the symmetric property of the proposal dis-
tribution g (X, Xj Y;, Yj).

The proposed Pop-MCMC algorithm is summarized in
Algorithm 1.

4 Experimental Results

We have implemented the proposed algorithm on a 2.8 GHz
Pentium IV PC platform. In this section, we evaluate the
performance of the proposed algorithm by comparing with
other conventional methods such as SWC-2, SA, BP, and
Graph cuts. In addition, we illustrate the effects of each
move, temperature parameter, and the number of chains. We
tested the proposed algorithm on several benchmark images
in the Middlebury datasets (http://vision.middlebury.edu/
stereo). Figure 6 shows the reference images and the ground
truth maps of the test images. We used the segment-based
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Fig. 5 An example of crossover
move

i th chain

n th sample

n+1 th sample

Vo

Jj th chain

Algorithm 1 Proposed Pop-MCMC algorithm

(Initialize)

Initialize the population Xi.xy by Winner-Takes-All manner with data cost.

Set the temperatures 71 < Tr < --- < Ty.
repeat
if U ~ [0, 1] < Q;, then
fori =1to N do
(Mutation)
Select a random node v in ith chain.
Draw a cluster from a node v with SWC-2.

Propose a new label for the cluster and determine whether accept it or not with Metropolis-Hastings rule.

end for
else
fori=1tw [£]do
(Crossover)
Select two random chains and a random node v.
Draw a cluster from node v with modified SWC-2.

Determine whether swap the cluster or not with Metropolis-Hastings rule.

end for
end if
fori=N—1to1do
(Exchange)

Perform the exchange move onto ith and i + 1th chains with Metropolis-Hastings rule.

end for
until The algorithm converges.

energy model in (12) for the test. Pop-MCMC, SWC-2, and
SA methods were repeated ten times on each test stereo im-
age pair since they are stochastic methods, and the averages
and standard deviations of the resulting energies were com-
pared.

We fixed the parameter values of Pop-MCMC for all the
test sets. Empirically, the temperatures were set to be de-
creasing linearly in the range of predefined maximum and

minimum temperature values. The maximum and minimum
temperatures were set to 1.0 and 0.0001, respectively, and
the number of chains was set to five. Q,, was set to be 0.25.
For the edge probability of the ith chain, we set K; = 3i 4 1.
This helped the chromosomes not to correlate with each
other.

Figure 7 presents the comparison of the energy plots
against running time in second for Pop-MCMC, SWC-2,
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(e) (f)

(h)

Fig. 6 Test stereo images: (a)—(d) reference images, (e)—(h) ground truth disparity maps. (a, e) Tsukuba, (b, f) Venus, (c, g) Teddy, and (d, h)

Cones

SA, BP, and Graph cut methods («-expansion move and «-
B-swap move). The same energy model was applied to each
method. For the implementation of SWC-2, we followed the
work of Barbu and Zhu (2004, 2005), and for Graph cuts,
we used the source code from (http://vision.middlebury.edu/
MRF). a-expansion move method showed the best perfor-
mance in all the tests. Although the attained energy val-
ues of Pop-MCMC are slightly higher than those of two
graph cut algorithms, since the differences are very small,
the proposed algorithm is comparable to them. And note
that in contrast to the graph cut algorithms that can be
applied only to submodular functions with pairwise pri-
ors, Pop-MCMC can be applied to wider class of ener-
gies including higher-order MRFs and highly complicated
MRFs. Moreover, the convergence rate of Pop-MCMC can
be substantially speeded up by using parallel implementa-
tion. Therefore Pop-MCMC can be a good alternative to
a-expansion and «-f-swap move methods. Note also that
Pop-MCMC algorithm reached much lower energy states
than SA and SWC-2 on all the cases except Tsukuba. And,
it even showed better performance than BP for all the test
images. On the Tsukuba images, each method obtained rel-
atively good result since the dimension of the solution space
is low and thus the energy model is relatively simple. Note
that on all test images, the convergence rates of Pop-MCMC
are much faster and its standard deviations are consistently
smaller than those of SA and SWC-2. From these results
we can argue that conventional sampling-based methods like
SA and SWC-2 are easily trapped at local minima, while
Pop-MCMC is more likely to approach the global minimum
due to the global moves in Pop-MCMC, such as exchange
and crossover moves.

@ Springer

The disparity error rates of the Pop-MCMC were com-
pared with those of other algorithms and shown in Table 1,
and the resulting disparity maps of the proposed algorithm
are shown in Fig. 8. Note that there are some limitations
of the segment-based energy model. When real world ob-
jects are piecewise planar, the results are quite good. How-
ever, for the cases of Teddy and Cones that include objects
with curved surfaces, the performance seems not satisfac-
tory. And also, for a fronto-parallel plane, a non-segment
based energy model can be superior to the segment-based
energy model due to the smaller number of labels. In addi-
tion, since occlusion or visibility was not considered in our
stereo model, the error rates at the vicinity of discontinuity
were relatively large.

Figures 9 and 10 report the contribution of each move
in Pop-MCMC. Figure 9 shows the statistics of each move
while Pop-MCMC is running on the Venus images. We
counted the number of accepted moves every ten seconds.
As shown in the graphs, the mutation move occurred most
frequently. In the beginning, all the three moves frequently
occurred but as time went on, they tended to decrease
since they were approaching the optimum. The exchange
move occasionally occurred when higher-temperature chro-
mosomes had lower energy states than those of lower-
temperature chromosomes. Figure 10 compares the energy
convergence rates for different combinations of moves. We
illustrated the energy curves and the boxplots of the final
state energies. We performed the experiment on the Venus
images. The exchange move contributed larger amount than
the crossover move. Obviously, when we combined all the
three moves, they together helped each other to achieve fast
convergence. Boxplots of the final state energies show not
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Fig. 7 Performance (energy vs. running time) comparison of Pop-MCMC, SA, SWC-2, a-expansion, a-B-swap, and BP on (a) Tsukuba, (b)
Venus, (¢) Teddy, and (d) Cones. Pop-MCMC obtains lower energy results than other methods except on Tsukuba

only that the three moves together could reach lower en-
ergy state, but also that they decreased the standard devi-
ation, and in turn made the algorithm quite stable. It took
about 190 seconds to minimize the energy to be 100,000 us-
ing all moves. However, if one of the moves was missing,
it became much slower. For example, without the crossover
move, it took about 440 seconds, and without the exchange
move, it could not reach that state until 500 seconds.
Figures 11 and 12 exhibit the performance for differing
parameters. Both experiments were carried on the Venus
image. Figure 11 shows the energy convergence plots ac-
cording to the variation of the max-temperature. The min-
temperature was set to 0.0001. We observed that if the max-
temperature was too low, it quickly moved to the nearest
minimum but easily got stuck in local minima. While if it
was too high, the algorithm was rarely trapped in local min-

ima but the convergence speed became too slow. Figure 12
shows the energy convergence plots by varying the number
of chains. If the population size was large, it helped each
other to reach the global minimum by exchanging informa-
tion. However, a large size of population usually increases
redundancy in the algorithm. We found empirically that for
our segment-based stereo energy model, the optimal max-
temperature was 1.0 and the optimal number of chains was
five.

5 Conclusion
In this paper, we proposed a new stereo matching algo-

rithm based on Pop-MCMC. We showed that the pro-
posed sampling-based Pop-MCMC was a good optimizer
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Table 1 The error rates for each test image (http://vision.middlebury.edu/stereo). For the sampling-based methods, we denote the average and
standard deviation for ten trials. nonocc, all, and disc represent the error rate within non-occluded region, the whole image, and the vicinity of

discontinuity, respectively

Method Tsukuba Venus Teddy Cones
nonocc  all disc nonocc  all disc nonocc  all disc nonocc  all disc
Pop-MCMC  3.35 3.88 10.3 0.22 0.35 2.89 12.0 17.9 21.7 133 19.2 23.7
(£0.42) (£042) (£0.92) (£0.01) (£0.02) (£0.17) (£0.56) (£0.69) (£0.63) (£0.37) (£0.54) (£0.57)
SwcC 3.69 428 104 0.9 1.1 5.57 11.6 17.8 222 13.5 20.3 23.4
(£1.24) (£1.23) (£1.21) (£0.27) (£0.26) (£0.11) (£0.72) (£0.86) (£0.99) (£0.72) (£0.97) (£0.76)
SA 35 4.09 9.58 0.94 1.34 7.67 14.8 21.4 24.3 15.6 229 25.1
(£0.28) (£0.3)  (+£0.48) (£0.16) (£0.21) (£0.78) (£0.61) (£0.59) (£0.79) (£0.69) (£0.78) (£0.43)
BP 3.12 3.76 10.5 0.21 0.34 2.81 10.5 16.5 20.4 12.9 19.2 233
a-expansion  4.12 4.73 12.2 0.21 0.34 2.81 10.9 124 19.1 12.5 18.6 23.1
a-B-swap 2.56 3.09 9.15 0.21 0.34 2.81 10.5 12.0 19.7 13.0 19.0 23.6

Fig. 8 Results of the proposed
algorithm: the disparity maps of
(a) Tsukuba, (b) Venus,

(¢) Teddy, and (d) Cones

(c)

(d)

for stereo problem. Pop-MCMC uses multiple chains in
parallel, and establishes faster mixing rate by exchanging
information between chromosomes. In this work, we de-
signed new effective 2-D mutation and crossover moves for
stereo matching based on cluster sampling technique. Con-
sequently, it is shown that the proposed algorithm provides
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much faster convergence rate than conventional sampling-
based methods including SA and SWC, and gives lower en-
ergy states than BP. We also investigated the contribution of
each move. Combining all the three moves together made
the algorithm more stable. In addition, we analyzed the ef-
fect of parameters such as temperature and the number of
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Fig. 9 The statistics of each 100
move while running the
algorithm on the Venus images.
Initially, all the three moves are
quite active, and then tend to
decrease as time goes on. While
mutation and crossover moves
consistently occur, exchange
move occurs occasionally
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Fig. 10 The performance of the Pop-MCMC for different combinations of moves: (a) Energy curves, (b) boxplots of the final states
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Fig. 11 The performance of the Pop-MCMC for different max temperature values: (a) Energy curves, (b) boxplots of the final states
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Fig. 12 The performance of the Pop-MCMC for different number of chains: (a) Energy curves, (b) boxplots of the final states

chains, and found the optimal parameters for our problem.
We have a plan to apply and analyze the performance of the
proposed method to more sophisticated stereo energy mod-
els including occlusion handling and visibility terms as well
as the segmentation problem.
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