Skip to main content

On the Critical Point of Gradient Vector Flow Snake

  • Conference paper
Computer Vision – ACCV 2007 (ACCV 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4844))

Included in the following conference series:

Abstract

In this paper, the so-called critical point problem of Gradient vector flow (GVF) snake is studied in two respects: influencing factors and detection of the critical points. One influencing factor that particular attention should be paid to is the iteration number in the diffusion process, too large amount of diffusion would flood the object boundaries while too small amount would preserve excessive noise. Here, the optimal iteration number is chosen by minimizing the correlation between the signal and noise in the filtered vector field. On the other hand, we single out all the critical points by quantizing the GVF vector field. After the critical points are singled out, the initial contour can be located properly to avoid the nuisance arising from critical points. Several experiments are also presented to demonstrate the effectiveness of the proposed strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kass, M., Witkin, A., Terzopoulos, D.: Snake: active contour models. Int’l J. Computer Vision 1(4), 321–331 (1988)

    Article  Google Scholar 

  2. Han, X., Xu, C., Prince, J.: A topology preserving level set method for geometric deformable models. IEEE TPAMI 25(6), 755–768 (2003)

    Google Scholar 

  3. Xu, C., Prince, J.: Snakes, Shapes and gradient vector flow. IEEE TIP 7(3), 359–369 (1998)

    MATH  MathSciNet  Google Scholar 

  4. Xu, C., Prince, J.: Prince, Generalized gradient vector flow external forces for active contours. Signal Processing 71(2), 131–139 (1998)

    Article  MATH  Google Scholar 

  5. Tang, J., Acton, S.T.: Vessel boundary tracking for intravital microscopy via multiscale gradient vector flow snakes. IEEE TBME 51(2), 316–324 (2004)

    Google Scholar 

  6. Paragios, N., Mellina-Gottardo, O., Ramesh, V.: Gradient Vector Flow fast geometric active contours. IEEE TPAMI 26(3), 402–407 (2004)

    Google Scholar 

  7. Chuang, C., Lie, W.: A downstream algorithm based on extended gradient vector flow for object segmentation. IEEE TIP 13(10), 1379–1392 (2004)

    Google Scholar 

  8. Cheng, J., Foo, S.W.: Dynamic Directional Gradient Vector Flow for Snakes. IEEE TIP 15(6), 1653–1671 (2006)

    Google Scholar 

  9. Yu, H., Chua, C.-S.: GVF-Based Anisotropic Diffusion Models. IEEE TIP 15(6), 1517–1524 (2006)

    Google Scholar 

  10. Ray, N., Acton, S.T., Ley, K.: Tracking leukocytes in vivo with shape and size constrained active contours. IEEE TMI 21(10), 1222–1235 (2002)

    Google Scholar 

  11. Ray, N., Acton, S.T., Altes, T., et al.: Merging parametric active contours within homogeneous image regions for MRI-based lung segmentation. IEEE TMI 22(2), 189–199 (2003)

    Google Scholar 

  12. Ray, N., Acton, S.T.: Motion gradient vector flow: an external force for tracking rolling leukocytes with shape and size constrained active contours. IEEE TMI 23(12), 1466–1478 (2004)

    Google Scholar 

  13. Ray, N., Acton, S.T.: Acton, Data acceptance for automated leukocyte tracking through segmentation of spatiotemporal images. IEEE TBME 52(10), 1702–1712 (2005)

    Google Scholar 

  14. Li, C., Liu, J., Fox, M.D.: Segmentation of external force field for automatic initialization and splitting of snakes. Pattern Recognition 38, 1947–1960 (2005)

    Article  Google Scholar 

  15. Chen, D., Farag, A.A.: Detecting Critical Points of Skeletons Using Triangle Decomposition of Gradient Vector Flow Field. In: GVIP 2005 Conference, CICC, Cairo, Egypt, December 19-21 (2002)

    Google Scholar 

  16. He, Y., Luo, Y., Hu, D.: Semi-automatic initialization of gradient vector flow snakes. Journal of Electronic Imaging 15(4), 43006–43008 (2006)

    Article  Google Scholar 

  17. Ford, R M.: Critical point detection in fluid flow images using dynamical system properties. Pattern Recognition 30(12), 1991–2000 (1997)

    Article  Google Scholar 

  18. Wang, Y.: Investigation on deformable models with application to cardiac MR images analysis, PhD dissertation, Nanjing Univ. Sci. Tech., Nanjing, PRC (June 2004)

    Google Scholar 

  19. Mrázek, P., Navara, M.: Selection of optimal stopping time for nonlinear diffusion filtering. Int. J. Comput Vis. 52(2/3), 189–203 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Yasushi Yagi Sing Bing Kang In So Kweon Hongbin Zha

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, Y., Liang, J., Jia, Y. (2007). On the Critical Point of Gradient Vector Flow Snake. In: Yagi, Y., Kang, S.B., Kweon, I.S., Zha, H. (eds) Computer Vision – ACCV 2007. ACCV 2007. Lecture Notes in Computer Science, vol 4844. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76390-1_74

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76390-1_74

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76389-5

  • Online ISBN: 978-3-540-76390-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics