Skip to main content

Stability of the Multiple-Access Channel Under Maximum Broadcast Loads

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4838))

Abstract

We investigate deterministic broadcasting on multiple-access channels in the framework of adversarial queuing. A protocol is stable when the number of packets stays bounded, and it is fair when each packet is eventually broadcast. We address the question if stability and fairness can be achieved against the maximum injection rate of one packet per round. We study three natural classes of protocols: acknowledgment based, full sensing and fully adaptive. We show that no adaptive protocol can be both stable and fair for the system of at least two stations against leaky-bucket adversaries, while this is achievable against window adversaries. We study in detail small systems of exactly two and three stations attached to the channel. For two stations, we show that bounded latency can be achieved by a full-sensing protocol, while there is no stable acknowledgment-based protocol. For three stations, we show that bounded latency can be achieved by an adaptive protocol, while there is no stable full-sensing protocol. We develop an adaptive protocol that is stable for any number of stations against leaky-bucket adversaries. The protocol has \({\mathcal O}(n^2)\) packets queued simultaneously, which is proved to be best possible as an upper bound. We show that protocols that do not use queue sizes at stations in an effective way or are greedy by having stations with nonempty queues withhold the channel cannot be stable in systems of at least four stations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramson, N.: Development of the Alohanet. IEEE Transactions on Information Theory 31, 119–123 (1985)

    Article  MATH  Google Scholar 

  2. Aiello, W., Kushilevitz, E., Ostrovsky, R., Rosén, A.: Adaptive packet routing for bursty adersarial traffic. Journal of Computer and System Sciences 60, 482–509 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  3. Alvarez, C., Blesa, M., Serna, M.: A characterization of universal stability in the adversarial queuing model. SIAM Journal on Computing 34, 41–66 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Andrews, M., Awerbuch, B., Fernández, A., Leighton, T., Liu, Z., Kleinberg, J.: Universal-stability results and performance bounds for greedy contention-resolution protocols. Journal of the ACM 48, 39–69 (2001)

    Article  MathSciNet  Google Scholar 

  5. Bender, M.A., Farach-Colton, M., He, S., Kuszmaul, B.C., Leiserson, C.E.: Adversarial contention resolution for simple channels. In: SPAA. Proceedings, 17th ACM Symposium on Parallel Algorithms, pp. 325–332 (2005)

    Google Scholar 

  6. Bhattacharjee, R., Goel, A., Lotker, Z.: Instability of FIFO at arbitrary low rates in the adversarial queuing model. SIAM Journal on Computing 34, 318–332 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. Borodin, A., Kleinberg, J.M., Raghavan, P., Sudan, M., Williamson, D.P.: Adversarial queuing theory. Journal of the ACM 48, 13–38 (2001)

    Article  MathSciNet  Google Scholar 

  8. Chlebus, B.S., Kowalski, D.R., Rokicki, M.A.: Adversarial queuing on the multiple-access channel. In: PODC. Proceedings, 25th ACM Symposium on Principles of Distributed Computing, pp. 92–101 (2006)

    Google Scholar 

  9. Gallager, R.G.: A perspective on multiaccess channels. IEEE Transactions on Information Theory 31, 124–142 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gamarnik, D.: Stability of adaptive and nonadaptive packet routing policies in adversarial queueing networks. SIAM Journal on Computing 32, 371–385 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Goldberg, L.A., Jerrum, M., Kannan, S., Paterson, M.: A bound on the capacity of backoff and acknowledgement-based protocols. SIAM Journal on Computing 33, 313–331 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Goldberg, L.A., MacKenzie, P., Paterson, M., Srinivasan, A.: Contention resolution with constant expected delay. Journal of the ACM 47, 1048–1096 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hastad, J., Leighton, T., Rogoff, B.: Analysis of backoff protocols for multiple access channels. SIAM Journal on Computing 25, 740–774 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  14. Koukopoulos, D., Mavronicolas, M., Nikoletseas, S.E., Spirakis, P.G.: The impact of network structure on the stability of greedy protocols. Theory of Computing Systems 38, 425–460 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  15. Lotker, Z., Patt-Shamir, B., Rosén, A.: New stability results for adversarial queuing. SIAM Journal on Computing 33, 286–303 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, San Francisco (1996)

    MATH  Google Scholar 

  17. Metcalfe, R.M., Boggs, D.R.: Ethernet: distributed packet switching for local computer networks. Communications of the ACM 19, 395–404 (1976)

    Article  Google Scholar 

  18. Raghavan, P., Upfal, E.: Stochastic contention resolution with short delays. SIAM Journal on Computing 28, 709–719 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  19. Rosén, A.: A note on models for non-probabilistic analysis of packet switching networks. Information Processing Letters 84, 237–240 (2002)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Toshimitsu Masuzawa Sébastien Tixeuil

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chlebus, B.S., Kowalski, D.R., Rokicki, M.A. (2007). Stability of the Multiple-Access Channel Under Maximum Broadcast Loads. In: Masuzawa, T., Tixeuil, S. (eds) Stabilization, Safety, and Security of Distributed Systems. SSS 2007. Lecture Notes in Computer Science, vol 4838. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76627-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76627-8_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76626-1

  • Online ISBN: 978-3-540-76627-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics