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Abstract. We introduce a new abstract system, called the truth system.
In the truth system, a process deduces a true value, with high proba-
bility, from an incoming stream of both true and false values, where the
probability that a value in the incoming stream is true is at least 0.6.
At each instant, the receiving process maintains at most one candidate
of the true value, and eventually the process reaches the conclusion that
its candidate value equals, with high probability, the true value. In this
paper, we present three versions of the truth system, discuss their prop-
erties, and show how to choose their parameters so that their probability
of error is small, i.e. about 10−6. The third version, called the stable sys-
tem, is the most valuable. We employ the stable system as a building
block in a stabilizing unidirectional token ring of n processes. When n is
small, i.e. about 100 or less, the stable system can be considered error-
free and we argue that the resulting token ring is stabilizing with high
probability. We simulate the token ring, when n is at most 100, and ob-
serve that the ring always stabilizes even though each process lies about
its state 40% of the time.

Keywords: Distributed Systems, Network Protocols, Self-Stabilization.

1 Introduction

Faults, that are often assumed to plague the communications between different
processes in a distributed system, can be distinguished into natural faults and
malicious faults [7]. On one hand, natural communication faults are assumed to
occur independently of the underlying computation of the distributed system,
and are usually assumed to be random. On the other hand, malicious communi-
cation faults are assumed to occur in the worst possible times for the underlying
computation of the distributed system, and are usually assumed to be delib-
erate and based on complete knowledge (by the adversary) of the underlying
computation.

Distributed systems that tolerate natural communication faults are elegant,
inexpensive, and practical to implement and use. However, such systems cannot
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tolerate malicious communication faults if they happen to occur. By contrast,
distributed systems that tolerate malicious communication faults are complex,
expensive, and sometimes impossible to design.

Well-known examples of natural communication faults and how to tolerate
them are as follows.

– Loss : Some sent values from one process to another are lost. These faults can
be tolerated by making the sending process send the same value repeatedly
until the sending process receives an “acknowledgement” from the receiving
process [9].

– Delay: Some sent values from one process to another are delayed for an
unbounded time period before these values are received by their intended
receivers. Sometimes, these faults cannot be tolerated as discussed in [6].
This realization has led researchers to adopt weaker model of faults, for
example imperfect fault detectors, that can be tolerated [3] and [16].

– Corruption: Some sent values are corrupted randomly after they are sent by
one process and before they are received by another process. These faults
can be detected by adding a checksum to each sent value. In this case, any
random corruption of a sent value and its checksum can be detected, with
high probability, by the receiving process [14].

– Topology Change: The topology of the distributed system changes over time,
for example due to the mobility of the processes within the system. Methods
for tolerating these “faults” are discussed in [15].

– Anonymity: Each sent value does not include the identity of the sending
process and is received by an arbitrary process in the distributed system.
Methods for tolerating these “faults” are discussed in [1].

– Modification: A sent value from one process to another is modified before it is
received as follows. The value is replaced by any wrong (possibly malicious)
value in such a way that the receiving process cannot tell, by examining
the received value, that the received value is in fact a false value different
from the true value that was sent. For example, if a checksum is attached
to the sent value, then a modification fault causes both the value and its
checksum to be replaced as follows. The true value is replaced by any false
(possibly malicious) value, and the checksum is replaced by the checksum of
the false value and so the receiving process cannot tell that the true value
and its checksum are replaced by a false value and its checksum. Methods
for tolerating modification faults in the context of distributed voting are
presented in [13] and [11].

Well-known examples of malicious communication faults and how to tolerate
them are discussed in [10] and [12].

In this paper, we present a new method, which we call the truth system, for
tolerating modification faults. The truth system is different from the distributed
voting systems, discussed in [13] and [11], in several ways. Most notably, the two
systems have different objectives. The objective of the truth system is to deduce,
with a predefined high probability, the true value from an unbounded stream of
both true and false values. In particular, the parameters of the truth system can
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be set such that the probability of the deduced value being wrong is very small,
say 10−6. By contrast, the objective of a distributed voting system is to deduce
the value that has the highest probability of being true from a bounded stream
of both true and false values, but the probability of the deduced value being
wrong can be as high as 0.5.

To save space, we omit the proofs of all theorems from this paper. An inter-
ested reader can get these proofs from the full version of the paper [8].

2 Three Versions of the Truth System

The goal of this paper is to introduce a new abstract system, called the truth
system, discuss its properties, and show that this system can tolerate, with high
probability, modification faults. In the truth system, a process deduces a true
value from a mixed stream of both true and false values. The probability, that
a value in the mixed stream is true (or false), is at least 0.6 (or at most 0.4, re-
spectively). The process correctly deduces the true value with a high probability,
that is around (1-10−6).

It is important to explain why we chose the probability, of a value in the
mixed stream being true, to be at least 0.6. First, if we chose this probability to
be at most 0.5, then no system can deduce the true value with any probability
greater than 0. Second, if we chose this probability to be higher than 0.5 but
less than 0.6, then as shown at the end of Section 3 the truth system may need
up to 1700 values in the input stream to deduce the true value. This is 10 times
the number of values needed in the input stream, to deduce the true value, when
the probability of a value in the mixed stream being true, is at least 0.6.

The truth system consists of two processes: source and monitor. Process source
has an integer state, and process monitor attempts to correctly deduce the integer
state of process source.

Periodically, process source sends an integer s to process monitor. With a
probability of at least 0.6, the sent s is the true value of the state of process
source, and with a probability of less than 0.4, the sent s is an arbitrary integer.
Process monitor receives the s integers, one by one, and maintains at most one
candidate for the state of process source. Eventually process monitor reaches the
conclusion that its maintained candidate for the state of process source equals,
with high probability, the true state of process source.

The state of process source can change over time, but we assume that this
change occurs at a slow rate. This is because if the state of source is changed at
a fast rate, the monitor process may never be able to catch up and deduce the
state of source. As shown at the end of Section 3, to ensure that the change rate
of the state of process source is slow, we assume that the state of source is not
changed until process source has sent out this state 170 or more times.

Our presentation of the truth system in this paper consists of three steps. In
each step, we present a version of the truth system and discuss its properties.
We then point out some problem with this version and so clear the way for the
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next version that is to be presented in the next step, and so on. The version
presented in the third (and last) step has no problems, as far as we can tell.

In the first step, we present a version of the truth system where the monitor
process terminates as soon as it concludes that its maintained candidate for the
state of process source equals, with high probability, the true state of process
source. The problem of this truth system is that the monitor process deduces ex-
actly one true state of process source, even if the state of process source is changed
many times afterwards. We refer to this truth system as the one-shot system.

In the second step, we modify the one-shot system to make the monitor pro-
cess continue to operate indefinitely, even after it concludes that its maintained
candidate for the state of process source equals, with high probability, the true
state of process source. We refer to this truth system as the continuing system.
The problem with the continuing system is that the conclusion reached by pro-
cess monitor (that its candidate for the state of process source equals, with high
probability, the true state of source) is not stable, but it can fluctuate wildly
over time, even when the true state of process source remains fixed for a long
time period.

In the third step, we modify the continuing system to ensure that, when the
true state of process source remains fixed for a long time period, the conclusion
reached by process monitor (that its candidate for the state of process source
equals, with high probability, the true state of source) remains stable over time.
We refer to this truth system as the stable system.

3 The One-Shot System

In this section, we present our first version of the truth system, called the one-
shot system. In the one-shot system, as soon as process monitor concludes, that
its maintained candidate for the state of process source equals, with high prob-
ability, the true state of process source, process monitor terminates.

Process source in the one-shot system is specified in Protocol 1. This process
has one action that it executes over and over, since the guard of the action is
true. During each execution of the action, process source sends an integer s to
process monitor. With probability p/100, the sent s is the value of input state,
and with probability (100-p)/100, the sent s can be any integer, where p is an
input of process source.

Input p can be regarded as the probability of process source telling the truth,
and input state can be regarded as the true state of process source. From the
received s integers, process monitor is expected to deduce the true value of input
state in process source. It is straightforward to show that if the value of p is in
the range 0..50, then process monitor can never deduce the true value of state.
At the end of Section 3, we argue that if the value of p is in the range 51..59,
then process monitor may need to receive up to 1700 s integers (instead of 170)
in order to deduce the true value of state with high probability. That is why we
specified the value of p to be in the range pmin..99, where pmin is a constant
whose value is in the range 60..99.
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Protocol 1. process source

const pmin : 60..99
input p : pmin..99

state : integer {state of source}
variable r : 0..99 {random number}

s : integer {sent state}
begin

true →
r := random
if r ≥ p then

s := any {assign malicious value}
else

s := state
end
send s to monitor

end

Both p and state are inputs to process source. Thus, their values can be
changed over time by an outside agent. As shown at the end of Section 3, we
assume that once the value of state is changed, the value of state remains fixed
until process source executes its action 170 or more times.

Process monitor in the one-shot system is specified in Protocol 2. Process
monitor has three variables: c, st and s. Variable c is a counter whose value is
in the range 0..cmax, where cmax is a constant of process monitor. Variable
st stores the latest candidate for the state of process source. Variable s stores
the latest received integer from process source. The value of counter c indicates
whether process monitor can conclude that the current value of st equals, with
high probability, the value of state in process source. Process monitor reaches
this conclusion when, and only when, the value of counter c is cmax.

Process monitor has only one action that is executed each time the process
receives an integer s from process source. When an integer s is received, process
monitor checks the value of its counter c. If c = 0, then variable st is assigned s
and counter c is assigned 1. If c > 0 and st is different from the received s, then
c is decreased by 1. If c > 0 and st equals the received s, then c is increased
by 1 (provided that c does not exceed its maximum value cmax ). Then process
monitor compares the values of c with cmax. If c = cmax, then process monitor
concludes that the current value of its variable st equals, with high probability,
the value of state in process source.

To complete the specification of process monitor, we need now to compute the
value of constant cmax in monitor. The value of cmax should be chosen such that
the probability of error of the one-shot system is kept small, say around 10−6.

The probability of error, denoted p(error), of the one-shot system is the prob-
ability that starting from its initial global state where c = 0, the system reaches
a global state where c = cmax and cs �= state.
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Protocol 2. process monitor of the one-shot system

const pmin : 60..99 {same as pmin in source}
cmax : integer

variable c : 0..cmax {counter, init. 0}
s : integer {received state}
cs : integer {candidate state}

begin
rcv s from source →

if c = 0 then
c := 1
cs := s

else if cs �= s then
c := c - 1

else
c := min(c+1, cmax)

end
if c = cmax then

{conclude: cs = state} terminate
end

end

In Theorem 1 below, we give a formula that describes the relationship between
pmin, cmax, and p(error) for the one-shot system. Our proof of this theorem
is based on two simplifying assumptions. First, we assume that the state of
process source does not change over time. This assumption is acceptable given
our understanding that the change rate of the state of process source is slow
anyway. Second, we assume that whenever process source sends an arbitrary
integer s to process monitor, process source always sends the same integer that
is different from the state of process source. This assumption represents the
worst case scenario that assigns p(error) its highest value. We adopt these two
assumptions in proving all the theorems in this paper. (Recall that the proofs of
all the theorems are in [8].)

Theorem 1 (pmin, cmax, and p(error) for the one-shot system)

p(error) =
(1 − pmin)cmax

(1 − pmin)cmax + (pmin)cmax
. ��

For many applications, it is reasonable to expect that p(error) should be around
10−6. In this case, we can use the formula in Theorem 1 to produce the relation-
ship between pmin and cmax, for the one-shot system, shown in Table 1.

An execution step of the one-shot system consists of two parts. First, process
source executes its (sending) action, then process monitor executes its (receiving)
action.

If pmin in this system is 0.6 and the value of variable cs in process monitor
is the correct state of process source, then in each step of the system, counter c
in process monitor is incremented by 1 with probability 0.6, and is decremented
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Table 1.

pmin cmax

0.6 34
0.7 16
0.8 10
0.9 6

by 1 with probability 0.4. In other words, each step of the system increments
counter c by 0.2 on the average. Thus, the system needs to execute cmax/0.2
steps on the average before counter c reaches its maximum value cmax and the
system terminates. Because cmax in this system is 34 from Table 1, the system
needs to execute 170 steps before it terminates.

If we choose pmin in this system to be 0.51, and assume that cmax remains 34
(rather than being increased in value as it should), and follow the same analysis
in the previous paragraph, we conclude that the system will execute on average
(34/0.02)= 1700 steps before it terminates. In other words, choosing pmin to be
in the range from 0.51 to 0.59 can lead to (sometimes substantial) increase in
the number of steps to be executed. This should explain our choice of pmin to
be at least 0.6.

The above analysis for computing the average number of steps that need to be
executed by the one-shot system before it terminates is based on the assumption
that the state of process source does not change during execution. This is an
important assumption; for instance, if the state is changed at least once every 5
execution steps, the one-shot system may never terminate. This should explain
our above requirement that the state of process source remains fixed for the
duration of 170 steps.

4 The Continuing System

The problem of the one-shot system is that process monitor terminates as soon
as it concludes that the value of its cs variable equals, with high probability,
the value of input state in process source. Thus, monitor cannot observe any
change in the state of process source. To remedy this problem, we modify process
monitor such that the process continues to execute indefinitely. This modification
is achieved by replacing statement terminate by a statement skip in the action
of process monitor. We refer to the resulting system as the continuing system.

Because the continuing system is nonterminating, the initial state of the sys-
tem, where c = 0, is irrelevant. Rather, we define the probability of error p(error)
of the continuing system as the steady state probability that the system is in
a global state where c = cmax and cs �= state. The following theorem gives a
formula that describes the relationship between pmin, cmax, and p(error) for
the continuing system.
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Theorem 2 (pmin, cmax, and p(error) for the continuing system)

p(error) =
(1 − pmin)2×cmax

(1 − pmin)2×cmax + (pmin)2×cmax
. ��

Assuming that p(error) is around 10−6, we can use the formula in Theorem 2
to produce the relationship between pmin and cmax, for the continuing system,
shown in Table 2. Notice that the cmax values in the one-shot system, shown in
Table 1, are twice the cmax values in the continuing system, shown in Table 2.

The continuing system has an interesting problem. Even if the state of process
source remains fixed for a long time period T, the value of counter c in process
monitor can fluctuate during period T between c < cmax (when process monitor
cannot conclude that cs = state) and c = cmax (when process monitor can
conclude that cs = state). This observation suggests the following definition.

The probability of no conclusion, denoted p(no-conclusion), of the continuous
system is the steady state probability that the system is in a global state where
c < cmax. The following theorem gives a formula for computing p(no-conclusion)
as a function of pmin and cmax.

Theorem 3 (p(no-conclusion) for the continuing system)

p(no-conclusion) =

∑2×cmax−1
i=1 (1−pmin

pmin )i

∑2×cmax
j=0 (1−pmin

pmin )j
. ��

Using the formula in Theorem 3 and the values of pmin and cmax in Table 2,
we can compute the values of p(no-conclusion), for the continuing system, as
shown in Table 2.

From the first row in Table 2, if pmin and cmax for the continuing system
are 0.6 and 17 respectively, then p(no-conclusion) for this system is 0.667. This
means that even if the state of process source remains fixed for a long time
period T, process monitor cannot conclude that cs = state for 66.7% of the
time during period T. Clearly, this is not acceptable and a modification of the
continuing system is in order. In the next section, we describe how to modify
the continuing system to remedy this problem. We refer to the modified system
as the stable system.

Table 2.

pmin cmax p(no-conclusion)
0.6 17 0.667
0.7 8 0.429
0.8 5 0.250
0.9 3 0.111
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5 The Stable System

The stable system is obtained from the continuing system, discussed in the pre-
vious section, by making the following two modifications to process monitor (in
the continuing system). First, a new variable named ss is added to process mon-
itor. Variable ss stores the latest stable estimate (by process monitor) of the
state of process source. Second, the last if -statement in the action of process
monitor is modified to become as shown in Figure 1. (The first if -statement in
the action of process monitor remains unchanged.)

if c = cmax then
{conclude: cs = state} ss := cs

end

Fig. 1.

The probability of error p(error) of the stable system is defined as the steady
state probability that the system is in a global state where ss �= state. The
following theorem describes the relationship between pmin, cmax, and p(error)
for the stable system.

Theorem 4 (pmin, cmax, and p(error) for the stable system). Given
that p(error) for the stable system is around 10−6, we have the following rela-
tionship between pmin and cmax for the stable system.

A step of the stable system consists of two parts. First, process source executes its
action once. Second, process monitor executes its action once. The convergence
span of the stable system is the average number of steps that needs to be executed
by the stable system in order to change the global state of the system from one
where c = cmax and ss �= state to one where c = cmax and ss = state. The
following theorem gives an approximate formula for computing the convergence
span of the stable system.

Theorem 5 (convergence span of the stable system).

convergence span ≈ 2 × cmax

2 × pmin − 1
. ��

Table 3.

pmin cmax

0.6 20
0.7 9
0.8 5
0.9 4

��
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Table 4.

pmin cmax convergence span

0.6 20 200
0.7 9 45
0.8 5 17
0.9 4 10

Using the formula in this theorem and the values of pmin and cmax from
Table 3, we compute the convergence span of the stable system as shown in
Table 4.

6 A Stabilizing Token Ring

In this section, we discuss how to employ the stable system, presented in the
previous section, as a building block in constructing a stabilizing unidirectional
token ring of up to 100 processes, where each process can lie about its state
at most 40% of the time. The use of the stable system as a building block in
constructing a stabilizing token ring, (where each process can lie about its state
at most 40% of the time) can be roughly viewed as an example of the cross-over
composition proposed in [2].

We start our discussion by presenting a unidirectional token ring, in Proto-
col 3, where processes do not lie about their states. Note that this ring is similar
to Dijkstra’s token ring in [4] with two exceptions. First, the execution of this ring
is synchronous, whereas the execution of Dijkstra’s token ring is asynchronous.
Second, this ring uses message passing primitives whereas Dijkstra’s token ring
uses shared memory primitives.

Protocol 3. process p[i : 0..n-1] in the original token ring

variable s : 0..n-1 {sent/received state}
ss : 0..n-1 {state}

begin
true →

s := ss
send s to p[i+1 mod n]

|| rcv s from p[i-1 mod n] →
if i > 0 then

ss := s
else if ss = s then

ss := ss + 1 mod n
end

end
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In this ring, each process p[i] has two variables, s and ss, where variable s
stores the latest state that p[i] has sent or received, and variable ss stores the
state of p[i]. Each p[i] also has two actions: a sending action where p[i] sends its
own state to p[i+1 mod n], and a receiving action where p[i] receives the state
of p[i-1 mod n] then modifies its own state based on the received state.

A global state of this ring is defined by a value for each ss variable in the ring.
(This means that the s variables are not considered part of the global state of
the ring.)

A transition of this ring is a pair (S, S’) of global states of the ring such that if
the ring is in a global state S and a “step” is executed, then the ring becomes in
a global state S’. Executing a step in the ring consists of two parts. First, each
process in the ring executes its sending action, then each process in the ring
executes its receiving action. Thus, each process in the ring ends up executing
both its (sending and receiving) actions in a step.

A computation of this ring is an infinite sequence S.0, S.1, ... of global states
of the ring such that each pair (S.i, S.(i+1)) of consecutive states in the sequence
is a transition of the ring.

It is straightforward to show that each computation of this ring reaches a
legitimate global state where the values of all the ss variables are equal after at
most 2n transitions, and so this ring is stabilizing.

Clearly, stabilization of the ring in Protocol 3 depends heavily on the fact
that the ring processes do not lie when they send their states to other processes.
To allow the ring processes to lie about their states, 40% of the time, and still
retain the stabilization of the ring, we employ the stable system, discussed in the
previous section, in constructing the new ring. Specifically, each process p[i] in
the ring is modified to act as a source when p[i] sends a state s to process p[i+1
mod n], and act as a monitor when p[i] receives a state s from process p[i-1 mod
n]. The new ring is shown in Protocol 4.

A global state of the new ring is defined by a value for each ss variable in
the ring. (This means that none of the other variables, namely r, c, s, and cs, is
considered part of the global state of the new ring.)

A transition of the new ring is a pair (S, S’) of the global states of the new
ring such that if the ring is in a global state S and a “step” is executed, then the
ring becomes in a global state S’. Executing a step in the new ring consists of
two parts. First, each process in the ring executes its sending (or source) action.
Second, each process in the ring executes its receiving (or monitor) action.

A computation of the new ring is an infinite sequence S.0, S.1, ... of global
states of the ring such that each pair (S.i, S.(i+1)) of consecutive states in the
sequence is a transition of the new ring.

The new ring can be viewed as consisting of n stable systems, and each ss
variable in the ring can be viewed as belonging to the monitor of one of those
stable systems. For the new ring to stabilize, if it is to stabilize, each ss variable
needs to be assigned around 2×n new values. From Table 4 and given that pmin
is 0.6, a stable system needs to execute on average 200 steps in order to assign
a new value to its ss variable. Therefore, for the new ring to stabilize, if it is to
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Protocol 4. process p[i : 0..n-1] in the new token ring

const pmin : 60..99 {pmin = 60}
cmax : integer {cmax = 20}

variable r : 0..99 {random number}
c : 0..cmax {counter, init. 0}
s : 0..n-1 {sent/received state}
cs : 0..n-1 {candidate state}
ss : 0..n-1 {stable state}

begin
true →

r := random
if r ≥ pmin then

s := any
else

s := ss
end
send s to p[i+1 mod n]

|| rcv s from p[i-1 mod n] →
if c = 0 then

c := 1
cs := s

else if cs �= s then
c := c - 1

else
c := min(c+1, cmax)

end
if c = cmax then

if i > 0 then
ss := cs

else if ss = cs then
ss := ss + 1 mod n

end
end

end

stabilize, each of the n stable systems in the ring needs to execute around 400×n
steps. By choosing n to be relatively small, say 100, each stable system in the
ring needs to execute a small number of steps, around 40000 steps in order for
the ring to stabilize. Because the probability of error of a stable system is very
small, around 10−6, it is reasonable to assume that whenever any ss variable is
assigned a value, in the first 40000 transitions of a computation, it is assigned a
correct value. We refer to this assumption as the no-use-lying assumption.

Now consider a computation S.0, ..., S.40000, ... of the new ring. Under the
no-use-lying assumption, whenever an ss variable is assigned a value in the first
40000 transitions of this computation, it is assigned a correct value. Therefore,
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the global state S.40000 in this computation is a legitimate state, with high
probability. Therefore, the new ring is stabilizing, with high probability.

The probabilistic stabilization of the new ring depends heavily on the validity
of the no-use-lying assumption. To check the validity of this assumption, we
have run 100 simulations of the new ring. For each simulation, we chose n (the
number of processes in the ring) to be 100, the initial global state of the ring to be
random, and the wrong state that each process sends in place of its correct state
to be 0. We observed that each simulation has stabilized to a legitimate global
state, after no more than 32440 transitions. These simulation results justify our
adoption of the no-use-lying assumption.

A probabilistic token ring is proposed in [5]. This ring is significantly different
from our new token ring in Protocol 4 in the following sense. In the probabilistic
ring in [5], when p[i] receives a (possibly wrong) value s from p[i-1 mod n], p[i]
uses the received s to update its own state. By contrast, in our new ring in
Protocol 4, when p[i] receives a (possibly wrong) value s from p[i-1 mod n], p[i]
first uses its counter c to check whether s is correct with high probability, and
only when p[i] is certain that s is correct with high probability, does p[i] use s
to update its own state.

7 Concluding Remarks

The truth system is a building block that can be employed in a distributed system
to ensure that the system performs its intended function, with high probability,
even if up to 40% of the sent values by each process in the system are completely
arbitrary. In this paper, we presented three versions of the truth system: the one-
shot system, the continuing system, and the stable system. We also compared
the properties of these three versions and concluded that the stable system is
superior to the other two. Finally we showed how to employ the stable system in
a unidirectional token ring so that the ring performs its intended function even
if up to 40% of the values sent by each process in the ring are arbitrary.

This paper suggests a number of interesting problems that merit further re-
search. First, are there interesting versions of the truth system other than those
discussed in this paper? Second, are there algorithms that take a distributed sys-
tem that performs a function f under the assumption of perfect communication
and produce a distributed system that employs a version of the truth system
as a building block and performs function f, with high probability, under the
assumption that up to 40% of the values sent by each process in the system are
arbitrary. Third, are there effective methods to compute the probability of error
and the convergence span for a distributed system where a version of the truth
system is employed as a building block?
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