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Abstract. In this paper, we propose a novel filter for feature selection.
Such filter relies on the estimation of the mutual information between
features and classes. We bypass the estimation of the probability den-
sity function with the aid of the entropic-graphs approximation of Rényi
entropy, and the subsequent approximation of the Shannon one. The
complexity of such bypassing process does not depend on the number of
dimensions but on the number of patterns/samples, and thus the curse
of dimensionality is circumvented. We show that it is then possible to
outperform a greedy algorithm based on the maximal relevance and min-
imal redundancy criterion. We successfully test our method both in the
contexts of image classification and microarray data classification.

1 Introduction

Dimensionality reduction of the raw input variable space is a fundamental step
in most pattern recognition tasks. Focusing on the most relevant information in
a potentially overwhelming amount of data is useful for a better understanding
of the data, for example in genomics [2][21][22]. A properly selected features set
significantly improves classification performance. Thus, the removal of the noisy,
irrelevant and redundant features is a challenging task.

There are two major approaches to dimensionality reduction: Feature Selec-
tion and Feature Transform. Whilst Feature Selection reduces the feature set
by discarding the features which are not useful for some purpose (generally for
classification), Feature Transform methods (also called feature extraction) build
a new feature space from the original variables.

The literature differentiates among three kinds of Feature Selection: Filter
methods [4], Wrapper methods [5], and On-line [6]. Filter Feature Selection does
not take into account the properties of the classifier (it relies on statistical tests
to the variables), while Wrapper Feature Selection tests different feature sets by
building the classifier. Finally, On-line Feature Selection incrementally adds new
features during the selection process.

Feature Selection is a combinatorial computational complexity problem. Al-
gorithms must be oriented to find suboptimal solutions in a feasible number
of iterations. Nevertheless, when there are thousands of features, Wrapper ap-
proaches become unfeasible. Among the Filter approaches, a fast way to evaluate
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individual features is given by their relevance to the classification, by maximiz-
ing the mutual information between each variable and the classification output.
As Guyon and Elisseeff state in [4], this is usually suboptimal for building a pre-
dictor, particularly if the variables are redundant. Conversely, a subset of useful
variables may exclude many redundant, but relevant, variables. To overcome this
limitation Peng et al.[7] minimize redundancy among the selected features set.
Still a problem remains in the fact that these criteria are based on individual
features, and this is due to the fact that estimating mutual information (and
entropy) in a continuous multi-dimensional feature space is a hard task.

In this work, we overcome the latter problem by using Entropic Spanning
Graphs to estimate Mutual Information [15]. The method’s complexity does not
depend on the number of dimensions, but on the number of samples. It allows us
to estimate mutual information and thus maximize dependency between combi-
nations of thousands of features and the class labels. We compare classification
results to another Filter Feature Selection approach and perform an experiment
on gene patterns with thousands of features.

This paper is structured as follows. In Section 2, the estimation of Mutual
Information (Subsection 2.1) and Entropy (Subsection 2.2) are detailed. Then in
Section 3, Feature Selection criteria and algorithms are explained and complex-
ity is discussed. Finally experimental results are presentend in Section 4, and
conclusions and future work are stated in Section 5.

2 Estimation of Mutual Information and Entropy

2.1 Mutual Information Estimation

Mutual Information (MI) is used in Filter Feature Selection as a measure of the
dependency between a set of features S and the classification prototypes C. MI
can be calculated in different ways. In [1], Neemuchwala et al. study the use of
entropic graph for MI estimation. In our approach we calculate MI based on
entropy estimation:

I(S;C) =
∑
s∈S

∑
c∈C

p(s, c)log
p(s, c)

p(s)p(c)
(1)

= H(S)−H(S|C) (2)
= H(S) + H(C)−H(S, C) (3)

Using the Eq. 2 the conditional entropy H(S|C) has to be calculated. To
do this,

∑
(X|C = c)p(C = c) entropies have to be calculated, and this is

feasible insofar C is discrete (C consists of the class labelling). On the other hand,
using Eq. 3 implies estimating the joint entropy. In our experiments we used Eq.
2 because it is faster, due to the complexity of the entropy estimator, which
depends on the number of samples as we will see in the following subsection.
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2.2 Entropy Estimation

Entropy is a basic concept in information theory [8]. For a discrete variable Y
with y1, ..., yN (the set of values), we have:

H(Y ) = −Ey[log(p(Y ))]

= −
N∑

i=1

p(Y = yi) log p(Y = yi). (4)

The estimation of the Shannon entropy of a probability density given a set of
samples has been studied widely in the past [9][10][11][12][13][14]. Most current
nonparametric entropy and divergence estimation techniques are based on esti-
mation of the density function followed by the substitution of these estimates into
the expression for entropy. This method has been widely applied to estimation
of the Shannon entropy and it is called “plug-in” estimation [9]. Other methods
of Shannon entropy estimation include sample spacing estimators, restricted to
d = 1, and estimates based on nearest neighbor distances.

In [15] an alternative method for entropy and divergence estimation based on
using entropic spanning graphs is presented. It is considered as a “non plug-in”
method, because the entropy is directly estimated from a set of samples of the
pdf, by-passing the non-parametric density estimation.

Among the “plug-in” methods, a widely used one is the Parzen’s Window.
Each method has its own advantages and drawbacks: On the one hand in the
Parzen’s Windows approach problems arise due to the infinite dimension of the
spaces in which the unconstrained densities lie. Specifically: density estimator
performance is poor without stringent smoothness conditions; no unbiased den-
sity estimators generally exist; density estimators have high variance and are
sensitive to outliers; the high dimensional integration required to evaluate the
entropy might be difficult. In contrast, the entropic graphs method does not
estimate Shannon entropy directly and a new technique to obtain it must be
developed. The main advantage of this approach is the possibility to work in a
very high-dimensional space, in contrast to Parzen’s Windows, the complexity
of which is quadratic with respect to the number of dimensions.

Entropic Spanning Graphs obtained from data to estimate Renyi’s α-entropy
[15] belong to the “non plug-in” methods of entropy estimation. Renyi’s α-
entropy of a probability density function f is defined as:

Hα(p) =
1

1− α
ln

∫
z

pα(z)dz (5)

for α ∈ (0, 1). The α entropy converges to the Shannon entropy −
∫

p(z) ln p(z)dz
as α → 1, so it is possible to obtain the second one from the first one.

A graph G consists of a set of vertices Xn = {x1, ..., xn}, with xn ∈ Rd and
edges {e} that connect vertices in graph: eij = (xi, xj). If we denote by M(Xn)
the possible sets of edges in the class of acyclic graphs spanning Xn (spanning
trees), the total edge length functional of the Euclidean power weighted Minimal
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Spanning Tree is:

LMST
γ (Xn) = min

M(Xn)

∑
e∈M(Xn)

| e |γ (6)

with γ∈ (0, d) y | e | the euclidian distance between graph vertices.
The MST has been used as a way to test for randomness of a set of points.

In [16] it was showed that in d-dimensional feature space, with d ≥ 2:

Hα(Xn) =
d

γ

[
ln

Lγ(Xn)
nα

− lnβLγ ,d

]
(7)

is an asymptotically unbiased, and almost surely consistent, estimator of the
α-entropy of p where α = (d − γ)/d and βLγ ,d is a constant bias correction
depending on the graph minimization criterion, but independent of p. Closed
form expressions are not available for βLγ ,d; only known approximations and
bounds: (i) Monte Carlo simulation of uniform random samples on unit cube
[0, 1]d; (ii) Large d approximation: (γ/2) ln(d/(2πe)) in [17].

We can estimate Hα(p) for different values of α = (d − γ)/d by changing
the edge weight exponent γ. As γ modifies the edge weights monotonically, the
graph is the same for different values of γ, and only the total length in expression
7 needs to be recomputed.

Entropic spanning graphs are suitable for estimating α-entropy with α ∈
[0, 1[, so Shannon entropy can not be directly estimated with this method. In
[18] relations between Shannon entropy and Rényi entropies of integer order are
discussed. For any discrete probability n-points distribution for which the Rényi
entropies of order two and three are known he provides a lower and an upper
bound for the Shannon entropy. In [19] Mokkadem constructed a nonparamet-
ric estimate of the Shannon entropy from a convergent sequence of α-entropy
estimates.

The value of Hα for α = 1 is approximated by means of a continuous function
that captures the tendency of Hα in the environment of 1. Such a function is
a monotonous decreasing one, and by means of a dichotomic search we find
the α∗ value that is used for extrapolating the correct entropy value. In [20]
the process is explained in more detail, and it is experimentally verified that
α∗ is constant for a fixed number of samples and dimensions, and for different
covariance matrixes.

3 Feature Selection criteria and algorithms

There are different Filter Feature Selection criteria for selecting or discarding
a feature or a feature set. In [7], Peng et al. study the possibility maximize
the dependency between the feature set S and the prototypes C: max I(S;C),
called Max-Dependency criterion. Eq. 8 formulates the maximization objective
for selecting the m-th feature from the X − Sm−1 set of features which still are
not selected.
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max
xj∈X−Sm−1

I(Sm−1 ∪ {xj}; c) (8)

In [7] this criterion is found to be unfeasible because the entropy estimation
in high-dimensional feature spaces is very hard, and yields poor results, due to
the way they estimate entropy. So instead of estimating mutual information in a
multidimensional space, they maximize the relevance I(xj ; c) of each individual
feature xj and at the same time minimize the redundancy between xj and the rest
of selected features xi ∈ S, i 6= j. This is the Max-Relevance Min-Redundance
(mRMR) criterion, Eq. 9.

max
xj∈X−Sm−1

I(xj ; c)−
1

m− 1

∑
xi∈Sm−1

I(xj ;xi)

 (9)

In this work, we state that the Max-Dependency criterion is feasible, even
in very high-dimensional feature spaces. The complexity of MI estimation, ex-
plained in Section 2, depends on the Entropic Spanning Graph construction,
which has a O(s log(s)) order, where s is the number of samples. Also, the ac-
curacy of the estimations does not depend on the number of dimensions.

Another issue, is the way features combinations are generated. An exhaustive
search among the features set combinations would present a O(n!) combinatorial
complexity, where n is the total number of features. For our experiments we have
used a Greedy Forward Feature Selection algorithm, which starts from a small
feature set, and adds one feature at a time.

Therefore, with the mRMR criterion each iteration would consist of calculat-
ing the MI between a feature and the prototypes, as well as the MI between that
feature and each one of the already selected ones (see Eq. 9). Such a search per-
forms

∑n
i=1 i(n−i+1) estimations of the MI, which has a O(n3+n2+n) computa-

tional complexity. Using the Max-Dependency criterion instead, requires just one
MI calculus per iteration. The total number of MI estimations is

∑n
i=1 n− i+1,

which has a O(n2 + n) computational complexity.

4 Experiments

4.1 Image Data

Two experiments on real data are presented in this paper. The first of them
compares the Max-Dependency and the mRMR criteria. The data set consists
of a set of 721 images (samples), labeled with 6 different classes. Each sample
has 48 features, which come from some basic filters responses, like color filters,
corner and edge detectors, and range information. Such a configuration is use-
ful for image classification and image registration purposes. On Fig. 1 we have
represented image registration results for a few outdoor images.

In Fig. 2 we show the classification errors of the feature sets selected with both
criteria. A Nearest Neighbour classification was evaluated because the number of
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Test images

Train images

Fig. 1. Image registration experiment on different test images. The first row contains
test images. Each one of them is associated to some image of the training set, shown on
the second row. The training set contains 721 images taken during an indoor-outdoor
walk. The test set has not been used for the feature selection process and it is taken
during a different walk following a similar trajectory. The amount of low-level filters
selected for building the classifier is 13, out of 48 in total.

samples is not very high. Only 20 selected features are represented, as for larger
features set the error does not decrease. The 10-fold Cross Validation error is
represented, as well as a test-error, which was calculated using an additional
test-set of images, containing 470 samples.

With mRMR, the lowest CV error (8.05%) is achieved with a set of 17 fea-
tures, while with Max-Dependency a CV error of 4.16% is achieved with a set
of 13 features. The test-errors have similar tendencies.
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Fig. 2. Feature Selection performance on image histograms data with 48 features.
Comparison between the Maximum-Dependency (MD) and the Minimum-Redundancy
Maximum-Relevance (mRMR) criterions.

In Peng et al.[7], the experiments yielded better results with the mRMR
criterion than with the Max-Dependency criterion. Contrarily, we obtain better
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performance using Max-Dependency. This may be explained by the fact that
the entropy estimator we use does not degrade its accuracy as the number of
dimensions increases.

4.2 Microarray Data

In order to illustrate the dimensionality independence of the the entropy esti-
mator we use, we performed another experiment on the well-known NCI60 DNA
microarray dataset. It contains only 60 samples, labeled with 14 different classes
of human tumor diseases. Each sample has 6380 dimensions (genes). The pur-
pose of Feature Selection is to select those genes which are useful for disease
classification/prediction. An example can be seen on Fig 4 where we have repre-
sented the first 36 features selected by both criteria discussed in this paper. The
rows represent the samples, or diseases. The columns represent features. The
intensity of the colour is the level of expression of a gene for a given disease. In
this figure we can see that MD and mRMR select different genes.

In Fig. 3, we show the Leave One Out Cross Validation errors 1 for the
selected feature subsets, using the Max-Dependency criterion. Only the best 220
genes (out of 6380) are on the X axis, and it took about 24 hours on a PC with
Matlab to select them. During this time MI was calculated

∑220
i=1(6380− i+1) =

1, 385, 670 times.
In [3] an evolutionary algorithm is used for feature selection and the best

LOOCV error achieved is 23, 77% with a set of 30 selected features. In our
experiment we achieve a 10, 94% error with 39 selected features.

5 Conclusions and future work

In this paper we presented a Filter Feature Selection approach based on Mutual
Information. The Mutual Information estimation does not depend on the number
of features, but it depends n-logarithmically on the number of samples. Therefore
this approach is useful for high-dimensional patterns, such as DNA microarray
data. In contrast to Wrapper approaches, this Filter approach does not rely on
minimizing the classification error, but on maximizing MI of sets of features and
class labels. However as a consequence of this, the classification error actually
decreases.

Finally, we obtain better results by evaluating MI (Max-Dependency) for the
entire feature subsets, than the criterion of Min-Redundancy Max-Relevance.

In the future we want to explore Feature Selection algorithms different than
FFS. This algorithm starts selecting small feature subsets, but with our approach
it would not be hard to start from larger feature subsets and remove the less
informative ones.
1 LOOCV measure is used when the number of samples is so small that a test set

cannot be built. It consists of building all possible classifiers, each time leaving out
only one sample for test.
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Fig. 3. Feature Selection performance on microarray data with 6380 features. The FFS
algorithm using the Maximum Dependency criterion obtained the lowest LOOCV error
with a set of 39 features. The function that is maximized (the mutual information) is
also represented.
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Fig. 4. Feature Selection on the NCI DNA microarray data. The MD (on the left) and
mRMR (on the right) criteria were used. Features (genes) selected by both criteria are
marked with an arrow.
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