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Summary. An integral part of combinatorial optimization and computational com-
plexity consists of establishing relationships between different problems or different
versions of the same problem. In this chapter, we bring together known and new, pre-
viously published and unpublished results, which establish that 15 problems related
to optimizing a linear function over a 0/1-polytope are polynomial-time equivalent.
This list of problems includes optimization and augmentation, testing optimality and
primal separation, sensitivity analysis and inverse optimization, and several others.

1 Introduction

The equivalence of optimization and separation has been one of the most
consequential results in combinatorial optimization, and beyond. For exam-
ple, it gave rise to the first polynomial-time algorithms for finding maximum
stable sets in perfect graphs, and for minimizing submodular functions, to
mention just two of several results of this kind derived by Grötschel, Lovász,
and Schrijver [9]. This equivalence has also paved the way for establishing
negative results. For instance, it was instrumental in showing that computing
the weighted fractional chromatic number is NP-hard [9]. For general lin-
ear optimization problems and corresponding polyhedra, the equivalence be-
tween optimization and separation holds under certain technical assumptions.
For linear combinatorial optimization problems and associated 0/1-polytopes,
however, these requirements are naturally satisfied. In fact, for such problems
this equivalence not only means that a polynomial-time algorithm for one of
the two problems implies that the other problem can be solved in polynomial
time as well; if one of the two problems can be solved in strongly polynomial
time, then so can the other [7, 10].

The relative computational complexity of solving one problem versus an-
other has been studied in other situations as well. For example, Papadimitriou
and Steiglitz wrote in their 1982 textbook on combinatorial optimization that
“An Optimization Problem is Three Problems” [20, Page 343]. The other two
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problems they referred to, in addition to finding an optimal solution, are com-
puting the cost of an optimal solution—called the evaluation problem—and,
in case of minimization problems, deciding whether there exists a feasible
solution of cost at most a given value. The latter problem is known as the
recognition or decision problem. It is obvious that the optimization problem
is at least as hard as the evaluation problem, which, in turn, is no easier than
the decision problem. Papadimitriou and Steiglitz went on by asking:

Is it the case that all these versions are roughly of the same complex-
ity? In other words, can we solve the evaluation version by making
efficient use of a hypothetical algorithm that solves the recognition
version, and can we do the same with the optimization and evaluation
versions, respectively? [20, page 345]

Answers to these questions are known: Binary search over the range of pos-
sible values reduces the evaluation problem to solving a polynomial number
of decision problems. The reduction from the optimization problem to the
evaluation problem is oftentimes illustrated with the help of the Traveling
Salesman Problem: Consider the arcs of the given directed graph in order,
and for each arc solve the evaluation problem for the same instance where the
cost of the current arc is increased by one. If the cost of an optimal tour is the
same as before, then there is an optimal tour that does not use the current arc.
The cost of this arc remains incremented, and the algorithm proceeds with
the next arc. If, however, the cost of an optimal tour is higher than before,
then the current arc is part of an optimal tour. Its cost is changed back to the
original value, and the algorithm continues.

In this chapter, we prove that 15 problems, including augmentation, deci-
sion, evaluation, inverse optimization, optimization, primal separation, sensi-
tivity analysis, separation, and testing optimality, are equivalent in Grötschel,
Lovász, and Schrijver’s and Papadimitriou and Steiglitz’s sense: Given a hy-
pothetical (strongly) polynomial-time algorithm for any one of them, each of
the other problems can be solved in (strongly) polynomial time as well.

The chapter is organized as follows. In Section 2, we introduce the setup,
in particular the class of linear combinatorial optimization problems consid-
ered here, and necessary background information, such as oracle-polynomial
time algorithms. Section 3 constitutes the main part of this chapter. In Sec-
tion 3.1, we present the 15 problems in detail and state the main result.
Section 3.2 is reserved for its proof, which is broken down into several sepa-
rate results pertaining to solving one problem with the help of a hypothetical
algorithm for another problem. This part is followed by a collection of notes
and references, which attribute the individual results to their respective au-
thors (Section 3.3). Consequences and implications of the equivalence of the
15 problems are discussed in Section 4, including a proof of the Hirsch conjec-
ture for 0/1-polytopes, a simplex-type algorithm for linear programming over
0/1-polytopes that visits only polynomially many vertices, and complexity
results for exact local search. Finally, Sections 5 and 6 discuss extensions of
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some of the results to local search and general integer linear programming,
respectively.

2 Preliminaries

This chapter is concerned with linear combinatorial optimization problems. A
linear combinatorial optimization problem Π consists of a family of instances
(N,F , c), where N = {1, 2, . . . , n} is the ground set, F ⊆ 2N is the set of
feasible solutions, and the vector c ∈ Zn assigns a cost of

∑
i∈F ci to every

feasible solution F ∈ F .1 The objective is to find a feasible solution of minimal
cost.2 The set of feasible solutions of a combinatorial optimization problem is
usually not described explicitly, but is given implicitly, such as the family of
all stable sets in an undirected graph, or the set of all Hamiltonian tours in
a directed graph. Typically, if we have one instance of such a combinatorial
optimization problem, then the same instance in which only the objective
function coefficients are changed, is also an instance of the same combinatorial
optimization problem. We make this our first assumption.

Assumption 1. Let Π be a linear combinatorial optimization problem. If
(N,F , c) describes an instance of Π, and d ∈ Zn, then (N,F , d) is an in-
stance of Π as well.

Our interpretation of this assumption is that certain computational prop-
erties of the problems considered here, such as polynomial-time solvability,
depend only on the structure of F , but not on that of c.3 As a consequence of
Assumption 1, we henceforth use Π to just denote the family of pairs (N,F),
knowing that each such pair together with any compatible objective function
vector constitutes an instance of the associated optimization problem. This
convention allows us to refer to Π, even if we consider algorithmic problems
other than optimization, which are defined over the instances (N,F) of Π.

It is well known that the optimization problem associated with Π can be
stated equivalently as a 0/1-integer programming problem. Namely,

min
{∑

i∈F

ci : F ∈ F
}

= min
{
cx : x ∈ X

}
= min

{
cx : x ∈ P

}
,

where, for a given instance (N,F , c), X :=
{
χF : F ∈ F

}
is the set of incidence

vectors of all feasible solutions, P := conv {X} is its convex hull, and cx

1 The reason that these problems are called linear, or sometimes min-sum combina-
torial optimization problems is that the cost functions are linear over the ground
set.

2 For the sake of definiteness, we consider minimization problems only. All results
stated in this chapter apply equally to maximization problems.

3 The most relevant exception to this premise are nonnegative cost coefficients, and
we will comment later on which results of Section 3 remain valid if we restrict
ourselves to such instances.
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denotes the inner product of c and x, i.e., cx =
∑n

i=1 cixi. The incidence
vector χF of a feasible solution F ∈ F is defined as χF

i := 1 if i ∈ F , and
χF

i := 0, otherwise. Thus, X offers an equivalent representation of feasible
solutions as 0/1-points in the n-dimensional Euclidean space. Moreover, P is
a 0/1-polytope, i.e., a polytope whose vertices have coordinates 0 or 1 only.
Hereafter, we will use X to refer to the set of feasible solutions, as it will be
convenient to work with 0/1-vectors instead of sets.

We assume that the reader is familiar with the concepts of polynomial-time
and strongly polynomial-time algorithms, and we refer to [12] for more infor-
mation on these and other notions of relevance to combinatorial optimization,
which are not introduced here. One concept that is of particular importance
to this chapter is that of an oracle-polynomial time algorithm, which helps us
formalize the abstraction of a “hypothetical algorithm.” An oracle-polynomial
time algorithm is a polynomial-time algorithm that, in addition to all standard
operations, may also make a polynomial number of calls to a given oracle. In
particular, the time it would take to compute the answers that the oracle pro-
vides is not counted. However, if there were a polynomial-time algorithm for
finding these answers, then one could replace the oracle by this algorithm, and
the oracle-polynomial time algorithm would turn into a regular polynomial-
time algorithm. The definition of a strongly oracle-polynomial time algorithm
is similar. For technical details, we refer to [10, Chapter 1].

The concept of oracles and oracle-polynomial time algorithms is useful to
relate the complexity of two different problems, defined over the same family
Π of sets of feasible solutions, to one another. For instance, if there is an
oracle-polynomial time algorithm for optimization that uses an oracle for the
separation problem, then the optimization problem for Π is not harder than
the separation problem for Π, at least as far as polynomial-time solvability is
concerned. The concept of oracles also provides us with means to specify the
way in which sets of feasible solutions are given computationally. For example,
when we say that X is given by an evaluation oracle, an oracle-polynomial
time algorithm for the optimization problem has no further knowledge of X
than what it can acquire by calling the evaluation oracle a polynomial number
of times.

We make one further assumption, which frees us from considering how to
find an initial feasible solution, which often is a difficult problem in itself.

Assumption 2. Let Π be a linear combinatorial optimization problem. For
any instance (N,X) of Π, a feasible solution x0 ∈ X is explicitly known.

Let us fix some additional notation. We use ei to denote the i-th unit
vector, which has a 1 in coordinate i and 0 elsewhere. Moreover, 1l is the all-
one vector. Finally, the support of a vector z ∈ Zn is defined by supp(z) :=
{i ∈ N : zi 6= 0}.
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3 An Optimization Problem is 15 Problems

We start by detailing the computational problems defined over the instances
(N,X) of a linear combinatorial optimization problem Π, which we will relate
to one another.

3.1 List of Problems

Augmentation Problem (aug). Given a feasible solution x ∈ X and a vector
c ∈ Zn, find a feasible solution y ∈ X such that cy < cx, or state that x
minimizes cx over X.

Component Determination Problem (cd). Given an index i ∈ {1, 2, . . . , n}
and a vector c ∈ Zn, determine whether there exists an optimal solution x∗

for minimizing cx over X such that x∗i = 1.

Component Negation Problem (cn). Given an index i ∈ {1, 2, . . . , n}, a vector
c ∈ Zn, and an optimal solution x∗ for minimizing cx over X, find an optimal
solution for minimizing cx over {x ∈ X : xi = 1− x∗i }, if one exists.

Decision Problem (dec). Given a vector c ∈ Zn and a number K ∈ Z, decide
whether X contains a feasible solution x with objective function value cx ≤ K.

Evaluation Problem (eva). Given a vector c ∈ Zn, find the cost of a solution
minimizing cx over X.

Inverse Optimization Problem (inv). Given a feasible solution x ∈ X and a
vector c ∈ Qn, find a vector d ∈ Qn such that x is optimal for minimizing dx
over X and ‖c− d‖ is minimal.4

Maximum Mean Augmentation Problem (mma). Given a feasible solution x ∈
X and a vector c ∈ Zn, find a feasible solution y ∈ X such that cy < cx and
y maximizes c(x− y)/|supp(x− y)| over X, or state that x minimizes cx over
X.

Optimization Problem (opt). Given a vector c ∈ Zn, find a feasible solution
that minimizes cx over X.

Postoptimality Problem (post). Given an index i ∈ {1, 2, . . . , n}, a vector
c ∈ Zn, and an optimal solution x∗ for minimizing cx over X, compute the
maximal value ρi ∈ Z+ such that x∗ remains optimal for minimizing (c+ρiei)x
and (c− ρiei)x over X.

Primal Separation Problem (psep). Given a point z ∈ [0, 1]n and a feasible
solution y ∈ X, find a vector a ∈ Zn and a number β ∈ Z such that ax ≤ β
for all x ∈ X, ay = β, and az > β, or state that such a vector a and number
β do not exist.
4 Instead of repeating the problem statement for different norms, let us merely

remark that one can use the 1-norm or the∞-norm. They would generally lead to
different answers, of course. In terms of their computational complexity, however,
they behave the same.
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Separation Problem (sep). Given a point z ∈ [0, 1]n, decide whether z ∈ P =
conv{X}, and if not, find a vector a ∈ Zn such that ax < az for all x ∈ P .

Simultaneous Postoptimality Problem (spost). Given an index set I ⊆ {1, 2,
. . . , n}, a vector c ∈ Zn, and an optimal solution x∗ for minimizing cx over
X, compute the maximal value ρI ∈ Z+ such that x∗ remains optimal for
minimizing (c +

∑
i∈I δiei)x over X, for all (δi)i∈I with |δi| ≤ ρI .

Unit Increment Problem (inc). Given an index i ∈ {1, 2, . . . , n}, a vector
c ∈ Zn, and an optimal solution x∗ for minimizing cx over X, compute optimal
solutions for the problems of minimizing (c − ei)x and (c + ei)x over X,
respectively.

Verification Problem (ver). Given a feasible solution x ∈ X and a vector
c ∈ Zn, decide whether x minimizes cx over X.

Violation Problem (viol). Given a vector a ∈ Zn and a number β ∈ Z,
decide whether ax ≥ β holds for all x ∈ X, and if not, find a feasible solution
y ∈ P = conv{X} with ay < β.

There are some obvious relationships between these problems. For in-
stance, if we can solve the optimization problem in polynomial time, then
we can also solve the augmentation problem and the evaluation problem in
polynomial time. Moreover, a polynomial-time algorithm for evaluation gives
rise to polynomial-time algorithms for the decision problem and the verifica-
tion problem. And the polynomial-time solvability of augmentation or inverse
optimization obviously implies the same for verification. Figure 1 shows all
trivial relationships. Here, an arrow from one problem to another indicates
that the problem at the head of the arrow can be solved in oracle-polynomial
time given an oracle for the problem at the tail of the arrow. The relation is
transitive, but arrows implied by transitivity are omitted.

VER

EVA

DEC

INV

AUG

MMA

OPTINC

VIOL

SPOST

POST

SEP

PSEP

CD

CN

Fig. 1. Obvious relationships between the 15 problems
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It turns out that, in fact, all these problems are equivalent, in terms of
polynomial-time solvability.

Theorem 1. Let Π be a linear combinatorial optimization problem. Any one
of the following problems defined over the instances (N,X) of Π, augmen-
tation, component determination, component negation, decision, evaluation,
inverse optimization, maximum mean augmentation, optimization, postopti-
mality, primal separation, separation, simultaneous postoptimality, unit in-
crement, verification, and violation, can be solved in oracle-polynomial time,
given an oracle for any one of the other problems.

This list is by no means exhaustive. While it contains some of the most
interesting and relevant computational questions related to combinatorial op-
timization problems, other problems and variations of problems considered
here can often proved to be equivalent by techniques similar to those illus-
trated in the following section.

3.2 Proof of Theorem 1

Instead of presenting a “minimal” proof of Theorem 1, it will be instructive to
exhibit several direct reductions between different problems. In the end, there
will be a “directed path,” in the sense of Figure 1, from any one problem to
any other problem, proving Theorem 1.

We first introduce some additional notation. For a given set X ⊆ {0, 1}n

of feasible solutions and an index i ∈ {1, 2, . . . , n}, we define

Xi,0 := {x ∈ X : xi = 0} and Xi,1 := {x ∈ X : xi = 1}.

Note that either Xi,0 or Xi,1 could be empty. For a given vector c ∈ Zn, and
l ∈ {0, 1}, let xi,l be an optimal solution for min{cx : x ∈ Xi,l}, if one exists.
The following observation will prove useful on several occasions.

Observation 2. Let x∗ be an optimal solution for minimizing cx over X.

(a) If x∗i = 1, then (c + δei)x∗ ≤ (c + δei)x for all x ∈ Xi,1 and δ ∈ Z.
(b) If x∗i = 0, then (c + δei)x∗ ≤ (c + δei)x for all x ∈ Xi,0 and δ ∈ Z.

We start the proof of Theorem 1 by looking at sets of feasible solutions
specified by an augmentation oracle. In addition to the trivial relationship
depicted in Figure 1, we have the following three lemmata.

Lemma 3. Assume that X ⊆ {0, 1}n is given by an augmentation oracle.
Then, the unit increment problem for X can be solved in oracle-polynomial
time.

Proof. Let the input to the unit increment problem be specified by x∗, c,
and i. Let us first consider the case x∗i = 0. Clearly, x∗ stays optimal for
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c + ei. Hence, it suffices to focus on the objective function vector c− ei. If x∗

is no longer optimal for this vector, then xi,1 is. As (c− ei)x∗− (c− ei)xi,1 =
cx∗ − cxi,1 + 1 ≤ 1, one call to the augmentation oracle with input x∗ and
c− ei will suffice to obtain an optimal solution for c− ei. The case x∗i = 1 can
be handled similarly. ut

Lemma 4. Assume that X ⊆ {0, 1}n is given by an augmentation oracle.
Then, there exists an oracle-polynomial time algorithm for the inverse opti-
mization problem over X.

Proof. Suppose we would like to solve the inverse optimization problem for
x and c, and we are given access to an augmentation oracle. A first call to
the oracle with input x and c will clarify whether x is optimal with respect
to c. If it is, then we return c itself. Otherwise, we can formulate the inverse
optimization problem for the 1-norm as the following linear program:

minimize
n∑

i=1

λi (1a)

subject to λi ≥ di − ci for i = 1, 2, . . . , n, (1b)
λi ≥ ci − di for i = 1, 2, . . . , n, (1c)
dx ≤ dy for all y ∈ X. (1d)

Given a vector (d, λ) ∈ Qn × Qn, the separation problem for the polyhedron
defined by (1b)–(1d) can be solved as follows. Inequalities (1b) and (1c) can be
checked directly. If one of them is violated, we obtain a separating hyperplane.
If all of them are satisfied, we can call the augmentation oracle for x and d
to find a violated inequality among (1d), if one exists. By the equivalence of
separation and optimization, it follows that an optimal solution to the linear
program (1) can be computed in polynomial time.

If we are dealing with the ∞-norm instead of the 1-norm, the argument
remains essentially the same; we just replace the n variables λi by a single
variable λ, and the objective function by λ. ut

The next proof presents a reduction from optimization to augmentation,
which, in contrast to the previous proof, does not rely on the equivalence of
optimization and separation.

Lemma 5. Assume that X ⊆ {0, 1}n is given by an augmentation oracle.
Then, the optimization problem for X can be solved in oracle-polynomial time.

Proof. The proof is based on scaling. To simplify the exposition, we assume
that the given objective function vector c has nonnegative entries. If this is
not the case, we can switch xi to 1− xi for all coordinates i with ci < 0. The
resulting objective function vector is nonnegative. Moreover, the augmenta-
tion oracle for the original set X of feasible solutions can be used to solve the
augmentation problem for the new set of feasible solutions, after switching.
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So, let c ≥ 0. We may also assume that c 6= 0. Otherwise, any feasible solution
is optimal.

Let C := max{ci : i = 1, 2, . . . , n}, and let K := blog Cc. For k =
0, 1, . . . ,K, define ck as the objective function vector with coefficients ck

i :=
bci/2K−kc, i = 1, 2, . . . , n. The algorithm works in phases. In phase k, it solves
the optimization problem for ck. A detailed description is provided below. As
per Assumption 2, x0 ∈ X is a given feasible solution.

1: for k = 0, 1, . . . ,K do
2: while xk is not optimal for ck do
3: xk := aug(xk, ck)
4: xk+1 := xk

5: return xK+1.

Here, aug(xk, ck) stands for the solution returned by the augmentation
oracle when called with input xk and ck. The condition of whether to continue
the while-loop is also checked during the same oracle call. The correctness
of the algorithm follows from the fact that xK+1 is an optimal solution for
cK = c. Thus, it suffices to discuss the running time. There are only O(log C),
i.e., polynomially many phases. Consequently, the analysis comes down to
bounding the number of times the augmentation oracle has to be called within
any given phase k. Note that, at the end of phase k − 1, xk is optimal with
respect to ck−1, and hence for 2ck−1. Moreover, ck = 2ck−1 + c(k), for some
0/1-vector c(k). Therefore, if xk+1 denotes the optimal solution for ck at the
end of phase k, we obtain

ck(xk − xk+1) = 2ck−1(xk − xk+1) + c(k)(xk − xk+1) ≤ n.

The inequality is a consequence of the optimality of xk for ck−1, the fact that
xk and xk+1 are 0/1-points, and c(k) being a 0/1-vector. As a result, the
algorithm determines an optimal solution with at most O(n log C) calls of the
augmentation oracle. ut

The proof of the following result is somewhat reminiscent of that of the
“evaluation implies optimization” construction from the introduction. It is
stated here to make the importance of “component determination” explicit.

Lemma 6. Assume that X ⊆ {0, 1}n is given by a component determina-
tion oracle. Then, the optimization problem for X can be solved in oracle-
polynomial time.

Proof. The following pseudo-code describes the reduction in detail. The con-
dition in the if-construct of line 2 is equivalent to calling the component de-
termination oracle.

1: for i = 1 to n do
2: if xi = 1 for some optimal solution x with respect to c then
3: ci := ci − 1;
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4: yi := 1
5: else
6: yi := 0
7: return y.

The algorithm maintains the following invariant:

After iteration i, all optimal solutions for the current objective func-
tion vector are also optimal for the original objective function vector.
Moreover, all solutions x ∈ X that are optimal for the current objec-
tive function vector satisfy x1 = y1, x2 = y2, . . . , xi = yi.

If this holds true, then, after n iterations, y constitutes an optimal solution.
Obviously, this is true initially (i = 0). The proof is by induction over the
number of iterations. Let us assume that the induction hypothesis is true for
iteration i, and consider iteration i + 1.

If the oracle answers “no,” then the (i + 1)-st coordinate of all optimal
solutions for the current objective function vector is 0. While the algorithm
records this by setting yi+1 = 0, the objective function vector remains un-
changed. It follows by induction that the invariant is true after the conclusion
of iteration i + 1.

If the oracle’s reply is “yes,” the change of the (i+1)-st objective function
coefficient in line 3 renders all optimal solutions with xi+1 = 0 non-optimal.
Optimal solutions with xi+1 = 1, of which there is at least one, remain opti-
mal, however. The result follows. ut

We now turn to the case in which we have access to a component negation
oracle.

Lemma 7. Assume that X ⊆ {0, 1}n is given by a component negation oracle.
Then, the unit increment problem for X can be solved in oracle-polynomial
time.

Proof. Let x∗ and c be given, and suppose that cx∗ ≤ cx for all x ∈ X. There
are two cases. If x∗i = 1, then x∗ continues to be optimal for c − ei. In order
to determine an optimal solution for c + ei, we call the component negation
oracle with input x∗, c, and i. If there is no feasible solution x ∈ X with
xi = 0, then x∗ remains optimal. Otherwise, let xi,0 be the solution returned
by the oracle. Comparing the objective function values of x∗ and xi,0 with
respect to c + ei yields the optimal solution. The case x∗i = 0 is similar. ut

Since we will later show that an algorithm for the optimization problem
can be designed with the help of an oracle for the unit increment problem
(Lemma 13), the following lemma is not needed, strictly speaking. However,
the techniques involved are quite different and worth recording.

Lemma 8. Let X ⊆ {0, 1}n be given by a component negation oracle. Then,
the optimization problem for X can be solved in oracle-poynomial time.
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Proof. Let x0 be the given feasible solution. As usual, c is the objective func-
tion vector. The following algorithm determines an optimal solution x∗:

1: x∗ := x0;
2: L := ∅;
3: d := c;
4: for i = 1, 2, . . . , n do
5: if (x∗i = 0 and ci < 0) or (x∗i = 1 and ci > 0) then
6: L := L ∪ {i};
7: di := 0
8: for all i ∈ L do
9: call cn with input x∗, d, and i;

10: di := ci;
11: if cn returns a solution y∗ then
12: if dy∗ < dx∗ then
13: x∗ := y∗

14: return x∗.

The idea is the following. We first modify c such that x0 becomes optimal
(lines 4–7). Let d be the resulting vector. The algorithm maintains an optimal
solution x∗ for the modified objective function vector d, while incrementally
changing it back to c. Initially, x∗ = x0. We then call the component negation
oracle for each objective function coefficient di that differs from ci. In each
such iteration, the solution returned by the oracle, y∗, is optimal for d among
all feasible solutions x with xi = y∗i = 1−x∗i . Moreover, x∗ is optimal for d; in
particular, x∗ is optimal for d among all feasible solutions x with xi = x∗i . So
when we change di to ci (line 10), it follows that x∗ or y∗ is an optimal solution
for minimizing dx over X. The algorithm makes the appropriate choice, and
repeats the same argument with the next coefficient. ut

The following proposition is not only quite useful in establishing relation-
ships between the postoptimality problem and other problems; it also provides
an interesting, if simple structural insight. Recall that ρi is the maximal value
by which a coefficient ci can be changed in either direction without causing a
given optimal solution x∗ to become non-optimal.

Proposition 9. Let x∗ be an optimal solution for minimizing cx over X. Let
i ∈ {1, 2, . . . , n}. If x∗i = 1 and Xi,0 6= ∅, then ρi = cxi,0 − cx∗. If x∗i = 0 and
Xi,1 6= ∅, then ρi = cxi,1 − cx∗. Otherwise, ρi = ∞.

Proof. Let us consider the case x∗i = 1 first. Note that x∗ remains optimal if
we decrement ci. Hence, ρi is only constrained by values that are greater than
ci. Clearly, x∗ stays optimal for c + δei if and only if (c + δei)x∗ ≤ (c + δei)x
for all x ∈ Xi,0. This is the case if and only if δ ≤ cx − cx∗ for all x ∈ Xi,0,
which is equivalent to δ ≤ cxi,0 − cx∗, if Xi,0 6= ∅.

A similar argument yields ρi = cxi,1 − cx∗ when x∗i = 0 and Xi,1 6= ∅. ut

Proposition 9 renders the proof of our next result rather easy.
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Lemma 10. Let X ⊆ {0, 1}n be given by a component negation oracle. Then,
the postoptimality problem for X can be solved in oracle-polynomial time.

Proof. Let x∗, c, and i be as specified in the description of the postoptimality
problem. Use the component negation oracle to compute xi,1−x∗i , if it exists.
If it does not exist, then ρi = ∞. Otherwise, ρi = cxi,1−x∗i − cx∗. ut

The following result completes the formal proof of the “evaluation implies
optimization” claim from the introduction; the second part, i.e., the step from
component determination to optimization, is provided by Lemma 6.5

Lemma 11. Assume that X ⊆ {0, 1}n is given by an evaluation oracle. Then,
the component determination problem for X can be solved in oracle-polynomial
time.

Proof. Solving the component determination problem with input c ∈ Zn and
i ∈ {1, 2, . . . , n}, requires just two calls of the evaluation oracle, one with the
orginal vector c as input, and one with the modified vector c− ei as input. If
the returned values are the same, the answer to the component determination
problem is “no.” Otherwise, it is “yes.” ut

We continue with another problem that can be solved with the help of an
evaluation oracle.

Lemma 12. The postoptimality problem for X ⊆ {0, 1}n given by an evalua-
tion oracle, can be solved in oracle-polynomial time.

Proof. Let x∗, c, and i be the specified input of the postoptimality problem.
Define M :=

∑n
k=1 |ck|+ 1. We distinguish two cases. If x∗i = 1, then we call

the evaluation oracle with the objective function vector c + Mei. Let V (0) be
the corresponding optimal value. Note that the i-th coordinate of any optimal
solution with respect to c + Mei has to be 0, as long as there exists a feasible
solution x ∈ X with xi = 0. Therefore, if V (0) = cx∗ + M , then we return
ρi = ∞. Otherwise, it follows from Proposition 9 that ρi = V (0)− cx∗.

If x∗i = 0, then we feed the vector c−Mei into the evaluation oracle. Let
V (1) be the value returned by the oracle. We return ρi = ∞ if V (1) = cx∗,
and ρi = V (1) + M − cx∗, otherwise. ut

The algorithm establishing the next result differs only slightly from that
presented in the proof of Lemma 5. Notwithstanding, we include its description
here because it remains valid for general integer programs, as we will discuss
in Section 6.

5 The procedure sketched in the introduction implicitly uses a version of the com-
ponent determination problem in which we query the existence of an optimal
solution whose i-th component is 0, which can easily shown to be equivalent to
the variant considered here.
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Lemma 13. Assume that X ⊆ {0, 1}n is given by a unit increment oracle.
Then, there exists an oracle-polynomial time algorithm that solves the opti-
mization problem for X.

Proof. As we did in the proof of Lemma 5, we may assume that the given
objective function vector is nonnegative, applying the switching operation
to coordinates with negative coefficients, if necessary. We also use the same
notation as in the proof of Lemma 5. The algorithm proceeds in phases. Con-
sider phase k, and let xk be the optimal solution from the previous phase;
i.e., ck−1xk ≤ ck−1x for all x ∈ X. Recall that ck arises from ck−1 as
ck = 2ck−1 + c(k). In phase k, we consider all indices i with ci(k) = 1 in
order. Suppose {i : ci(k) = 1} = {i1, i2, . . . , il}. Then, ck = 2ck−1 +

∑l
h=1 eih

.
We therefore call the unit increment oracle in turn for the current optimal
solution and 2ck−1 + ei1 , for the new optimal solution and 2ck−1 + ei1 + ei2 ,
and so on. The optimal solution at the end of the phase is optimal for ck, as
required. ut

We now make the connection to maximum mean augmentation.

Lemma 14. Assume that X ⊆ {0, 1}n is given by an optimization oracle.
Then, there exists an oracle-polynomial time algorithm that solves the maxi-
mum mean augmentation problem for X.

Proof. Let the input of the maximum mean augmentation problem be com-
posed of x and c. A first call to the optimization oracle clarifies whether
x minimizes cx over X. From now on, we assume it does not. We de-
fine S := supp(x), and we denote the value of the maximum ratio by
µ∗. We are looking for a feasible point y ∈ X such that cy < cx and
c(x − y)/|{i : xi 6= yi}| = µ∗. Since x is not optimal, µ∗ > 0, and cy < cx
will be satisfied automatically if y is a feasible solution maximizing this ratio.
Note that µ∗ ≤ C := max{|ci| : i = 1, 2, . . . , n}. We perform binary search
over the interval (0, C]. For some value 0 < µ ≤ C, we define an objective
function vector cµ as follows:

cµ
i :=

{
ci − µ if i ∈ S,

ci + µ if i 6∈ S.

Suppose we call the optimization oracle with input cµ; let xµ be the output.
There are three possible outcomes.

Case 1: xµ = x. Therefore, cµx ≤ cµz for all z ∈ X. Spelled out in detail,
this means that c(x− z) ≤ µ(|S| −

∑
i∈S zi +

∑
i 6∈S zi), or, equivalently,

c(x− z)
|{i : xi 6= zi}|

≤ µ for all z ∈ X \ {x}.

Accordingly, µ is an upper bound on µ∗.
Case 2: xµ 6= x and cµxµ = cµx. This implies again that
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c(x− z)
|{i : xi 6= zi}|

≤ µ for all z ∈ X \ {x}.

However, xµ satisfies this inequality with equality, and thus: µ = µ∗, and xµ

is the desired solution.
Case 3: xµ 6= x and cµxµ < cµx. In this case,

µ <
c(x− xµ)

|{i : xi 6= xµ
i }|

≤ µ∗.

Consequently, µ is a strict lower bound of µ∗.
Note that the absolute value of the difference of any two distinct ratios is at

least 1/n2. Hence, after O(log(nC)) steps and calls of the optimization oracle,
binary search yields the optimal value µ∗. (There is a subtle technical detail:
If the binary search procedure terminates with case 2, we get a corresponding
solution automatically. Otherwise, the last lower bound resulted from case 1,
and we do not explicitly have an optimal solution for cµ that is different from
the original point x. In this case, we perturb the objective function vector, so
as to make sure that x is no longer optimal. An optimal solution xµ different
from x can then be attained by at most n additional oracle calls.) ut

We follow up with another reduction relying on an optimization oracle.

Lemma 15. Let X ⊆ {0, 1}n be given by an optimization oracle. Then, the
simultaneous postoptimality problem for X can be solved in oracle-polynomial
time.

Proof. In order to determine ρI , for I ⊆ {1, 2, . . . , n}, we need to find the
largest value of ρ such that

∑n
i=1(ci + δi)x∗i ≤

∑n
i=1(ci + δi)xi for all x ∈ X

and δi = 0 for i 6∈ I, |δi| ≤ ρ for i ∈ I. Equivalently,
∑

i∈I δi(x∗i − xi) ≤∑n
i=1 ci(xi − x∗i ). Let us fix x ∈ X and ρ for a moment. Then, the right-hand

side of the last inequality is constant, and the inequality holds if and only if it
holds for a vector δ with |δi| ≤ ρ that maximizes the left-hand side. Consider
some i ∈ I. If x∗i = 0, then δi(x∗i − xi) = −δixi, which is maximized for
δi = −ρ, regardless of the value of xi. We define di := 1. If x∗i = 1, then
δi(x∗i −xi) = δi(1−xi), which is maximized for δi = ρ, regardless of the value
of xi. We set di := −1. We also let di := 0 for i 6∈ I. Combining the pieces,
we obtain that∑

i∈I

δi(x∗i − xi) ≤
n∑

i=1

ci(xi − x∗i ) iff ρ
∑
i∈I

x∗i +
n∑

i=1

ρdixi ≤
n∑

i=1

ci(xi − x∗i ).

Thus, we need to find the largest ρ for which

min
x∈X

n∑
i=1

(ci − ρdi)xi ≥
n∑

i=1

cix
∗
i + ρ

∑
i∈I

x∗i . (2)
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Let us denote the left-hand side of (2) by v(ρ). This function is piecewise
linear and concave. The slope of v(ρ) for any given ρ is equal to −

∑n
i=1 dixi,

for some x ∈ X. Since di ∈ {0,±1} and xi ∈ {0, 1}, there can be at most
2n + 1 different slopes. In other words, v(ρ) has a small number of linear
pieces. Before we discuss how to construct the relevant part of v(ρ), let us
quickly address over which interval we should do so.

Apparently, ρI ≥ 0. If xi = x∗i for all i ∈ I and x ∈ X, then ρI = ∞. Note
that one can easily check this condition by calling the optimization oracle with
objective function vector −

∑
i∈I(−1)x∗i ei. If x∗ is optimal, then all x ∈ X

satisfy xi = x∗i , for all i ∈ I. Otherwise, ρI is finite, and ρu :=
∑n

i=1 |ci|+ 1 is
an upper bound on its value. From now on, we assume that ρI is finite.

We start by computing v(ρu), which amounts to calling the optimization
oracle once. If (2) is satisfied for ρ = ρu, we are done. Otherwise, the optimal
solution associated with v(ρu) defines a linear function on [0, ρu]. We compute
the largest value of ρ for which the value of this linear function is greater than
or equal to the right-hand side of (2). We denote this value by ρ1 and compute
v(ρ1). If v(ρ1) coincides with the value of the linear function at the point ρ1,
then ρI = ρ1. Otherwise, the optimal solution corresponding to v(ρ1) defines
a second linear function. We then compute the largest value of ρ for which this
linear function is greater than or equal to the right-hand side of (2); let this
value be ρ2. Note that ρ2 < ρ1. We repeat the same procedure for ρ2, and so
on. Because v(ρ) has O(n) linear pieces, ρI is found after as many steps. ut

The following two results are of a more polyhedral nature. Let us establish
first that primal separation is no harder than ordinary separation.

Lemma 16. Assume that X ⊆ {0, 1}n is given by a separation oracle. Then,
the primal separation problem for X can be solved in oracle-polynomial time.

Proof. Let z ∈ [0, 1]n be the given point, and let y ∈ X be the given feasible
solution, which together form the input of the primal separation problem.
Without loss of generality, we may assume that y = 0. Let C be the polyhedral
cone that is defined by the inequalities of P := conv{X} that are satisfied with
equality by y. The key observation is that the primal separation problem for
P and y is essentially equivalent to the separation problem for C. The only
difference is that a hyperplane ax = β that separates z from C may not
contain y. However, this can be fixed by pushing the hyperplane towards C
until they touch. Put differently, ax = 0 is a separating hyperplane, too.

As we are dealt a separation oracle for P , and not for C, it remains to
show how we can use the given oracle to emulate one for C. Figure 2 provides
a schematic picture of the situation. If we called the separation oracle for the
original point z, it could happen that z ∈ C \ P , and the oracle would return
a separating hyperplane when, in fact, z ∈ C. By choosing a point z̄ on the
line between y and z, close enough to y, this can be prevented. We now prove
that z̄ := (1− 1

n )y + 1
nz ∈ P , if z ∈ C. Let y1, y2, . . . , yk be the vertices of P

that are adjacent to y. The distance of y, measured in terms of the 1-norm, to
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Fig. 2. Schematic drawing of P , C, and potential locations of z relative to y

any of its adjacent vertices is at least 1. This implies that the distance of y to
any point in C that is not a convex combination of y, y1, y2, . . . , yk, is strictly
greater than one. However, z ≤ 1l implies ‖z̄‖1 ≤ 1. Therefore, z̄ is contained
in P , as we wanted to show.

At last, observe that when z does not belong to C, z̄ does not belong to
C, either. This completes the proof. ut

The next proof relies on the equivalence of optimization and separation.

Lemma 17. Let X ⊆ {0, 1}n be given by a primal separation oracle. Then,
the verification problem for X can be solved in oracle-polynomial time.

Proof. Recall that verification means deciding whether a given feasible solu-
tion y ∈ X is optimal with respect to a given objective function vector c ∈ Zn.
Let P := conv{X}, and let C be the polyhedral cone defined by the linear
inequalities defining P that are active at y. It follows from linear program-
ming duality that y minimizes cy over P if and only if it minimizes cy over C.
By the equivalence of optimization and separation, minimizing cy over C is
equivalent to solving the separation problem for C. As explained in the proof
of Lemma 16, the separation problem for C can be reduced to the primal
separation problem for P and y. Hence, we can use the primal separation
oracle to optimize over C. If the resulting value is finite, then y is an optimal
solution. Otherwise, y is not optimal. ut

We proceed with the postoptimality oracle, and discuss how it can be used
to solve the component negation problem.

Lemma 18. The component negation problem for X ⊆ {0, 1}n given by a
postoptimality oracle, can be solved in oracle-polynomial time.

Proof. The input of the component negation problem is specified by an objec-
tive function vector c, an optimal solution x∗, and an index i. Proposition 9
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implies that a single call to the postoptimality oracle suffices to compute the
optimal value of the problem of minimizing cx over {x ∈ X : xi = 1 − x∗i }.
However, we are interested in determining a corresponding optimal solution,
not just its value. Of course, if the postoptimality oracle outputs +∞, then
there exists no solution x ∈ X with xi = 1− x∗i , and we can stop. Otherwise,
the algorithm below describes how this can be done. We use cn-val(x∗, c, i)
to denote the optimal value of min{cx : x ∈ X, xi = 1 − x∗i }. For the sake of
simplifying the exposition, we assume that x∗ = 0. Similarly to the proof of
Lemma 5, this can be achieved by switching coordinates of value 1 to 0, and
by observing that the postoptimality oracle for the original problem can be
used to solve the postoptimality problem for the transformed problem.

1: V := cn-val(x∗, c, i);
2: y∗i := 1;
3: for all k ∈ {1, 2, . . . , n} \ {i} do
4: ck := ck + 1;
5: if cn-val(x∗, c, i) > V then
6: y∗k := 1;
7: ck := ck − 1
8: else
9: y∗k := 0

10: return y∗.

Basically, this algorithm imitates the evaluation-to-optimization procedure
from the introduction, except that it has to use the postoptimality oracle
instead of the evaluation oracle. In particular, we need to ensure that x∗

remains an optimal solution for the current objective function vector c at all
times. Otherwise, we would not be able to make calls to the postoptimality
oracle in line 5. However, this is obvious because we are only raising ck if
x∗k = 0. The rest of the proof is similar to that of showing that a polynomial-
time algorithm for evaluation can be used to solve the optimization problem
in polynomial time as well. ut

Finally, we turn to two problems that can be directly solved by a verifica-
tion oracle.

Lemma 19. The augmentation problem for X ⊆ {0, 1}n given by a verifica-
tion oracle, can be solved in oracle-polynomial time.

Proof. Let x and c specify the input to the augmentation problem. We may
assume that x = 1l. Indeed, if x 6= 1l, we can replace all coordinates of the form
xi = 0 by x̄i := 1−xi. Formally, applying this switching operation transforms
the given set of feasible solutions, X, into another set of feasible solutions,
X̄. By switching the signs of the corresponding entries ci in the objective
function, it is easy to see that x is optimal with respect to c if and only if 1l
is optimal for the new objective function vector. The same argument shows
that a verification oracle for X yields one for X̄.
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A first call of the verification oracle with x = 1l and c as input will deter-
mine whether x is optimal with respect to c. If it is not, we identify a better
feasible solution with the help of the following algorithm.

1: M :=
∑n

i=1 |ci|+ 1;
2: for i = 1 to n do
3: ci := ci −M ;
4: call the verification oracle with input x and c;
5: if x is optimal then
6: yi := 0;
7: ci := ci + M
8: else
9: yi := 1

10: return y.

Because c may change during the course of the algorithm, we introduce
the following terminology to simplify the subsequent exposition. We say that
a feasible solution is “better” than x if the objective function value of that so-
lution with respect to the original vector c is smaller than that of x. Moreover,
we will use ci to denote the objective function defined by line 3 in iteration i
of the algorithm.

It is instructive to go carefully over the first iteration, not only because
it will serve as the base case for the inductive proof, but also because it lays
out the kind of arguments that we will use in the inductive step. For i = 1,
the verification oracle is called with an objective function vector whose first
coordinate has been changed to c1 −M . If x is optimal for c1, we claim that
the first component of all feasible solutions that are better than x has to be
0. Suppose not. Then there exists a solution z ∈ X with cz < cx and z1 = 1.
But then, c1z = cz−M < cx−M = c1x, which is a contradiction. We record
this by setting y1 = 0 in line 6 of the algorithm. On the other hand, we claim
that, if x is not optimal for c1, then there must exist some better feasible
solution whose first component is 1. Again, suppose this was not the case. Let
z ∈ X be an arbitrary solution that is better than x; i.e., cz < cx. According
to our assumption, z1 = 0. Note that cx − cz ≤

∑n
i=1 |ci| < M . Therefore,

c1x = cx − M < cz = c1z, a contradiction. Hence, there has to be a better
solution whose first coordinate is 1. We keep this in mind by setting y1 = 1 in
line 9. Moreover, in this case we do not revert c1 to its original value. Keeping
c1 − M ensures that, from now on, we are only looking for solutions better
than x whose first component is 1.

We now continue by induction over the number of iterations. Our induction
hypothesis is the following:

After iteration i, there exists a better feasible solution whose first i
components are equal to y1, y2, . . . , yi, respectively.

It follows from the discussion above that the induction hypothesis is satisfied
after the first iteration. So let us assume that it is true after i iterations, and
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consider iteration i + 1. Note that

ci+1 = c−
i∑

k=1

ykMek −Mei+1.

Let us first consider the case that x is optimal for ci+1. Suppose there exists
a better solution z ∈ X with zk = yk for k = 1, 2, . . . , i, and zi+1 = 1. Then,

ci+1z = cz −M

(
i∑

k=1

yk + 1

)
< cx−M

(
i∑

k=1

yk + 1

)
= ci+1x.

Hence, all solutions z with zk = yk for k = 1, 2, . . . , i, which are better than
x, have zi+1 = 0. If x is not optimal with respect to ci+1, let z be a better
solution such that zk = yk for k = 1, 2, . . . , i, and zi+1 = 0. Since cx < cz+M ,
we obtain

ci+1x = cx−M

(
i∑

k=1

yk + 1

)
< cz −M

(
i∑

k=1

yk + 1

)
+ M = ci+1z.

Consequently, there exists a better solution z such that zk = yk for k =
1, 2, . . . , i, and zi+1 = 1.

It follows that, after n iterations, y is a better feasible solution than x. ut

The next result is much simpler to obtain.

Lemma 20. Assume that X ⊆ {0, 1}n is given by a verification oracle. Then,
the postoptimality problem for X can be solved in polynomial time.

Proof. An input of the postoptimality problem is specified by a vector c, an
optimal solution x∗, and an index i. We discuss here the case that x∗1 = 1. The
other case, x∗i = 0, is similar. Let M :=

∑n
k=1 |ck| + 1, and C := max{|ck| :

k = 1, 2, . . . , n}. We perform binary search over the interval [0,M ] to identify
the largest value of δ such that x∗ remains optimal for c+ δei. As all data are
integral, this requires O(log(nC)) calls of the verification oracle. Moreover, if
x∗ is optimal for c + Mei, then x∗ continues to be optimal for all values of δ;
i.e., ρi = ∞. This completes the proof. ut

Actually, this completes the proof not only of Lemma 20, but also of The-
orem 1. We refer to [10, Theorem 6.4.9] for a proof of the missing equivalence
between optimization, separation, and violation.

3.3 Notes and References

All primal algorithms6 for solving specific combinatorial optimization prob-
lems, i.e., algorithms that move from one feasible solution to the next while
6 Primal algorithms are sometimes also referred to as exact local search algorithms,

see Section 4.2 below.
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improving the objective function value, solve, by definition, the augmenta-
tion problem in each iteration. This includes well-known algorithms such as
cycle-canceling algorithms for min-cost flow problems and augmenting path
algorithms for matching problems. However, the design of these algorithms
often seems to require finding particular augmenting structures, such as cy-
cles of minimum mean cost, in order to guarantee that the total number
of iterations is polynomial in the input size. The universal applicability of
the bit-scaling framework in the proof of Lemma 5 was not realized before
1995, when Grötschel and Lovász [8] and Schulz, Weismantel, and Ziegler [25]
first published this result. Grötschel and Lovász underlined its usefulness by
devising a simple polynomial-time algorithm for finding a maximum-weight
Eulerian subdigraph in an arc-weighted directed graph. The paper by Schulz,
Weismantel, and Ziegler contained some other equivalences, including that
between optimization and “irreducible” augmentation, a concept relevant to
test sets in integer programming [31], and that of optimization and maxi-
mum mean augmentation (Lemma 14), parts of which were later extended to
general integer programming; see Section 6 below.

The verification and the component determination problems both go back
to a paper by Papadimitriou and Steiglitz [19], in which they showed that the
following two problems are NP-hard for the Traveling Salesman Prob-
lem:

Given an instance and a tour x, is x suboptimal?
Given an instance and an edge e, does e not appear in any optimal
tour?

Lemmata 6 and 19, first brought up in [26], imply that these two problems are
in fact NP-hard for every NP-hard linear combinatorial optimization problem.

As mentioned in the introduction, the equivalence of decision, evaluation,
and optimization is widely known, but it appears difficult to pin down its
original source. The direction from evaluation to optimization has sometimes
been proved using the self-reducibility that certain problems, such as Max-
imum Satisfiability, exhibit [29, Chapter A.5]. Exploiting this property
effectively amounts to the explicit fixing of variables, which can equally be
achieved by modifying objective function coefficients accordingly, without ne-
cessitating a change of the set X of feasible solutions. If we look beyond the
realm of linear combinatorial optimization problems, the question whether
evaluation is as hard as optimization has been settled in the affirmative for all
optimization problems whose associated decision problems are NP-complete
[2, Chapter 1.4.4]. In related work, Crescenzi and Silvestri [4] provided suffi-
cient and necessary conditions for the existence of optimization problems for
which obtaining an optimal solution is harder than computing the optimal
cost.

The unit increment problem, which together with Lemmata 3 and 13 is put
forward in [16], is included here because Lemma 13 remains valid for general
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integer linear programming problems. Section 6 has more on this topic as well
as on the equivalence of evaluation and optimization in this broader context.

Ahuja and Orlin [1] showed that if a linear combinatorial optimization
problem can be solved in polynomial time, then so can its inverse problem.
Lemma 4 sharpens their result a bit, at the same time establishing a direct
connection between augmentation and separation, which was speculated on
earlier in [26].

The origins of primal separation trace back to primal cutting plane algo-
rithms for integer programming; see, e.g., [18, 33] for earlier studies, and [13]
for a more recent account. Padberg and Grötschel [17, Exercise 7] noted that
the primal separation problem can be transformed into the standard separa-
tion problem; the proof of Lemma 16 uses the particularities of 0/1-polytopes
to simplify the argument. The reverse direction, especially that primal sep-
aration implies augmentation, was established by Eisenbrand, Rinaldi, and
Ventura [5]. Their original proof is based on solving a constrained version
of the verification problem. In this variant, an index set I ⊆ {1, 2, . . . , n}
is added to the input, and the question is whether x minimizes cy over
{y ∈ X : yi = xi for all i ∈ I}. However, it is not difficult to see that this
version is polynomial-time equivalent to the ordinary verification problem. In
fact, this is true for similar variants of other problems, such as component
determination.

The component negation problem was introduced by Ramaswamy and
Chakravarti [21] in their proof of the equivalence of optimization and postopti-
mality. The proof presented here is a streamlined version of the original proof;
in particular, Lemma 8, Proposition 9, Lemma 10, Lemma 12, and Lemma 18
are all contained, either explicitly or implicitly, in their paper. Chakravarti
and Wagelmans [3] generalized this result to allow for simultaneous changes
of more than one objective function coefficient. In particular, they proved
Lemma 15 and also showed that a similar approach works if the deviation
from the original objective function coefficients is measured in a relative sense
instead of in terms of absolute differences. They also addressed situations in
which the objective function coefficients are restricted to be nonnegative, as
was previously done for the single variable postoptimality problem in [21, 28].

More generally, a second look at the proofs in Section 3.2 reveals that most
results remain valid if the objective function coefficients are restricted to be
nonnegative for both the given oracle and the problem to be solved. Yet, some
problem statements have to be adjusted accordingly. For instance, if we do
not restrict the objective function coefficients in any way, it is straightforward
to show that the version of the component determination problem considered
here is polynomial-time equivalent to the one in which we inquire about the
existence of an optimal solution whose i-th coordinate is 0. For nonnegative
cost coefficients, however, this is not true. While the latter version remains
equivalent with optimization and evaluation, it is NP-complete to decide, for
example, whether a given directed graph with nonnegative arc costs has a
shortest s-t-path that contains a specific arc [6].
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3.4 Weakly vs. Strongly Polynomial Time

Some of the reductions in the proof of Theorem 1 lead to weakly polynomial
time algorithms, and one may wonder whether the 15 problems are strongly
polynomial time equivalent. As far as linear combinatorial optimization prob-
lems are concerned, Frank and Tardos [7] provided a rounding scheme that
resolves this matter for good:

Lemma 21. There exists an algorithm that, for a given positive integer Q ∈
Z+ and a rational vector c ∈ Qn, finds an integer vector d ∈ Zn such that
‖d‖∞ ≤ 24n3

Qn(n+2) and sign(cz) = sign(dz) whenever z is an integer vector
with ‖z‖1 ≤ Q−1. Moreover, the running time of this algorithm is polynomial
in n and log Q.

For example, with Q := n + 1, given an objective function vector c ∈ Qn,
we obtain another objective function vector d ∈ Zn such that cx ≤ cy if and
only if dx ≤ dy, for all x, y ∈ {0, 1}n. Moreover, the size of d is polynomial in
n: log ‖d‖∞ = O(n3). For instance, if we apply this rounding procedure prior
to the bit-scaling algorithm described in the proof of Lemma 5, then it follows
that the algorithm described therein runs in strongly oracle-polynomial time.
Similar preprocessing is possible in other cases, yielding:

Corollary 22. Let Π be a linear combinatorial optimization problem. If any
one of the 15 problems listed in Theorem 1 can be solved in strongly polynomial
time, then so can any other problem from this list.

4 Further Consequences

There are two ways of looking at Theorem 1. On the one hand, it is a tool to
prove negative results. If a linear combinatorial optimization problem is NP-
hard, then so are several other computational aspects related to that problem.
Sensitivity analysis is hard, finding another optimal solution for a nearby ob-
jective function is hard, and so is recognizing an optimal solution. On the
other hand, if the problem can be solved in polynomial time, it is convenient
to know, for instance, that the simultaneous postoptimality problem can be
solved in polynomial time as well. Moreover, Theorem 1 provides a variety of
means to show that a linear combinatorial optimization problem can be solved
in polynomial time, giving the algorithm designer some choice. Depending on
the circumstances, one way of attack may prove to be simpler than another.
For example, solving the primal separation problem of the Perfect Match-
ing Problem in some graph G = (V,E) requires only |V |/2 elementary
maximum flow computations [5], compared to more complicated primal aug-
mentation algorithms or minimum odd cut algorithms for solving the ordinary
separation problem.

We continue by exploring some other implications of Theorem 1.
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4.1 0/1-Polytopes and Linear Programming

As discussed earlier, optimizing cx over X ⊆ {0, 1}n is equivalent to opti-
mizing cx over P := conv{X}. By definition, P is a 0/1-polytope; i.e., all its
vertices have coordinates 0 or 1. Two vertices of P are adjacent if they belong
to the same edge of P . Thanks to the following well-known fact from linear
programming, Lemma 5 has implications for the combinatorial structure of
0/1-polytopes, and for linear programming over 0/1-polytopes, which are thus
far elusive for general polytopes.

Fact 23. Let P be a polytope, and consider min{cx : x ∈ P}, for some c ∈ Zn.
If z is a non-optimal vertex of P , then there exists an adjacent vertex y ∈ P
such that cy < cz.

The vertices and edges of a polytope P form an undirected graph. The
diameter of P is the diameter of that graph; that is, it is the smallest number
δ such that any two vertices of P are connected by a path consisting of at
most δ edges. Lemma 5 yields an alternate proof of the following result, due
to Naddef [14].

Lemma 24. The diameter of a 0/1-polytope is at most its dimension.

Proof. Let P ⊆ [0, 1]n be a 0/1-polytope. Without loss of generality, we may
assume that P is full-dimensional (see, e.g., [34, Chapter 3.3]). Let y and z
be two distinct vertices of P . If we define the vector c by setting

ci :=

{
1 if yi = 0,

−1 if yi = 1,
for i = 1, 2, . . . , n,

then y is the unique minimum of cx over P . According to the proof of
Lemma 5, starting from z, we obtain y after at most n calls of the aug-
mentation oracle. By Fact 23, we may assume that the oracle, when fed with
a non-optimal vertex x, outputs a vertex that is adjacent to x. The vertices
returned by the oracle form the required path of length at most n. ut

Naddef [14] went on to show that Lemma 24 implies that the Hirsch con-
jecture is true for 0/1-polytopes:

Corollary 25. The diameter of a 0/1-polytope is bounded by the number of
its facets minus its dimension.

Proof. We include a proof for the sake of completeness. Let P be a 0/1-
polytope, and let f be its number of facets, and n its dimension. If f ≥ 2n,
we are done, by Lemma 24. If f < 2n, any two vertices of P lie on a common
facet, and the result follows by induction over the dimension. ut

It is well known that the diameter of a polytope is a lower bound for the
number of iterations needed by the simplex algorithm, regardless of the pivot
rule used. The following result provides a corresponding upper bound, for a
particular variant of the simplex algorithm.
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Theorem 26. Let A ∈ Zm×n, b ∈ Zm, c ∈ Zn, and x0 ∈ {0, 1}n with Ax0 ≥ b
be given. Moreover, assume that P := {x ∈ Rn : Ax ≥ b} is a 0/1-polytope.
Then, there exists a variant of the simplex algorithm that solves min{cx : x ∈
P} by visiting at most O(n4) vertices of P .

Proof. In a first step, we use the polynomial-time algorithm of Lemma 21
with input c and Q := n + 1 to replace the given objective function vector c
by another objective function vector d ∈ Zn. As a result, log ‖d‖∞ = O(n3),
and, for any two points x, y ∈ {0, 1}n, cx ≤ cy if and only if dx ≤ dy.
According to the algorithm given in the proof of Lemma 5, we then proceed
in phases. In phase k, we minimize the objective function vector obtained by
only considering the k most significant bits of every coefficient of d. Each phase
starts with the optimal solution from the previous phase, with the exception
of the first phase, which starts with x0. In each phase, we use the simplex
algorithm with any monotone pivot rule to find an optimum. As all vertices
of P are 0/1-points, Lemma 5 implies the result. ut

We conclude this section by pointing out that the path of vertices traced
by the algorithm described in the proof of Theorem 26 is not necessarily
monotone in d, nor in c.

4.2 Exact Local Search

The simplex algorithm has often been rightly characterized as a local search
algorithm, where the neighborhood of a vertex contains its adjacent vertices
(e.g., [20]). By Fact 23, this neighborhood is exact.7 Conversely, the unique
minimal exact neighborhood of a linear combinatorial optimization problem
Π is precisely the one that would be searched by the simplex algorithm on
P = conv{X} [23]. It turns out that Theorem 1 subsumes some generalizations
of problem-specific results pertaining to exact neighborhoods.

After Savage, Weiner and Bagchi [22] had shown that any exact neighbor-
hood for the Traveling Salesman Problem has to have exponential size,
Papadimitriou and Steiglitz [19] formulated the following result for the TSP.

Corollary 27. If P 6=NP, no NP-hard linear combinatorial optimization prob-
lem can have an exact neighborhood that can be searched in polynomial time
for an improving solution.

Proof. Let Π be an NP-hard linear combinatorial optimization problem, and
let N be an exact neighborhood. If one can check in polynomial time whether
the current feasible solution is locally (= globally) optimal, and, if not, pro-
duce a better feasible solution, then there is a polynomial-time algorithm for
7 In general, a neighborhood function N for a linear combinatorial optimization

problem Π is called exact, if, for any instance X, any locally optimal solution is
already globally optimal; i.e., cx ≤ cy for all y ∈ N(x) implies cx ≤ cy for all
y ∈ X, for all c ∈ Zn.
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solving the augmentation problem. Hence, by Lemma 5, Π can be solved in
polynomial time, which would imply P=NP. ut

For linear combinatorial optimization problems, Corollary 27 refines earlier
results of Tovey [27] and Yannakakis [32, Theorem 18], which needed the
stronger assumption of either NP 6=co-NP, or that the problem be strongly
NP-hard.

5 Local vs. Global Optimality

In light of the results for exact neighborhoods, it is natural to ask whether
some of them remain valid in situations where local optima are not necessar-
ily globally optimal. In particular, it often is the case that a neighborhood
can be searched fast, either because it is of polynomial size (examples include
the k-exchange neighborhood for the Traveling Salesman Problem for
some constant k, the flip neighborhood for the maximum Cut Problem, and
the swap neighborhood for the Graph Partitioning Problem), or because
there is an efficient algorithm to identify an improving solution in the neigh-
borhood, if one exists (examples of neighborhoods of exponential size that can
be searched in polynomial time include the twisted sequences neighborhood,
the pyramidal tours neighborhood, and the permutation tree neighborhood for
the Traveling Salesman Problem). Put differently, given a linear combi-
natorial optimization problem Π together with a neighborhood N , the “local”
version of the augmentation problem can typically be solved in polynomial
time.8

Local Augmentation Problem. Given a feasible solution x ∈ X and a vector
c ∈ Zn, find a feasible solution y ∈ N(x) such that cy < cx, or state that x is
locally optimal with respect to N and c.

However, an analogous result to Lemma 5 is not known. That is, given
a local augmentation oracle, we do not have an oracle-polynomial time algo-
rithm for computing a local optimum. In fact, no polynomial-time algorithm
for finding a local optimum is known for any of the above-mentioned problems
with neighborhoods of polynomial size,9 nor for many others. It is instructive
to go back to the proof of Lemma 5 and see where it fails when one replaces
“augmentation oracle” with “local augmentation oracle” and “optimum” with
“local optimum.” We will now reproduce an argument from [15], which ac-
tually shows that a similar result cannot hold, unless one uses additional
information.

8 Linear combinatorial optimization problems and their neighborhoods for which
this is the case belong to the complexity class PLS, defined in [11].

9 Indeed, these problems are PLS-complete; i.e., the existence of a polynomial-time
algorithm that finds local optima for any one of them would imply the existence
of such an algorithm for all problems in PLS [11, 32].
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More specifically, let A be any algorithm for finding a local optimum, which
only uses the following information: the objective function vector c, an initial
feasible solution x0 ∈ X, a local augmentation oracle, and a feasibility oracle.
The feasibility oracle accepts as input any point x ∈ {0, 1}n, and it answers
“yes” or “no,” depending on whether x belongs to X or not.

Suppose the coefficients of the objective function vector c are ci = 2i−1,
for i = 1, 2, . . . , n, and the initial feasible solution is x0 = 1l. Neither
the neighborhood nor the set of feasible solutions is fully specified in ad-
vance; an adversary will adjust them dynamically, according to the ora-
cle calls made by the algorithm. Let us denote the other potential feasi-
ble solutions by x1, x2, . . . , x2n−1 ∈ {0, 1}n, with the understanding that
cx1 > cx2 > · · · > cx2n−1. The neighborhood of a feasible solution xi consists
of xj , where j is the smallest index larger than i such that xj is feasible. If
there is no feasible solution xj with i < j, then the neighborhood of xi is
empty.

This neighborhood is exact for the objective function vector c specified
above, but it is not necessarily exact for other objective function vectors.
The adversary acts as follows. If algorithm A calls the feasibility oracle with
some point xi ∈ {0, 1}n that has not yet been proclaimed feasible, then xi is
declared infeasible. If the algorithm calls the local augmentation oracle with
input xi ∈ X and d ∈ Zn, we distinguish two cases. Let j > i be the smallest
index such that xj has not been labeled infeasible. If such an index exists, then
xj is marked as feasible (but A is not told). If such an index does not exist or
if dxi ≤ dxj , then the oracle confirms xi as locally optimal with respect to d.
Otherwise, it returns xj .

We claim that A needs to touch every single point x0, x1, . . . , x2n−1 before
it can announce the correct solution. Indeed, if A never uses the feasibility
oracle, then x2n−1 is the only local optimum, and the local augmentation
oracle with input xi and d will either return xi+1, or assert that xi is a
local optimum for d. If A does make use of the feasibility oracle, the local
augmentation oracle may return feasible solutions xj with j − i > 1, but
only if A previously checked all solutions xi+1, xi+2, . . . , xj−1 for feasibility.
Moreover, the unique local optimum may be attained by some xi with i <
2n − 1, but only if A previously called the feasibility oracle for all points
xi+1, xi+2, . . . , x2n−1. In either case, A requires exponential time.

While the prospects of computing a local optimum in oracle-polynomial
time are bleak, it is possible to find a solution that is “nearly” locally optimal
in polynomial time [15]:

Theorem 28. Let x0 ∈ X, c ∈ Zn
+, and ε > 0 be given. Assume that the set

X ⊆ {0, 1}n of feasible solutions and the neighborhood function N : X → 2N

are specified via a local augmentation oracle. Then, there exists an oracle-
polynomial time algorithm that computes a solution xε ∈ X such that

cxε ≤ (1 + ε)cx for all x ∈ N(xε). (3)
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A solution xε that satisfies (3) is called an ε-local optimum.

Proof. The algorithm works in phases. Let xk−1 be the current feasible so-
lution at the end of the previous phase. At the beginning of phase k, each
objective function coefficient is rounded up to the nearest multiple of q, where
q := (cxk−1ε)/(2n(1 + ε)). Let ck be the resulting objective function vector.
In phase k, we call the local augmentation oracle repeatedly, feeding it with
ck and its own output. The k-th phase ends either when the oracle declares
the current feasible solution x locally optimal for ck, or if the current feasible
solution x satisfies cx ≤ cxk−1/2, whichever happens first. In the former case,
the algorithm terminates and returns xε := x; in the latter case, xk := x, and
we start phase k + 1.

Assume that the algorithm stops during phase k. Let xε be the solution
returned by the algorithm. We will show that xε is an ε-local optimum. As
c ≤ ck, we have cxε ≤ ckxε. Since xε is locally optimal with respect to ck,
we get ckxε ≤ ckx, for all x ∈ N(xε). By the definition of ck, we have ckx =∑n

i=1d
ci

q eqxi ≤
∑n

i=1 q( ci

q + 1)xi ≤ cx + nq. The definition of q and the fact
that cxε ≥ cxk−1/2 help to make this chain of inequalities complete, yielding
cxε ≤ cx + ε

1+εcx
ε, for all x ∈ N(xε). It follows that xε is an ε-local optimum.

As for the running time, note that the objective function values of any two
consecutive solutions in any given phase differ by at least q. Hence, there are
at most O(n/ε) calls of the oracle within each phase. The number of phases is
itself bounded by O(log(cx0)). Thus, the algorithm runs in oracle-polynomial
time. ut

One can actually show that the number of oracle calls made by the algo-
rithm is bounded by O(ε−1n2 log n). For details on how to prove this bound
as well as other aspects of ε-local optima, we refer to [15].

6 General Integer Programming

So far, our discussion has revolved around combinatorial optimization prob-
lems that can be naturally formulated as 0/1-integer programs. It is natural
to wonder which of the results carry forward to general integer programs,
in which variables are still integer, but not necessarily binary. Although this
topic has received less attention in the literature, there are a few results worth
mentioning.

Throughout this section, we assume that upper bounds ui ∈ Z+ on the
variables xi are explicitly known. Thus, a typical feasible region X is of the
form X ⊆ {0, 1, . . . , u1}× {0, 1, . . . , u2}× · · · × {0, 1, . . . , un}. As before, for a
given objective function vector c ∈ Zn, let C := max{|ci| : i = 1, 2, . . . , n}; in
addition, U := max{ui : i = 1, 2, . . . , n} + 1. We also assume that a feasible
point x0 ∈ X is given.
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“mma → opt”

The first result concerns sets of feasible solutions X that are given by
a maximum mean augmentation oracle. Let x∗ be an optimal solution of
min{cx : x ∈ X}. Starting from x0, we can iteratively call the oracle with
input xi and c. If xi is not yet optimal, let xi+1 ∈ X be the feasible solution
of lower cost returned by the oracle. It is not difficult to show that, in every
iteration i, we have c(xi − xi+1) ≥ c(xi − x∗)/n. Hence, we get the following
theorem of [24].

Theorem 29. Let X be given by a maximum mean augmentation oracle.
Then, there exists an oracle-polynomial time algorithm that solves the opti-
mization problem for X. The number of calls to the oracle is O(n log(nCU)).

The authors of [24] consider other maximum ratio oracles as well, including
“Wallacher’s ratio,” which was inspired by barrier functions used in interior-
point algorithms for linear programming [30]. This ratio, specified in equa-
tion (4) below, is instrumental in proving the next result.

“aug± → opt”

Here, the subindex “±” alludes to a distinction between coordinates that
are increased and those that are decreased during augmentation, which is
immaterial for 0/1-integer programs. For a vector z ∈ Zn, we use z+ to denote
its positive part, and z− for its negative part. That is, z+

i := max{zi, 0},
z−i := max{−zi, 0}, for i = 1, 2, . . . , n, and, therefore, z = z+ − z−. We can
now define the following refinement of the augmentation problem, which was
introduced in [24].

Directed Augmentation Problem (aug±). Given a feasible solution x ∈ X,
and two vectors c, d ∈ Zn, find a direction z ∈ Zn such that x + z ∈ X and
cz+ + dz− < 0, or assert that such a vector z does not exist.

For example, in min-cost flow problems, the directed augmentation prob-
lem corresponds to the ordinary augmentation problem for the residual graph.

For any feasible solution x ∈ X and any coordinate i ∈ {1, 2, . . . , n}, we
define pi(x) := 1/(ui − xi) and ni(x) := 1/xi, with the understanding that
1/0 = ∞. Binary search can be used to solve the following maximum ratio
augmentation problem in oracle-polynomial time, given a directed augmenta-
tion oracle.

Maximum Ratio Augmentation Problem (mra). Given a feasible solution x ∈
X, and a vector c ∈ Zn, find a direction z = z+ − z− such that x + z ∈ X,
cz < 0, and z maximizes the ratio

|cz|
p(x)z+ + n(x)z−

, (4)
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or assert that x is optimal.

For the following result, originally proved in [24], we need the additional
technical assumption that X is of the form X = {x ∈ Zn : Ax = b, 0 ≤ x ≤ u},
even though neither the matrix A nor the vector b need to be known explicitly.

Theorem 30. Let X be given by a directed augmentation oracle. Then, there
exists an algorithm that solves the optimization problem for X in oracle-
polynomial time.

Proof. We have already sketched the reduction from the maximum ratio aug-
mentation problem to the directed augmentation problem. It remains to show
that the optimization problem can be solved in oracle-polynomial time with
the help of a maximum ratio augmentation oracle. The algorithm is quite
similar to the one used in the proof of Theorem 29. That is, we simply call
the maximum ratio oracle repeatedly, feeding it with its own output from
the previous iteration. The only difference is that we “stretch” the feasible
direction z returned by the oracle, if necessary. Namely, we make sure that
x + z is feasible, but x + 2z is not. Note that this implies that there exists a
coordinate i such that either z+

i > (ui − xi)/2, or z−i > xi/2. Moreover, if z
maximizes the ratio (4), then so does any positive multiple of z.

To analyze the running time of this algorithm, let x be the feasible point at
the start of the current iteration, and let x∗ be an optimal solution. Moreover,
let z∗ := x∗−x. Using the previous observation and p(x)(z∗)+ +n(x)(z∗)− ≤
n, we obtain that |cz| ≥ |cz∗|/(2n). Since the difference in objective function
values between the initial feasible solution x0 and the optimal solution x∗ is
O(nCU), it follows that the algorithm terminates with an optimal solution
after O(n log(nCU)) calls of the maximum ratio oracle. ut

In total, one needs O(n2 log2(nCU)) calls of the directed augmentation
oracle to solve the optimization problem. A more efficient algorithm, which
gets by with O(n log(nCU)) oracle calls, is described in [24].

inc → opt and eva → opt

Interestingly, Lemma 13 and its proof remain valid for general integer pro-
grams.10 Consequently, given a unit increment oracle, one can solve the opti-
mization problem in oracle polynomial time. In fact, one can show something
stronger. To facilitate the discussion, we restrict ourselves to nonnegative ob-
jective function vectors and introduce the following evaluation version of the
unit increment problem.

10 The necessary modification of the switch operation for coordinates with negative
objective function coefficients is straightforward: xi 7→ ui − xi.
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Unit Increment Evaluation Problem (inc-eva). Given a vector c ∈ Zn
+, and

an index i ∈ {1, 2, . . . , n}, compute the difference of the optimal objective
function values for min{(c + ei)x : x ∈ X} and min{cx : x ∈ X}.

Accordingly, the output is a single number. Obviously, given an oracle for
the evaluation problem, one can solve the unit increment evaluation problem
in oracle-polynomial time. In fact, the reverse is also true, as can easily be
derived from the proof of Lemma 13. The following theorem, taken from [16],
shows that either oracle suffices to solve the optimization version of general
integer programming problems.

Theorem 31. Assume that X is given by a (unit increment) evaluation ora-
cle. Then one can solve the optimization problem for X in oracle-polynomial
time.

Proof. Here is an outline of the proof. Given c ∈ Zn
+, let y be the lexicographi-

cally smallest optimal solution of min{cx : x ∈ X}. We define a new objective
function vector d that has the following properties:

(a) The solution y is optimal with respect to d.
(b) The solution y is optimal with respect to d + ei, for all i = 1, 2, . . . , n.

Obviously, if this is the case, one can use the oracle to compute (d+ei)y−dy,
and recover y via yi = (d + ei)y − dy, for i = 1, 2, . . . , n.

It remains to define the objective function vector d:

di := nU2nci + (n− i + 1)U2(n−i) for i = 1, 2, . . . , n.

The verification of (a) and (b) is left to the reader. ut
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