Skip to main content

Belief Networks for Bioinformatics

  • Chapter

Part of the book series: Studies in Computational Intelligence ((SCI,volume 94))

Summary

Recent publications illustrate successful applications of belief networks1 (BNs) and related probabilistic networks in the domain of bioinformatics. Examples are the modeling of gene regulation networks [6,14,26], the discovering of metabolic [40,83] and signalling pathways [94], sequence analysis [9, 10], protein structure [16, 28, 76], and linkage analysis [55]. Belief networks are applied broadly in health care and medicine for diagnosis and as a data mining tool [57, 60, 61]. New developments in learning belief networks from heterogeneous data sources [40, 56, 67, 80, 82, 96] show that belief networks are becoming an important tool for dealing with high-throughput data at a large scale, not only at the genetic and biochemical level, but also at the level of systems biology.

In this chapter we introduce belief networks and describe their current use within bioinformatics. The goal of the chapter is to help the reader to understand and apply belief networks in the domain of bioinformatics. To achieve this, we (1) make the reader acquainted with the basic mathematical background of belief networks, (2) introduce algorithms to learn and to query belief networks, (3) describe the current state-of-the-art by discussing several real-world applications in bioinformatics, and (4) discuss (free and commercially) available software tools.

The chapter is organized as follows. We start (in Section 3.1) with introducing the concept of belief networks. Then (in Section 3.2) we present some basic algorithms to infer on belief networks and to learn belief networks from data. Section 3.3 is dedicated to a (non-exhaustive) range of extensions to and variants of the standard belief-network concept. We continue (in Section 3.4) by discussing some techniques and guidelines to construct belief networks from domain knowledge. Section 3.5 reviews some recent applications of belief networks in the domain of bioinformatics. In Section 3.6 we discuss a range of tools that are available for constructing, querying, and learning belief networks. Finally, (in Section 3.7) we provide a brief guide to the literature on belief networks.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Silvia Acid and Luis M. de Campos. A hybrid methodology for learning belief networks. Int. J. Approx. Reasoning, 27(3):235–262, 2001.

    Article  MathSciNet  Google Scholar 

  2. Cornelis A. Albers, Martijn A.R. Leisink, and Hilbert J. Kappen. The cluster variation method for efficient linkage analysis on extended pedigrees. BMC Bioinformatics, 7 suppl 1:xx, 2006.

    Google Scholar 

  3. Ethem Alpaydin. Introduction to Machine Learning. The MIT Press, 2004.

    Google Scholar 

  4. S.K. Andersen, K.G. Olesen, F.V. Jensen, and F. Jensen. Hugin - a shell for building belief universes for expert systems. In Proceedings IJCAI, pages 1080–1085, 1989.

    Google Scholar 

  5. Pierre Baldi and Søren Brunak. Bioinformatics the Machine Learning Approach, 2nd edition. MIT Press, Cambridge, MA, 2001.

    Google Scholar 

  6. Katia Basso, Adam A. Margolin, Gustavo Stolovitzky, Ulf Klein, Ricardo Dalla-Favera, and Andrea Califano. Reverse engineering of regulatory networks in humann B cells. Nature Genetics, 37(4):382–390, 2005.

    Article  Google Scholar 

  7. Alexis Battle, Eran Segal, and Daphe Koller. Probabilistic discovery of overlapping cellular processes and their regulation. Computational Biology, 12(7):909–927, 2005.

    Article  Google Scholar 

  8. L.E. Baum, T. Petrie, G. Soules, and N. Weiss. A maximization technique occurring in the statistical analysis of probabilistic functions of markov chains. Ann. Math. Statist, 41(1):164–171, 1970.

    Article  MathSciNet  Google Scholar 

  9. I. Ben-Gal, A. Shani, A. Gohr, J. Grau, S. Arviv, A. Shmilovici, S. Posch, and I. Grosse. Identification of transcription factor binding sites with variable-order bayesian networks. Bioinformatics, 21(11):2657–2666, 2005.

    Article  Google Scholar 

  10. Joseph Bockhorst, Mark Craven, David Page, Jude Shavlik, and Jeremy Glasner. A bayesian network approach to operon prediction. Bioinformatics, 19(10):1227–1235, 2003.

    Article  Google Scholar 

  11. Craig Boutilier, Nir Friedman, Mosies Goldszmidt, and Daphne Koller. Context-specific independence in bayesian networks. In UAI96, pages 115–123, 1996.

    Google Scholar 

  12. J. Boyan. Learning evaluation functions for global optimization. PhD thesis, Carnegie Mellon University, Pittsburgh, PA, 1998.

    Google Scholar 

  13. Mark Chavira, Adnan Darwiche, and Manfred Jaeger. Compiling relational bayesian networks for exact inference. Int. Journal of Approximate Reasoning, 42:4–20, 2006.

    Article  MathSciNet  Google Scholar 

  14. Xue-Wen Chen, Gopalakrishna Anantha, and Xinhun Wang. An effective structure learning method for constructing gene networks. Bioinformatics, 22(11):1367–1374, 2006.

    Article  Google Scholar 

  15. David Maxwell Chickering. Learning equivalence classes of bayesian network structures. Journal of Machine Learning Research, 2:445–498, 2002.

    Article  MathSciNet  Google Scholar 

  16. Wei Chu and Zoubin Ghahramani. Protein secondary structure prediction using sigmoid belief networks to parameterize segmental semi-markov fields. In Proceedings of the European Symposium on Artificial Neural Networks ESANN’2004, pages 81–86, Bruges, Belgium, 2004.

    Google Scholar 

  17. Gregory F. Cooper. Probabilistic inference using belief networks is NP-hard. Artificial Intelligence, 42:393–405, 1990.

    Article  MathSciNet  Google Scholar 

  18. Gregory F. Cooper. A bayesian method for learning belief networks that contain hidden variables. Journal of Intelligent Information Systems, 4:71–88, 1995.

    Article  Google Scholar 

  19. Gregory F. Cooper and E. Herskovits. A bayesian method for the induction of probabilistc networks from data. Machine Learning, 9:309–347, 1992.

    Google Scholar 

  20. Paulo C.G. Costa, Kathryn B. Laskey, and Kenneth J. Laskey. Pr-owl: A framework for probabilistic ontologies. In Proceedings of the Fourth International Conference on Formal Ontology in Information Systems, 2006.

    Google Scholar 

  21. Robert G. Cowell. Conditions under which conditional independence and scoring methods lead to identical selection of bayesian network models. In UAI01, 2001.

    Google Scholar 

  22. Robert G. Cowell, A. Philip Dawid, S.L. Lauritzen, and D.J. Spiegelhalter. Probabilistic Networks and Expert Systems. Springer Verlag, Berlin, New York, 2003.

    Google Scholar 

  23. Adnan Darwiche. A differential approach to inference in bayesian networks. In UAI2000, pages 123–132, 2000.

    Google Scholar 

  24. Adnan Darwiche. New advances in compiling cnf to decomposable negation normal form. In ECAI 2004, 2004.

    Google Scholar 

  25. Denver Dash and Marek J. Druzdzel. A hybrid anytime algorithm for the construction of causal models from sparse data. In UAI99, 1999.

    Google Scholar 

  26. Hidde de Jong. Modeling and simulation of genetic regulatory systems: A literature overview. Computational Biology, 9(1):67–103, 2002.

    Article  Google Scholar 

  27. R. Dechter. Bucket elemination: a unifying framework for probabilistic inference. In UAI96, 1996.

    Google Scholar 

  28. Arthur L. Delcher, Simon Kasif, Harry R. Goldberg, and William H. Hsu. Protein secondary structure modelling with probabilistic networks. In Proceedings of the International Conference on Intelligent Systems and Molecular Biology, pages 109–117, 1993. (extended abstract).

    Google Scholar 

  29. H.H.L.M. Donkers, A.W. Werten, J.W.H.M. Uiterwijk, and H.J. van den Herik. Sequapro: A tool for semi-qualitative decision making. Technical Report CS 01-06, Department of Computer Science, Universiteit Maastricht, 2001.

    Google Scholar 

  30. Richard Durbin, Sean R. Eddy, Anders Krogh, and Graeme Mitchison. Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press, Cambridge, UK, 1999.

    Google Scholar 

  31. Sean R. Eddy. Profile hidden markov models. Bioinformatics, 14(9):755–763, 1998.

    Article  Google Scholar 

  32. G. Elidan, N. Lotner, N. Friedman, and D. Koller. Discovering hidden variables: A structure-based approach. In Advances in Neural Information Processing Systems (NIPS), 2000.

    Google Scholar 

  33. M. Fichelson and D. Geiger. Exact genetic linkage computations for general pedigrees. Bioinformatics, 18 Suppl. 1:S189–S198, 2002.

    Google Scholar 

  34. Ma’ayan Fichelson and Dan Geiger. Optimizing exact genetic link computations. Journal of Computational Biology, 11(2–3):263–275, 2004.

    Article  Google Scholar 

  35. Nir Friedman. Learning belief networks in the presence of missing values and hidden variables. In Proceedings of the Fourteenth International Conference on Machine Learning, 1997.

    Google Scholar 

  36. Nir Friedman. The bayesian structural em algorithm. In UAI98, 1998.

    Google Scholar 

  37. Nir Friedman. Inferring cellular networks using probabilistic graphical networks. Science, 303:799–805, 2004.

    Article  Google Scholar 

  38. Nir Friedman, Michal Linial, Iftach Nachman, and Dana Pe-er. Using bayesian networks to analyze expression data. Computational Biology, 7(3/4):601–620, 2000.

    Article  Google Scholar 

  39. Nir Friedman, Iftach Nachman, and Dana Pe’er. Learning bayesian network structure from massive datasets: the “sparse candidate” algorithm. In Proc. Fifteenth Conf. on Uncertainty in Artificial Intelligence (UAI), 1999.

    Google Scholar 

  40. Irit Gat-Viks, Amos Tanay, Daniela Raijman, and Ron Shamir. A probabilistic methodology for integrating knowledge and experiments on biological networks. Computational Biology, 13(2):165–181, 2006.

    Article  MathSciNet  Google Scholar 

  41. D. Griffeath. Introduction to markov random fields. In Kemeny, Knapp, and Snell, editors, Denumerable Markov Chains. Springer, 1976. 2nd edition.

    Google Scholar 

  42. Chris Harbron. Heuristic algorithms for finding inexpensive elimination schemes. Statistics and Computing, 5:275–287, 1995.

    Article  Google Scholar 

  43. David Heckerman. A tutorial on learning with bayesian networks. Technical report, Microsoft Research, 1995.

    Google Scholar 

  44. Manfred Jaeger. Relational bayesian nets. In D. Geiger and P.P. Shenoy, editors, Uncerrtainty in Artificial Intelligence (UAI97), pages 266–273, San Fransisco, CA, 1997. Morgan Kaufman Publishers.

    Google Scholar 

  45. Manfred Jaeger. Relational bayesian networks: a survey. Electronic Transactions in Artificial Intelligence, 6:xx, 2002.

    Google Scholar 

  46. Manfred Jeager. The Primula System: user’s guide, 2006.http://www.cs.aau.dk/ ˜jeager/primula.

  47. Claus Skaanning Jensen and Augustine Kong. Blocking gibbs sampling for linkage analysis in large pedigrees with many loops. American Journal of Human Genetics, 65:885–901, 1999.

    Article  Google Scholar 

  48. Finn V. Jensen. Bayesian Networks and Decision Graphs. Springer Verlag, New York, Berlin, 2001.

    Google Scholar 

  49. M.I. Jordan. Learning in Graphical Models. MIT Press, Cambridge, MA, 1998.

    Google Scholar 

  50. Kevin B. Korb and Ann E. Nicholson. Bayesian Artificial Intelligence. Chapman & Hall/CRC, Boca Raton, FL, 2004.

    Google Scholar 

  51. Timo Koski. Hidden Markov Models of Bioinformatics. Springer Verlag, Berlin, New York, 2001.

    Google Scholar 

  52. W. Lam and F. Bacchus. Learning bayesian belief networks: An approach based on the mdl principle. Computational Intelligence, 10:269–293, 1994.

    Article  Google Scholar 

  53. Kathryn B. Laskey. MEBN: A logic for open-world probabilistic reasoning. Technical Report C4I06-01, George Mason University C4I Center, 2006.

    Google Scholar 

  54. S. L. Lauritzen and D. J. Spiegelhalter. Local computations with probabilities on graphical structures and their application to expert systems. Journal of the Royal Statistical Society, Series B, 50(2):157–224, 1988.

    MathSciNet  Google Scholar 

  55. Steffen L. Lauritzen and Nuala Sheehan. Graphical models for genetic analysis. Statistical Science, 18(4):489–514, 2003.

    Article  MathSciNet  Google Scholar 

  56. Phil Hyoun Lee and Doheon Lee. Modularized learning of genetic interaction networks from biological annotations and mRNA expression data. Bioinformatics, 21(11):2739–2747, 2005.

    Article  Google Scholar 

  57. Sun-Mi Lee and Patricia A. Abbott. Bayesian networks for knowledge discovery in large datasets: basics for nurse researchers. Journal of Biomedical Informatics, 36(4–5):389–399, 2003.

    Article  Google Scholar 

  58. M. Leisink, H.J. Kappen, and H.G. Brunner. Linkage analysis: A bayesian approach. In ICANN 2002, number 2415 in LNCS, pages 595–600, 2002.

    Google Scholar 

  59. Arthur M. Lesk. Introduction to Bioinformatics. Oxford University Press, New York, NY, 2005.

    Google Scholar 

  60. Peter J.F. Lucas. Bayesian analysis, pattern analysis and data mining in health care. Current Opinion in Critical Care, 10:399–403, 2004.

    Article  Google Scholar 

  61. Peter J.F. Lucas. Bayesian networks in biomedicine and health-care. Artificial Intelligence in Medicine, 30:201–214, 2004.

    Article  Google Scholar 

  62. Suzanne M. Mahony and Kathryn B. Laskey. Network engineering for complex belief networks. In UAI97, 1997.

    Google Scholar 

  63. Kristin Missal, Michael A. Cross, and Dirk Drasdo. Gene network inference from incomplete expression data: Transcriptional control of hematopoietic commitment. Bioinformatics, 22(6):731–738, 2006.

    Article  Google Scholar 

  64. Kevin Murphy. Dynamic Bayesian Networks: Representation, Inference and Learning. PhD thesis, UC Berkeley, Computer Science Division, 2002.

    Google Scholar 

  65. R.E. Neapolitan. Learning Bayesian Networks. Prentice Hall, Pearson Education, Upper Saddle River, NJ, 2003.

    Google Scholar 

  66. R.M. Oliver and J.Q. Smith, editors. Influence Diagrams, Belief Nets and Decision Analysis. John Wiley & Sons, Chichester, UK, 1990.

    Google Scholar 

  67. David Page and Mark Craven. Biological applications of multi-relational data mining. SIGKDD Explorations, 5-1:69–79, 2003.

    Article  Google Scholar 

  68. Judea Pearl. Evidential reasoning using stochastic simulation of causal models. Artificial Intelligence, 32:245–257, 1987.

    Article  MathSciNet  Google Scholar 

  69. Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufman Publishers, San Mateo, CA, 1988.

    Google Scholar 

  70. Judea Pearl and T. Verma. A theory of inferred causation. In Proceedings of Principles of Knowledge Representation and Reasoning, 1991.

    Google Scholar 

  71. J.M. Peña, J. Björkegen, and J. Tegnér. Growing bayesian network models of gene networks from seed genes. Bioinformatics, 21(Suppl. 2):ii224–ii229, 2005.

    Article  Google Scholar 

  72. Bruno-Eduoard Perrin, Liva Ralaivola, Aurélien Mazurie, Samuele Bottani, Jacques Mallet, and Florence d’Alché Buc. Gene networks inference using dynamic bayesian networks. Bioinformatics, 19(Suppl. 2):ii138–ii148, 2003.

    Google Scholar 

  73. Antonio Piccolboni and Dan Gusfield. On the complexity of fundamental computational problems in pedigree analysis. Journal of Computational Biology, 10(5):763–773, 2003.

    Article  Google Scholar 

  74. Rainer Pudimat, Ernst-Günter Schukat-Talamazzini, and Rolf Backofen. A multiple-feature framework for modelling and predicting transcription factor binding sites. Bioinformatics, 21(14):3082–3088, 2005.

    Article  Google Scholar 

  75. Yuan Qi, Alex Rolfe, Kenzie D. MacIsaac, Georg K. Gerber, Dmitry Pokholok, Julia Zeitlinger, Timothy Danford, Robin D. Dowell, Ernest Fraenkel, Tommi S. Jaakkola, Richard A. Young, and David K. Gifford. High-resolution computational models of genome binding events. Nature Biotechnology, 24:963–970, 2006.

    Article  Google Scholar 

  76. A. Raval, Z. Ghahramani, and D.L. Wild. A bayesian network model for protein fold and remote homologue recognition. Bioinformatics, 18(6):788–801, 2002.

    Article  Google Scholar 

  77. Silja Renooij and Linda C. van der Gaag. From qualitative to quantitative probabilistic networks. In UAI02, pages 442–429, 2002.

    Google Scholar 

  78. Carsten Riggelsen. Approximation Methods for Efficient Learning of Bayesian Networks. PhD thesis, Universiteit Utrecht, 2006.

    Google Scholar 

  79. Stuart Russel and Peter Norvig. Artificial Intelligence, a modern approach. Prentice Hall, Pearson Education, Upper Saddle River, NJ, 2nd edition, 2003.

    Google Scholar 

  80. Eran Segal. Rich Probabilistic Models for Genomic Data. PhD thesis, Stanford University, 2004.

    Google Scholar 

  81. Eran Segal, Nir Friedman, Daphne Koller, and Aviv Regev. A module map showing conditional activity of expression modules in cancer. Nature Genetics, 36(10):1090–1098, 2004.

    Article  Google Scholar 

  82. Eran Segal, Ben Taskar, Audrey Gash, Nir Friedman, and Daphne Koller. Rich probabilistic models for gene expression. Bioinformatics, 17(Suppl. 1):s234–s252, 2001.

    Google Scholar 

  83. Eran Segal, H. Wang, and Daphe Koller. Discovering molecular pathways from protein interaction and gene expression data. Bioinformatics, 19(Suppl. 1):i264–i272, 2003.

    Article  Google Scholar 

  84. G. Shafer and P. Shenoy. Probability propagation. Annals of Mathematics and Artificial Intelligence, 2:327–352, 1990.

    Article  MathSciNet  Google Scholar 

  85. A Siepel and D. Haussler. Phylogenetic hidden markov models. In R. Nielsen, editor, Statistical Methods in Molecular Evolution, pages 325–351, New York, 2005. Springer.

    Chapter  Google Scholar 

  86. M. Silberstein, A. Tzemach, N. Dovgolevsky, M. Fichelson, A Shuster, and D. Geiger. Online system for faster multipoint linkage analysis via parallel execution on thousands of personal computers. American Journal of Human Genetics, 78:992–935, 2006.

    Article  Google Scholar 

  87. D.J. Speigelhalter, P. Dawid, S. Lauritzen, and R. Cowell. Bayesian analysis in expert systems. Statistical Science, 8:219–282, 1993.

    Article  MathSciNet  Google Scholar 

  88. P. Spirtes, C. Glymour, and R. Scheines. Causation, Prediction and Search. MIT Press, Cambridge, MA, 2000.

    Google Scholar 

  89. Alun Thomas, Alexander Gutin, Victor Abkevich, and Aruna Bansal. Multilocas linkage analysis by blocked gibbs sampling. Statistics and Computing, 10:259–269, 2000.

    Article  Google Scholar 

  90. Olga G. Troyanskaya, Kara Dolinski, Art B. Owen, Russ B. Altman, and David Botstein. A bayesian framework for combining heterogeneous data sources for gene function prediction in saccharomyces cerevisiae. In PNAS, volume 100, pages 8348–8353, 2003.

    Google Scholar 

  91. Linda C. van der Gaag, Silja Renooij, Cees L.M. Witteman, B.M.P. Aleman, and B.G. Taal. How to elecit many probabilities. In UAI99, 1999.

    Google Scholar 

  92. Claudio J. Verzilli, Nigel Stallard, and John C. Whittaker. Bayeisan graphical models for genomewide association studies. American Journal of Human Genetics, 79:100–112, 2006.

    Article  Google Scholar 

  93. Michael P. Wellman. Fundamental concepts of qualitative probabilistic networks. Artificial Intelligence, 44(3):257–303, 1990.

    Article  MathSciNet  Google Scholar 

  94. Peter J. Woolf, Wendy Prudhomme, Laurence Daheron, George Q. Daley, and Douglas A. Lauffenburger. Bayesian analysis of signalling networks governing embryonic stem cell fate decisions. Bioinformatics, 21(6):741–753, 2005.

    Article  Google Scholar 

  95. Chen-hsiang Yeang and Tommi Jaakkola. Physical networks and multi-source data integration. In Proceedings of the 7th annual International Conference on Research in Computational Molecular Biology, 2003.

    Google Scholar 

  96. Jing Yu, V. Anne Smith, Paul P. Wang, Alexander J. Hartemink, and Erich D. Jarvis. Advances to bayesian network inference for generating causal networks from observational biological data. Bioinformatics, 20(18):3594–3603, 2004.

    Article  Google Scholar 

  97. Geoffrey Zweig and Stuart J. Russell. Speech recognition with dynamic bayesian networks. In AAAI/IAAI, pages 173–180, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Donkers, J.H.H.L.M., Tuyls, K. (2008). Belief Networks for Bioinformatics. In: Kelemen, A., Abraham, A., Chen, Y. (eds) Computational Intelligence in Bioinformatics. Studies in Computational Intelligence, vol 94. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76803-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76803-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76802-9

  • Online ISBN: 978-3-540-76803-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics