
WOD: Proxy-based Web Object Delivery Service

Kai-Hsiang Yang and Jan-Ming Ho

Institute of Information Science, Academia Sinica
{khyang, hoho}@iis.sinica.edu.tw

Abstract. With the tremendous growth of World Wide Web (WWW),
the door has been opened to a multitude of services and information
for even the most casual of users. Today, many wireless and mobile de-
vices are being produced to provide access to this information, and the
capabilities of these devices can vary depending on characteristics such
as physical memory, storage space, and network speed. In the future, it
is expected to see a rich variety of devices that can browse the WWW,
and any given user is likely to own more than one type. When a user
browses the WWW by small handy devices, such as PDAs or mobile
phones with low network bandwidth, the storage space limitation and
long download time make a user unable to download large-size web ob-
jects such as software zip files. One possible solution is for the user to
memorize the URL of the desired web object, and download it when he
reaches his home or office computer, but this is extremely inconvenient,
and in most cases highly impractical. In this paper, we propose that us-
ing a proxy-based web object delivery system is a much more convenient
and efficient solution. The proposed system is actually an HTTP proxy
server that automatically checks all the requested web objects accord-
ing to user-defined rules. If one or more rules are found to match, and
the web object needs to be delivered to the user’s account, the proposed
system does some translations for the web object depending on its Con-
tent Type, and then delivers it via the Simple Mail Transfer Protocol
(SMTP) or File Transfer Protocol (FTP). Users need merely set up the
rules, and the web objects can proceed to be sent to their email or ftp site.
There it can be downloaded at the user’s leisure in high speed network
environments such as at home or at one’s office. In addition, a schedul-
ing mechanism has been designed in order to enhance performance and
improve the quality of service (QoS) for the users. We have tested the
proposed system on the Windows platform, and have also evaluated it
by a Pocket PC emulator.

1 Introduction

The era of PC-dominated applications is coming to an end. Today, we see
widespread use of mobile devices that have sufficient computing and networking
capabilities to browse the Web. The network-enabled devices come in a variety of
types, including cell phones, Personal Digital Assists (PDAs), Pocket PCs, hand-
held PCs, car navigation systems, and notebook PCs. An average person may
already own several of such devices, and it is expected that in the near future,

the number of such devices will far exceed the number of desktop PCs. These
devices have different capabilities due to varying processors, physical memory,
network protocols, screen sizes, input methods, software libraries, and more. And
with this variety of devices, certain inconveniences arise for users who want to
browse the web. This paper focuses on a problem users often encounter while
on their wireless and mobile devices; the problem is described in the following
section.

The current network-enabled devices are becoming more and more diverse.
However wireless and mobile devices with small memory and lower network
bandwidth are unsuitable for complicated computations and downloading large
files. For example, a user may want to surf the net using a mobile phone while
taking the mass transit system. Due to low connection speed and the fact that
the user is mobile, interruptions may occur, causing the user to only be able to
access simple web-based information. This would prevent him from retrieving
more abundant information such as business achievement reports or zipped soft-
ware files. Another challenge that users might face is the low speed of the public
wireless connection or of the dial-up services through PHS- or GPRS-type mo-
bile phones. Because these services charge based on the amount of information
downloaded, users are less likely to want to retrieve information or files of larger
size. These problems may result from the following situations: (1) Small storage
- If the devices such as Palms of Pocket PCs can only contain a limited amount
of information, large-sized files are impossible to download. (2) Differing web
page protocols and file format support - Some devices, such as mobile phones,
contain browsers different from general web page protocols and file format sup-
port. There are even some special embedded systems that only accept pure text
files, and no other complicated file formats. (3) Low network bandwidth and
user mobility - When users are moving or connection speed is low, it becomes
extremely difficult to directly download files of large size. (4) Browsing a web
site with slow network speed - When users surf web sites that have slow network
speed, download time will be very long and the connection will likely time out.
This kind of problem is called the ”web object downloading problem”.

Because of this problem, users need to find a better solution than directly
downloading web objects in the current conditions. The simplest solution is to
have users memorize or write down the URL of the web object, and have them
download it when they arrive someplace where the network speed is fast and
stable. However this solution has three obvious drawbacks: The first is that it is
cumbersome to have users do such a thing, and there is always the possibility of
misspelling or forgetting the URL, especially when the URL is long and contains
many unmeaning symbols. The second drawback is that, the user cannot initiate
the download until he reaches the place where network speed is faster. As a result,
time is lost waiting for files of large size to finish downloading. Third, some web
objects cannot be directly downloaded by a URL because of the security policy
of web sites. Users have to repeat those serial of browsing actions to be able to
download the objects.

In this paper, we propose a proxy-based web object delivery (WOD) system
as the solution for this problem. This system is a personal proxy server that can
be deployed for personal use or as a general network proxy server. When users use
different wireless and mobile devices, by setting the WOD as the default proxy
server, the WOD system automatically checks all the requested web objects
against the user’s rules. If there is one rule matched and the web object needs to
be delivered to the user’s account, the proposed system does some translations
for the web object depending on its Content Type, and then delivers it via the
Simple Mail Transfer Protocol (SMTP) or File Transfer Protocol (FTP). Users
can browse the web object later by checking their email or connecting to their
ftp site when they are in a high speed network environment.

In the proposed system, we have designed a rule model suitable for most sit-
uations, which focuses on the Content Type and Content Length of web objects.
These rules can be set for one or more delivery methods, such as email, ftp,
or for several methods simultaneously. Users can change the delivery rules any
time, and the WOD system immediately follows the rules to work. Also, tak-
ing into consideration system performance, to improve quality of service (QoS)
we have developed a delivery scheduling component to schedule all the delivery
tasks according to their priorities. Delivery scheduling can prevent deadlock and
allow the high priority tasks to be delivered more quickly. The proposed system
is implemented under the Windows platform, and based on the proxy module of
the Apache web server. We used a MySQL database to store each user’s rules,
web objects, and delivery status, etc. For the user profile management aspect of
the system, we used PHP scripting language to implement a rule management
page; this is for rule setup and for checking delivery task statuses.

This paper is organized as follows: Section 2 discusses related works. Section
3 presents an overview of the proposed web object delivery service. Section 4
describes the delivery rule model we used. In section 5 we present the delivery
scheduling model. Section 6 describes the implementation details and related
technologies. And section 7 is the conclusion.

2 Related Work

There are some commercial products [1, 2, 3] and research works [4, 5] for the
problem of heterogeneous client devices. These products focus on providing qual-
ity of service and performing content transformation in proxy of a variety of client
devices through a process called ”transcoding.” By maintaining separate caches
for different categories of clients, such as PC, PDA, Mobile, etc., it is possible
to translate large size objects to small size ones at the proxy servers. Besides,
some works [6, 7, 8] focus on Web page layout modification techniques to fit the
mobile devices. However, although the transcoding technique solves part of the
problem, such as the issue of image translation, there are a couple of problems
that can arise. First, there are objects that cannot be translated by transcoding,
such as zip files. Next, there are problems that occur when clients download web
objects that cannot be handled by their devices. But our proposed system can

handle these problems. This system filters these web objects according to user-
defined rules, and delivers the objects to the user’s email account or ftp space;
the web objects are not downloaded directly into the client device so users can
access them later from the medium of choice.

Generally, current proxy systems applying conventional page-level caching
cannot function effectively for those larger and dynamic web objects. These
proxies can be configured to download web objects for users even if the request
connection is closed in the middle of a transfer. The proxy systems will com-
plete the transfer to the cache if it has already transferred more than a specified
percentage. Generally a number between 60% and 90% is usually what’s recom-
mended. However, due to space consideration, general proxy systems will have a
higher percentage setting. Another important setting in proxy is the max cache
size. Web objects with size greater than the max cache size will not cached by
the proxy. Even if the proxy caches some of such web objects, they will most
likely be replaced by the cache replacement mechanism before the user has a
chance to download them later. Several new caching strategies [9, 10, 11, 12]
have been proposed, where a fragment-level caching strategy is applied, to solve
the problems. A recent work [13] focuses on integrating a Web content adapta-
tion algorithm and a caching mechanism to serve dynamic content in a mobile
computing environment. However, one disadvantage of using existing proxy sys-
tems is that the user has to download these objects from the proxy that his
device connected to. A user will probably want to use the device outside and
then browse those web objects later in his office with high speed network; he will
not want to remote connect to the proxy his device connected to. Our proposed
system can solve this problem by delivering the web objects to user’s email ac-
count or ftp space close to him. After the web objects are delivered, proxy can
delete them immediately without affects on the space and performance.

3 Proposed System

This section will introduce the web object delivery (WOD) system, including
its logical concepts, system architecture, rule model, scheduling, and delivery
modules.

3.1 Logical Concepts

Figure 1 illustrates the logical concepts of the WOD system. The circle on the
right is the network environment in the company or organization. Each user has
his mail account and ftp site in the email server and ftp server. The circle on
the left represents the locations such as a user’s home, a coffee shop, or even a
train station; places where users may use different devices to surf the Internet.
If the Internet Service Provider (ISP) provides WOD for users, the web object-
downloading problem will be easily solved. Users can initially define which web
objects have to be delivered, and where they should be delivered. After the
rule setup, users can start surfing the Internet via the WOD system. When the

WOD system receives a request, it tries to get the web object and its header
information. According to the Content-Type and Content-Length in the header,
the proposed system checks the user’s rules to decide whether or not the web
object should be delivered. If the web object has to be delivered, the system
first does the proper translations, and then delivers it via email or ftp. This way,
when users are mobile or in a slow network speed environment, they can deliver
important files, software zip file, specification PDF files, or even mp3 files to
their accounts the WOD system provided by the ISP. This solution will prevent
users from having to write down URLs, and will also save users the download
time by delivering to users’ accounts.

Fig. 1. Logical Concepts

3.2 System Architecture

This section details the system architecture of the WOD. Figure 2 illustrates all
the elements in the WOD system. When receiving a request, the system tries to
get the web object and its header information from the cache or origin server.
After saving the web object into the cache, the system checks the user’s rules to
decide whether the web object has to be delivered. The six important elements
in this system are described in the following sections.

Proxy authentication To distinguish users, the authentication mechanism is
necessary for the WOD system. The HTTP 1.0/1.1 protocols provide a sim-
ple challenge-response authentication mechanism which is used by the proxy
to challenge a client request by requiring that the client provide authentication
information. It uses an extensible, case-insensitive token to identify the authenti-
cation scheme. A 407 (Proxy Authentication Required) response message is used
by a proxy to challenge the authorization of a client. The response includes a

Fig. 2. System Overview

”Proxy-Authenticate” header field containing the information for the proxy au-
thentication. This proxy authentication mechanism is supported by almost every
existent browser. Hence, the WOD system applies this standard mechanism to
authenticate users.

Delivery decision element The Delivery Decision (DD) element is used to
decide whether the requested web object has to be delivered, and guarantees
the robustness of the proposed system by determining if each step has been
successfully completed or not. This element only takes care of the decision-
making, but does not play a part in the action of making a delivery. To increase
download speed help make the network connections reliable, the general proxy
server returns all receiving packets to users immediately after it receives parts of
requested web objects. This method will help to prevent connections timeouts
when users attempt to download large-size files. Therefore, the DD element must
make decision in a short amount of time. If the requested web objects need to
be delivered, the DD element returns the delivery messages to users. Otherwise
the DD element has to work as the conventional proxy server. If the web objects
need to be delivered, the DD element first stores necessary information into the
database, then immediately closes the client connections. But the connections
to origin servers are still preserved so it can continue to receive the web objects.
After the web objects have been completely delivered, the DD element updates
the status of web objects, including the cache file paths and the delivery accounts.

Delivery element The delivery element ensures that each delivery file is com-
plete and ready to be sent to the ’Scheduling’ element. It is revoked every several
minutes, checks whether all web objects are complete, and then checks that their
Content Types and Content Lengths are also correct. Also, for the web objects
that expire at the delivery time, the element will mark those filenames with the

notation ”[expired]”. Most importantly, only the tasks with complete files will
be processed. This way, a preceding large-file download task will not affect later
small-file download tasks. Before sending tasks to the Scheduling element, the
delivery element has to compute the priority of each task. We define 10 different
user levels from 1 to 10, and each user level has 10 units of priority. Also, users
can set each delivery rule different priority from -5 to +5. For example, one user
is the user level 3, and sets the first delivery rule with the priority ’+4’, and
the second delivery rule to the priority ’-2’. According to the above settings, the
delivery tasks that satisfy the first delivery rule have the priority 34 (3 * 10 + 4
= 34), and those that satisfy the second delivery rule have the priority 28 (3 *
10 - 2 = 28).

Scheduling element The scheduling element focuses on delivering tasks ac-
cording to their priorities from highest to lowest. The element also updates the
priority of the tasks that have been delivered failed, in order to prevent the
deadlock situation. All the details are described in section 5.

Database All the information about the delivery tasks is stored in the database.
By using the database, the proposed system can easily manage the data and
provides users with the status of their delivery tasks.

User Profile Management This management element provides users an in-
terface to customize their preferences. Through the element, users can set their
rules, delivery accounts, methods, and also view the historical logs and status of
delivery tasks. Aside from the convenience, users can setup different rule groups
for different device properties, in order to quickly open or close some specific
rules. Each rule group also can be configured to automatically open according
to the user’s IP.

4 Rule Model

4.1 Field Selection

In order to define one rule model which is suitable for all situations, the rule
model should contain the information in the header of web object. However
there are many fields in the HTTP header, how to choose the proper fields is
very important. We choose the fields by the following policies: 1. The field should
be in most header of web object. 2. The field is suitable for most situations. 3.
Fewer fields are better. According to these policies, we choose the Content-Type
and Content-Length for our rule model. Content-Type is a critical attribute
of web objects for many applications. Some types of documents are probably
not supported by the client device, and users can set up rules to deliver web
objects with those specific Content-Types. Content-Length is another important
attribute. At high network bandwidth environment, hundreds of mega bytes are

allowed to download. However when client devices connect to Internet by the
dial-up services through PHS- or GPRS-type mobile phones, only web objects
with few Kbytes are allowed to download. Moreover, to download the large-size
web objects, the stable connection is necessary otherwise the download process
may be going to fail. However in the wireless network, the connection usually is
not stable.

4.2 Positive List of Rules

According to the above consideration, a positive list of rules is used in the pro-
posed system for the following two advantages.

1. Low complexity
The system cannot spend much time on each task for deciding the delivery
method. There may be some advanced methods which could make better
decision, but they are usually complex. A positive list of rules can make the
decision quickly even with a large number of requests.

2. Clear definition
Another benefit of the positive list of rules is the definite result. It is essential
and brings better performance. Basically, it is not expected if there are too
many rules to be triggered. Therefore, only the first matched rule is triggered
once. There are two advantages of this design. (1) Simplify the rules: each rule
can be made shorter, and several rules are grouped to achieve one goal. The
speed of checking rules doesn’t decrease because not all of them are checked.
Actually the checking time is less than the time for checking a long rule.
(2) Avoid contradiction: if some rules are matched with the contradiction,
it certainly makes troubles. Our design can prevent the situation by only
trigger one rule. Figure 3 shows the rule checking flow. Each rule contains
four fields, including an owner ID, a Content-Type, a Content-Length, and
an Action, where the action has two values, ’D’ refers to deliver the web
objects and ’R’ refers to return the web objects to clients. Assume there is
one web object W , and rules Rj , where j is from 1 to n. If (W ’s Content-
Type matches Rj ’s) and (W ’s Content-Length is greater than Rj ’s) then
the rule will be applied.

4.3 Example

Assume that client connects to the Internet by the dial-up services, and the slow
speed just accepts browsing the normal web page. The size of web page usually
is smaller than 1MB; therefore the following rules are set for this situation.

{Owner,Type,Length,Action}={”Jacky”,”*”,1000000,”D”}
Any web objects with Content-Length larger than 1MB will be delivered.

This also shortens the download time and saves the network bandwidth.

Fig. 3. Rule Checking Flow

5 Scheduling

In this section, we will discuss the scheduling element. Generally speaking, the
delivery tasks are produced in a fast speed. To prevent from affecting the system
performance and provide the quality of service (QoS), it is necessary to develop
one scheduling mechanism to schedule these delivery tasks.

5.1 Purpose

There are several purposes for implementing the scheduling element. (1) Without
reducing the system performance: the system performance must be considered
foremost during our design. The delivery process may be very fast or very slow,
so the delivery time is always unexpected and the system can’t deliver the tasks
on line. (2) Priority support: the proposed system wants to provide the quality
of service for different users. Therefore each task has its own priority and is
scheduled by the scheduling element.

5.2 Scheduling Mechanism

The concept of scheduling mechanism is shown in Figure 4. The scheduling
mechanism contains a dispatcher, multiple priority queues, a selector, and a
module interface.

When a task comes in, it is dispatched by the dispatcher element to the
corresponding priority queue according to its priority. The left priority queues
have higher priority than the right ones. The selector element chooses the tasks
from the priority queue and sends them to the specific delivery modules. All
delivery modules are external and are managed by one module interface. The
external modules communicate with the interface to get the delivery web objects
and return the status of delivery tasks. Some special issues are described as
follows.

5.2.1 [Batch Processing]. In order to make the system resources perform
more efficiently and do not reduce the proxy performance, the scheduling element
is revoked every several minutes, and all the tasks will be batch-processed.

Fig. 4. Scheduling Model Diagram

5.2.2 [First-In-First-Out]. In each priority queue, the delivery order is
FIFO to ensure that all tasks in the same priority queue are processed by order.
The FIFO design and again mechanism can prevent the deadlock situation.

5.2.3 [Aging Mechanism]. The aging mechanism is used to deal with some
exceptions. When the task gets in trouble during delivering, the scheduling ele-
ment has to recompute its priority. If one task is delivered with errors, we believe
that it cannot be delivered in a short time to prevent encountering the same er-
rors. Therefore, the priority of the task will be decreased as shown in Figure 5. If
the task is delivered with error many times, the system will drop it and reports
to users. If one task is waiting for a long time, the priority of it will be increased.
The aging mechanism is to guarantee the system robustness by checking each
task with error or not.

Fig. 5. Aging Mechanism

5.2.4 [Module Interface]. The module interface aims to integrate different
delivery modules, control these modules’ behavior and immediately report the
current status of delivery tasks.

6 Implementation and experimental results

In this section, we describe the implementation details and present the experi-
mental results of testing on the Pocket PC emulator in the Microsoft embedded
visual tools. We start in section 6.1 by describing the system environment that
the proposed system is implemented. In section 6.2 we discuss the implementa-
tion issues of each component. Finally, we present the experimental results in
section 6.3.

6.1 System Environment

Our implementation is on the Windows platform, and is based on the proxy
module in the Apache web server. For the considerations about system scalabil-
ity and security, the MySQL database locates on another computer under the
RedHat Linux platform. This design can improve the system reliability, and is
easy to extend to a cluster architecture. We used the Visual C++ to develop
the whole proxy system, and used the PHP language to develop the user profile
management system.

6.2 Implementation Issues

The implementation issues of each component are described as follows:
1. [Proxy Authentication]. The Proxy Authentication component is de-

signed to follow the HTTP 1.0/1.1 standard. When one request comes in, the
WOD system checks its username and password pairs with the valid user data
in the MySQL database. If they do not match, an error message is sent to client.
After the authentication, the username is saved in the connection structures for
the future use.

2. [Delivery Decision element]. This element is called by the proxy core,
and is responsible for checking in a very short period of time whether the request
web objects should be returned to users. A proxy probably has many threads
corresponding to requests at the same time, and each thread must decide every
decision as soon as possible. If the web objects should be returned to users,
the DD element returns small packets immediately when it has been received,
without waiting for the file to complete being sent.

3. [Delivery element]. This element is also called by the proxy core. It has
to confirm the integrity of web objects. After the web objects are complete, it
assigns a priority to these tasks according to the user’s settings, and then sends
the tasks to scheduling element.

4. [Scheduling element]. In our system, the priority queues are divided
into 10 different queues. The first queue, Q1, contains the tasks with priorities

between 1 and 10, and Q2 contains the task with priorities between 11 and 20,
etc. We also assign each user a priority from 10 to 100.

5. [Database]. We choose the MySQL database as our storage element.
When a large number of requests come, the proxy server creates many threads
for handling these requests at the same time. Each thread has to connect to the
MySQL database for checking the rules and storing the web objects for deliv-
ery. In order to avoid opening large number of connections simultaneously, we
develop all threads using one connection, and create a critical section between
the beginning of each query and the ending of storing the results.

6. [User profile manager]. We use the PHP to develop the user profile
management, and for the convenience, users can input the system IP address
like ”http://proxy-ip/” to setup their rules.

6.3 Experimental Results

In this section we present the experimental results by showing the user manage-
ment and the physical situations tested by the Pocket PC emulator software.
After user authentication, valid users can see the following management page
like Figure 6. Users can configure their own rules and accounts, switch each rule
on and off, and group some rules as one rule group. All these operations are very
easy for users.

Fig. 6. User Profile Management System

Besides, users can see the delivery histories, access time, delivery time, and
other related information in this page. Figure 7 shows the delivery histories. For
each delivery record, users even can write the comments for it to explain what
it is. One simple search engine is implemented to help users finding the records
by searching the comments.

Fig. 7. Delivery histories

We then used a Pocket PC emulator to test the WOD system. After setting
the wireless connections and assigning the WOD system as default proxy server,
a proxy authentication page is shown up (the left picture in Figure 8). When
users pass the authentication, they can browse the Web as usual. Figure 8 also
shows the user profile management page in Pocket PC.

Fig. 8. Proxy authentication mechanism and user profile management pages

After users set up a rule to deliver all images large than 50 Kbytes, the WOD
system immediately works. Figure 9 shows a page before and after setting the
rule. In the right picture of figure 9, a large picture is replaced by a small picture
”D” to notify users that the picture is delivered by the system.

Fig. 9. Situations before and after using the WOD system

7 Conclusion

In this paper, we have presented a proxy-based system that automatically de-
livers web objects for the assortment of devices a client may own. It is the
middleware between the client and original server, and the client does not need
to install any software. We have also designed a simple rule model which is suffi-
cient for all situations. By following the users’ rules, the proposed system filters
and delivers web objects via email or ftp protocols, and users can download them
later at other working environments. The system also provides a user manage-
ment system for users to set up and change their delivery rules, and it keeps a
delivery log for users to manage and search their rules. Lastly, in consideration of
the performance of the proposed system, a delivery scheduling scheme has been
designed to optimize the delivery process. The delivery scheduling can prevent
the deadlock and it improves on quality of service.

As well as developing a Web object delivery system, which we are now do-
ing, there are several promising directions for future research. The file distribu-
tion has been an intensively studied research topic in the past few years. One
of those established technologies is the Content Distribution Network (CDN),
where a number of servers are deployed at the edge of the Internet, and clients
request file download service from their closest servers. More recently, peer-to-
peer (P2P) based file distribution techniques have quickly gained popularity, we
plan to study how to make proxy systems into a structured or a unstructured
P2P network, and combine our previous techniques on structured [14] and un-
structured [15] P2P networks to enhance the system performance and scalability.

References

1. Maheshwari, A. Sharma, K. Ramamritham, and P. Shenoy, ”TranSquid: Transcod-
ing and caching proxy for heterogeneous ecommerce environments,” in Proc. of 12th

IEEE Workshop on Research Issues in Data Engineering (RIDE ’02), Feb. 2002.
2. IBM Web Intermediaries (WBI), ”WebSphere Transcoding Publisher.”

http://www.almaden.ibm.com/cs/wbi/.
3. H. Bharadvaj, A. Joshi, and S. Auephanwiriyakul, ”An active transcoding proxy

to support mobile web access,” in Proceedings of IEEE Symposium on Reliable
Distributed Systems, 1998.

4. E.D. Lara, D.S. Wallach, and W. Zwaenepoel, ”Puppeteer: Component-Based Adap-
tation for Mobile Computing,” in Proceedings of Third Usenix Symposium of Inter-
net Technologies and Systems, Mar. 2001.

5. V. Cardellini, Philip S. Yu, and Y.W. Huang, ”Collaborative Proxy System for
Distributed Web Content Transcoding,” in Proceedings of ACM CIKM, pages 520–
527, 2000.

6. G. Stuary, T. Rag, and K. Sreedhar, ”ATTENUATOR: Towards Preserving Orig-
inally Appearance of Large Documents when Rendered on Small Screen,” in Pro-
ceedings of International Conferences of Multimedia Expo’03, July 2003.

7. M. Hori, G. Kondoh, K. Ono, S. Hirose, and S. Singhal, ”Annotation-Based Web
Content Transcoding,” in Proceedings of 9th Would Wide Web Conference, May
2000.

8. Y. Chen, W.Y. Ma and H.J. Zhang, ”Detecting Web Page Structure for Adaptive
Viewing on Small Form Factor Devices,” in Proceedings of 12th Would Wide Web
Conference, May 2003.

9. W.S. Li, W.P. Hsuing, D.V. Kalashnikov, R. Sion, O. Po, D. Agrawal, and K.S.
Candan, ”Issues and Evaluations of Caching Solutions for Web Application Accel-
eration,” in Proceedings of 28th International Conference of Very Large Data Bases
(VLDB), Aug. 2002.

10. K. Yagoub, D. Florescu, P. Valduriez, and V. Issarny, ”Caching Strategies for
Data-Intensive Web Sites,” in Proceedings of 26th International Conference of Very
Large Data Bases (VLDB), Sept. 2000.

11. C. Yuan, Y. Chen, and Z. Zhang, ”Evaluation of Edge Caching/Offloading for
Dynamic Content Delivery,” in Proceedings of 12th Would Wide Web Conference,
May 2003.

12. D. Zeng, F.Y. Wang, and M. Liu, ”Efficient Web Content Delivery Using Proxy
Caching Techniques,” in the IEEE Transactions on Systems, Man, and Cybernetics,
Vol. 34, No. 3, Aug. 2004.

13. Z. Hua, X. Xie, H. Liu, H. Lu, and W.Y.Ma, ”Design and Performance Studies
of an Adaptive Scheme for Serving Dynamic Web Content in a Mobile Computing
Environment,” in the IEEE Transactions on Mobile computing, Vol. 5, No. 12, Dec.
2006.

14. K.-H. Yang, and J.-M. Ho, ”Proof: A Novel DHT-based Peer-to-Peer Search En-
gine,” in the IEICE Transactions on Communications, Vol. E90-B, No. 4, pp.
817-825, Apr. 2007.

15. K.-H. Yang, C.-J. Wu, and J.-M. Ho, ”AntSearch: An Ant Search Algorithm in
Unstructured Peer-to-Peer Networks,” in the IEICE Transactions on Communica-
tions, Vol. E89-B, No. 9, pp. 2300-2308, Sept. 2006.

