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Abstract. Detection of fast-spreading Internet worms is a problem for
which no adequate defenses exist. In this paper we present a S imple
Worm Detection scheme (SWorD). SWorD is designed as a statistical
detection method for detecting and automatically filtering fast-spreading
TCP-based worms. SWorD is a simple two-tier counting algorithm de-
signed to be deployed on the network edge. The first-tier is a lightweight
traffic filter while the second-tier is more selective and rarely invoked. We
present results using network traces from both a small and large network
to demonstrate SWorD ’s performance. Our results show that SWorD ac-
curately detects over 75% of all infected hosts within six seconds, making
it an attractive solution for the worm detection problem.

1 Introduction

The problem of worm detection and containment has plagued system adminis-
trators and security researchers. Many detection and containment schemes have
been proposed. However, few of them have made it into real production sys-
tems. This is primarily for two reasons – the possibility of false positives and
administration complexity.

False positives consume valuable resources and help to hide real attacks. In
some cases, they result in serious consequences (e.g., loss of business for ISPs
that perform automatic filtering). Administration complexity implies cost. Many
existing schemes are overly complex to manage, which makes a difficult business
case.

In this paper we introduce a Simple Worm-Detection method called SWorD.
SWorD is meant to be a quick and dirty scheme to catch fast-spreading TCP
worms with little complexity. We stress that SWorD is not designed to be an all-
capable, comprehensive scheme. Rather, the value of SWorD lies in its simplicity
and good-enough precision, which targets it for immediate deployment.

This work was conducted while the authors were affiliated with CMU.
The views expressed in this paper are those of the author and do not reflect the official
policy or position of the United States Government, the Department of Defense, or
any of its agencies.



The core of SWorD consists of a simple statistical detection module that de-
tects changes in statistical properties of network traffic. More specifically, SWorD

processes network packets and computes the approximate entropy values of des-
tination IPs for recent traffic. The underlying rationale is that benign traffic
typically exhibits a stable range of destination entropies while the presence of
scanning worms significantly perturbs the entropy [17]. In SWorD, we use a
simple counting algorithm to approximate the entropy calculation.

We present an empirical analysis of SWorD, based on off-line network traces
containing both Blaster and benign traffic. The traces were collected from the
border of a network with 1200 hosts and from an Internet service provider con-
taining over 16 million hosts. The analysis results show that SWorD is able to
detect scanning worms effectively, while maintaining a low false positive rate.

Since SWorD uses network statistics to determine infected hosts, it is suitable
for deployment at border routers of networks and places where aggregate traffic
can be observed. This makes SWorD more attractive than other schemes that
must maintain state per network host.

The rest of the paper is structured as follows: Sect. 2 covers related work.
Sect. 3 outlines the SWorD algorithm. Sect. 4 describes the conditions under
which SWorD was tested and provides results on a small network, while Sect. 5
provides results on a large network. In Sect. 6, we compare SWorD with a related
algorithm, and conclude in Sect. 7.

2 Related Work

2.1 Automatic Containment

There has been much research in the area of automatic containment of Internet
worms. Rate limiting schemes fall into this category. In the area of rate limiting
worm defenses, Williamson [21] proposed the idea of host-based rate limiting
by restricting the number of new outgoing connections. He further applied this
mechanism to email worms by rate limiting emails to distinct recipients [22].
Wong et al. [23] studied the effects of various rate limiting deployment strate-
gies. Chen et al. [3] devised a rate limiting mechanism based on the premise that
a worm-infected host will have more failed connections. Our work is different in
that rate limiting implemented at the border does not provide detection, while
detection at the border is the focus of SWorD. By contrast, rate limiting imple-
mented at the host, such as in Williamson’s work [21], does provide detection
but requires installation at all host sites, rather than a single installation at the
border as can be done with SWorD.

2.2 Signature Generation

Signature generation schemes hold much promise, but still have difficulty against
zero-day worms. Another issue is signature distribution. Earlybird [13], Auto-
graph [9], Polygraph [10], PAYL [19], TREECOUNT and SENDERCOUNT [6],and
a vulnerability-based signature scheme by Brumley et al. [2] are examples of sig-
nature generation techniques.
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2.3 Detection

As mentioned earlier, SWorD is best described as a detection algorithm. Thresh-
old Random Walk (TRW) [8], Reverse Sequential Hypothesis Testing (

←−−

HT ) [12],
Approximate TRW [20], and SB/FB [14] are other examples of detection schemes.
In TRW, which focuses on scan detection rather than specifically worm detec-
tion, a host is labeled as infected or benign if it crosses a certain upper or lower
threshold respectively. A successful connection results in movement toward the
lower threshold while an unsuccessful connection results in movement toward the
upper threshold.

←−−

HT and Approximate TRW are variations of TRW.
←−−

HT uses
reverse hypothesis testing combined with credit-based rate limiting to achieve
better results than TRW. SB/FB is an adaptive detection scheme that changes
based on network traffic. Venkataraman et al. [18] present a detection scheme
that uses a streaming algorithm to detect k -superspreaders. A k -superspreader
is any host that contacts at least k distinct destinations within a given period.
The superspreader technique is most closely related to our work and examined
in more detail in Sect. 6.

3 Detection Algorithm

SWorD is a simple statistical detection tool used to identify fast-spreading
worms. Since these worms do so much damage so quickly, it is important to have
a mechanism on the network edge that can detect and filter them. SWorD de-
tects fast-spreading worms by computing a quick count of connection attempts,
flagging those hosts that attempt more connections than what is deemed “nor-
mal.” SWorD can be used on outbound traffic to identify and filter internal
hosts that are misbehaving (worm-infected or rapidly scanning), as well as on
inbound traffic to identify and filter external hosts that might be infected.

w sliding window size
D first-tier threshold of distinct des-

tination IPs
S second-tier threshold of distinct

source-destination IPs pairs

Fig. 1: Parameters.

In this section, we present SWorD ’s
two-tiered detection algorithm. The first-
tier is a “sliding window counting” al-
gorithm that identifies traffic anomalies.
If the first-tier count reaches a certain
threshold, the second-tier algorithm is in-
voked, which is used to pinpoint and au-
tomatically filter the hosts responsible for
the anomalous behavior. Since SWorD

uses automatic filtering, a host will not trigger multiple alarms due to subse-
quent traffic. Figure 1 outlines the parameters used for SWorD.

3.1 Algorithm

In the first-tier algorithm, we keep a sliding window holding the destination IP
addresses of the last w outgoing connection attempts (TCP SYN packets) from
the monitored network. For each sliding window, we count the number of distinct
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first-tier(){
for(each outgoing SYN packet)

/* remove oldest packet from window and adjust count for dest IP */
dst IP(oldest SYN)- -
POP oldest SYN from SLIDING WIN

/* add next SYN packet to window and adjust count for dest IP */
PUSH new SYN onto SLIDING WIN
dst IP(new SYN)++

if(UNIQUE DST COUNT/window size > D)
second-tier(UNIQUE DST COUNT)}

Fig. 2: first-tier sliding window counting algorithm

second-tier(UNIQUE DST COUNT){
/*COUNT distinct dst IPs in SLIDING WIN for last source added to window*/

for(i ← 0 to w) /* check each packet in window */
/* if src-dst pair unique */
if(SLIDING WIN[i].src IP = src IP(new SYN) AND

SLIDING WIN[i].dst IP not in UNIQUE DST IPs)
add SLIDING WIN[i].dst IP to UNIQUE DST IPs
increment SRC DST COUNT

if(SRC DST COUNT/UNIQUE DST COUNT > S)
FLAG src IP}

Fig. 3: second-tier find scanner algorithm

destination IPs. If this number is over a certain threshold (D), the second-tier
algorithm will be invoked. The first-tier algorithm is described in Fig. 2.

The second-tier algorithm (see Fig. 3) identifies the specific host exhibiting
scanning behavior typical of a fast-spreading worm. This tier should rarely be
invoked during normal operation. We assume that the goal of a fast spreading
worm is to infect large portions of the IP space rapidly, and so will scan a large
number of distinct IPs in a small time period. In the context of our algorithm, this
translates to a specific source address occupying a larger than average portion
of the sliding window. Therefore, we count the number of distinct destinations
contacted by the newest SYN packet. If this number divided by the total number
of distinct destinations in the window exceeds our threshold, we flag and filter
the host. Note that, as our algorithm only operates on SYN packets required to
establish a TCP connection, we do not interfere with pre-existing connections.

4



3.2 Extensions

The basic algorithm as stated above is effective at identifying worm-infected and
scanning hosts, but it also introduced false positives. In order to prevent these
false positives, we introduce two extensions to the basic algorithm: burst credit

and whitelist.

Burst Credit The basic algorithm can not easily distinguish between a bursty
client and a scanning worm within a short period of time. One way bursty traffic
differs from a scanning worm is that a scanner typically does not contact the
same machine repeatedly. On the other hand, a normal user client will likely
contact the same destination address multiple times [11], leading to a number
of nondistinct source-destination address pairs. To make allowances for bursty
clients, we use a technique we call burst credit. For each destination port 80
SYN packet, we subtract one from the distinct destination address count for
every nondistinct destination contacted by the same source. Since only the most
recent SYN packet’s port information is checked, there is no additional state
maintained. Note that this extension can be applied to other ports that expe-
rience bursty traffic. In this work, we consider bursty web clients only.

An attacker can attempt to “game” this extension by devoting 50% of her
packets to nondistinct destination addresses. However, this is only possible on
bursty ports. It is not possible for an attacker to disguise a worm attacking
another port by flooding the network with nondistinct connections to a bursty
port as no port information is stored.

Whitelist There are some hosts, such as mail servers, that exhibit behavior
that could cause them to be falsely flagged. To prevent this from happening, we
added a whitelist extension. By this extension, any host in the whitelist would
be ignored by the second-tier algorithm.

3.3 Storage and Computational Cost

Storage Cost Our first-tier algorithm must maintain both source and destina-
tion IP addresses for second-tier processing. Since each IP address pair (source
and destination IP) is 8 bytes, the space requirement for the sliding window
is 8w bytes where w is the window size. We utilize a hash map with a simple
uniform hash function and a load factor of 0.6 [4] to track and count the distinct
destination addresses. This adds 10w bytes to the storage requirement. In the
second-tier algorithm, we use a hash set (since we need only check presence of
the address) with a simple uniform hash function and a load factor of 0.6. At the
worst case this adds another 6w bytes to the storage requirement, bringing the
total storage requirement for the first and second tier algorithms to 24w bytes.
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Computational Cost The computational cost for the first tier includes two
hash lookups per SYN packet at O(1) for each hash lookup. For n packets seen
in a specified time period, this results in a linear computational expense of
roughly O(n). The second-tier involves one hash lookup for every connection in
the window for counting distinct destinations, O(w). If we use p as the probability
of entering the second-tier, the cost for the second-tier algorithm is O(pnw) for
processing each packet in the specified time period. This brings the total expense
for SWorD to O(n+pwn). As the window size is a fixed value, the computational
expense remains linear. We show in Sect. 4.2 that p is small during periods of
uninfected traffic, so that actual expense is close to O(n).

3.4 Parameter Selection

The values that we use for the first- and second-tier thresholds are empirically
derived. We use two different networks (described in Sect. 4 and 5) in our eval-
uations. Traffic collected from the smaller network (Sect. 4) is used to derive
equations for determining appropriate thresholds. These equations are then used
to determine thresholds for a large network (Sect. 5), demonstrating their effec-
tiveness given a very different network traffic level, size and topology.

First-tier Threshold Selection Since the first-tier threshold is the number
of distinct destinations allowed in a window before triggering the second-tier al-
gorithm, choosing the right threshold is particularly important. If the threshold
is set too low, SWorD will enter the heavier weight second-tier function un-
necessarily during normal operations. It is also likely to result in a higher false
positive rate. If the threshold is set too high, an increased detection time and
false negative rate may ensue.
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In order to decide how to set the threshold, we monitored the number of
distinct IPs seen in each w consecutive SYN packets during normal operations
using the small network trace. Figure 4 shows the daily maximum, as well as the
average and the minimum, number of distinct destinations seen for w consecutive
outbound SYN packets, where w = 1000. The first-tier threshold, D, was chosen
to be within σ

4 of the total maximum value seen during the six-day period,
where σ is the standard deviation (We found values larger than σ

4 away from
the maximum produced increasingly less accurate results the farther away from
the maximum we moved.). This same technique for selecting D was applied to
w = 100, 400, and 2000.

Figure 5 shows the first-tier threshold value versus window size on a log-
log plot. The relationship appears to be power law. Using linear regression, we
developed the following equation for D.

D = e(0.63−0.12 ln w) (1)

In the remainder of this paper, we will use Eq. 1 to estimate D for different
window sizes, w, for both test networks.

Second-tier Threshold Selection Recall a source IP is flagged as infected
if the number of distinct destination IPs contacted by that source exceeds the
second-tier threshold, S. We use a similar technique to that described in the
previous section to determine S. Whenever the algorithm enters the second-tier,
we examine what percentage of all the distinct destinations in the sliding window
were contacted by each benign source. (Note that to have the algorithm enter
the second-tier, we need to use network traffic collected during infection.) We set
S just above this percentage to avoid mislabeling benign sources. The values we
empirically selected for S also follow a power law relationship with w (see Fig. 5).
As before, we used linear regression to produce an equation for computing S.

S = e(1.11−0.57 ln w) (2)

We will show in Sect. 5 that Eq. 1 and 2 are generalizable to other networks.

Sliding Window Selection Since we can tune our first and second tier thresh-
olds based on sliding window size, window size selection is not as critical. We
do, however, want to choose the smallest practical sliding window size to reduce
the storage and computational expense. However, the window needs to be large
enough to provide adequate sampling of the network traffic. Thus the window
size is related to the volume of traffic observed at the border router.

4 Results on a Small Network

The experiments presented in this section and in Sect. 6, along with the param-
eter selection described in Sect. 3.4, were conducted using traffic traces collected
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Fig. 6: Number of outbound TCP flows at the edge router per day for the small network
Blaster/Welchia trace.

from the edge router of a 1200 host academic network. The network serves ap-
proximately 1500 users. Since May 2003 we recorded TCP packet headers leaving
and entering the network. During the course of tracing, we recorded two worm
attacks: Blaster [15, 1] and Welchia [16]. For each attack recorded, we conducted
post-mortem analysis to identify the set of infected hosts within the network.

For the purpose of this analysis, we use a 15-day outbound trace, from August
6th to August 20th, 2003. This period contains the first documented infection of
Blaster in our network, which occurred on August 12th.

Figure 6 shows the daily volume of outgoing traffic as seen by the edge router
for the trace period. As shown, the aggregate outgoing traffic experienced a large
spike as Blaster hit the network on day 7. At its peak, the edge router saw over
11 million outbound flows in a day. This is in contrast to the normal average of
400,000 flows/day. The increase in traffic is predominantly due to worm activity.

Our implementation of SWorD included the two extensions described in
Sect. 3.2. For the experiments on this network trace, we gave burst credit to
destination port 80 and we whitelisted one internal mail server. Additionally, we
analyzed the outbound traffic because we have exact information on internally
infected hosts.

4.1 Accuracy

To measure the accuracy of SWorD, we use false positive (FP) and false negative
(FN) rates. The false positive rate is the percentage of benign hosts misidenti-
fied as infected. The false negative rate is the percentage of infected hosts not
identified by SWorD. For the small network, the total daily number of benign
and infected hosts is shown in Table 1.

Table 2 gives the average FP and FN rates for SWorD using different slid-
ing window sizes. Results are broken down in terms of pre-infection and post-
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Day 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Benign 759 769 760 690 638 736 709 690 686 574 661 656 738 731 812
Infected 0 0 0 0 0 0 57 38 34 30 15 11 17 16 7

Table 1: Number of benign hosts during each day (Benign) and the number of known
infected hosts during each day (Infected) using the small network trace data.

Pre-inf.(%) Post-inf.(%)

w = 100
FP Rate 0.044 0.174
FN Rate 0 0

w = 400
FP Rate 0.022 0.113
FN Rate 0 0.195

w = 1000
FP Rate 0 0.123
FN Rate 0 0.889

w = 2000
FP Rate 0 0.139
FN Rate 0 0.195

Table 2: Comparison of average pre and
post infection FP/FN rates for differ-
ent window sizes (for window sizes 100,
400, 1000, and 2000, D = 0.99, 0.90,
0.82, & 0.74 and S = 0.19, 0.10, 0.06,
& 0.04 respectively).
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infection. The average FP rate for all window sizes never exceeded 0.05% during
the pre-infection period and 0.2% during the post-infection period. For w = 100,
the FN rate was zero. Larger window sizes did have false negatives, but the FN
rate did not exceed 0.9% over the eight day post-infection period. It is possible
to select parameters such that we detect all infected hosts. However, the tradeoff
is a higher number of false positives.

For this data set, we had at most three false positives in any given day from
an average of 722 active hosts. Throughout the entire 15-day trace, there were
a total of seven hosts misidentified as infected. Examining the behavior of these
hosts showed that they were detected primarily due to peer-to-peer traffic.

4.2 Timeliness of Detection

Figure 7 shows the proportion of infected hosts detected over time by window
size. Notice that for a sliding window size of 2000, over 78% of infected hosts are
detected within 20 seconds. A sliding window size of 100 detects approximately
the same number of infected hosts within six seconds. Using smaller sliding
window sizes results in quicker detection time as well as reduced storage cost
and second-tier computational expense.
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Fig. 8: Plots of normalized destination address and destination port entropy from our
small network trace data.

Time spent in the second-tier algorithm also contributes to the timeliness
of detection. Over our six day “pre-outbreak” trace period, almost 2.5 million
SYN packets were observed. However, the second-tier algorithm was invoked only
1298 times for w = 100, 63 times for w = 400, and not at all for w = 1000 and
w = 4000. These results suggest that the probability of entering the second-tier,
p, is approximately 0.05% during normal operations. As expected, the second-
tier was invoked more often during the outbreak period.

5 Results on a Large Network

Our second data set is from a large Internet Service Provider (ISP) servicing more
than 16 million hosts. During the Blaster attack, the ISP’s network received a
large volume of inbound infection attempts. The network was not infected by
Blaster internally due to very restrictive port filtering (which included port 135).
We analyzed inbound traffic as the network received a large volume of inbound
infection attempts, while no internal hosts were infected. For this network trace,
we gave burst credit to destination port 80, however we did not use a whitelist.

Unlike the small network data set described in Sect. 4, we do not have a
list of known infected (external) hosts for the incoming ISP network trace. To
determine when the network began seeing Blaster infected packets, we use a
network entropy detection scheme very much like the one by Valdes [17].

Entropy-based Detection Valdes [17] observed that normal network traffic
attributes (e.g., destination IPs, ports, etc.) follow a predictable entropy pattern
unique to the behavior of that network. Anomalous traffic on the same network
will cause a change in the entropy pattern and can be a sign of infection.

As a proof-of-concept, we implemented a variation of Valdes’s algorithm and
applied it to the traces obtained from the small network. To establish a baseline
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for normal network traffic, we analyzed outbound network flows for a period of
three days prior to the outbreak of Blaster. The graph in Figure 8(a) shows that
despite fluctuation (e.g., diurnal patterns, weekend versus weekday patterns),
the destination address and port entropy levels fall within a relatively stable
and predictable range.

Figure 8(b) shows the same entropies when Blaster hit the network. We see
that the destination IP entropy, after Blaster infects the network, is very close
to one. An entropy value of one indicates a completely random sample. This is
consistent with Blaster behavior as it attempts to contact unique destinations to
achieve a large fan-out. The destination port traffic exhibits a decrease in entropy
as Blaster hit. Again, this is in line with Blaster behavior. As a larger portion
of the traffic mix becomes horizontal-scan traffic on the same port, port-entropy
decreases. It is also worth noting that when the network becomes infected with
worm traffic, the variance of the entropy decreases. This characteristic is present
in both our results and those of Valdes [17]. This is expected since worm flows
follow similar traffic patterns and the volume of worm flows overwhelm well-
behaving flows.

5.1 Experiment Set-up

In order to determine the presence of infected traffic inbound to the ISP, we
combined the normal traffic with filtered traffic based on an access control list
(ACL) and calculated the traffic entropy. Figure 9 shows the resulting destination
address and port entropy graphs for both uninfected and infected traffic including
ACL traffic. Figure 9(b) illustrates that destination port entropy dropped and
destination address entropy increased just before 18:00 on the 11th of August. At
this time, the network saw a sharp increase in the volume of destination port 135
traffic, which is indicative of Blaster. Note that the destination address entropy
illustrates the near to completely random nature of destinations contacted. As a
result, when Blaster hits, as shown in Fig. 9(b), we do not see a drastic change,
but rather a small jump back to maximum entropy rather than the gradual daily
fluctuation likely due to work cycle.

To run SWorD on the ISP data, we chose a sliding window of size 200,000.
(This is comparable to using a window size of 50 for the small network in Sect. 4.)
We used Eq. 1 and 2 to select values for the first and second-tier thresholds,
resulting in D = 0.43 and S = 0.003.

5.2 Results Using SWorD

After using SWorD to filter out suspected infected hosts, we ran the entropy-
based algorithm on the remaining network traffic. From Fig. 10, we see that the
normalized destination address and port entropy post-SWorD no longer displays
the network anomalies seen in Fig. 9(b). Notice that as well as filtering out the
network anomaly caused by the increased volume of destination port 135 traffic,
the entropy values before the infection are consistently higher for destination
port and lower for destination address than those in Fig. 9. We attribute this
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(a) Normalized entropy of traffic prior to Blaster hitting the ISP.
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(b) Normalized entropy results as Blaster hits the ISP.

Fig. 9: Plots of normalized destination port and destination address entropy from
inbound ISP flow traffic including all ACL filtered traffic.
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Fig. 10: Plot of normalized destination port and destination address entropy with
SWorD performing automatic filtering on the inbound ISP flow traffic (including ACL
filtered traffic) during the period of infection.

phenomenon to the presence of other scan traffic contained in the ACL filtered
traffic. Figure 11 illustrates that the normalized entropy of the network traffic

12



 0

 0.2

 0.4

 0.6

 0.8

 1

08/10
00:00

08/10
12:00

08/11
00:00

08/11
12:00

08/12
00:00

08/12
12:00

08/13
00:00

no
rm

al
iz

ed
 e

nt
ro

py

time(GMT)

destination port
 0

 0.2

 0.4

 0.6

 0.8

 1

08/10
00:00

08/10
12:00

08/11
00:00

08/11
12:00

08/12
00:00

08/12
12:00

08/13
00:00

no
rm

al
iz

ed
 e

nt
ro

py

time(GMT)

destination address

Fig. 11: Plot of normalized destination address and destination port entropy of inbound
ISP flow data excluding all ACL filtered traffic.

excluding ACL filtered traffic follows the same pattern as what we achieved using
SWorD.

5.3 Accuracy

The entropy-based results give us an indication that SWorD is filtering out
some malicious network traffic, but do not allow us to conclude how accurate
our results are. Namely, we cannot be sure if SWorD is filtering out all of the
infection, or if it is filtering out legitimate traffic. As a second tool to help
determine the accuracy, we randomly select three different post-infection hours
and examine some of the network traffic characteristics. To provide us with an
idea of how SWorD is doing in terms of false negatives, we analyze the unfiltered
traffic to see if it contains any of the hosts in the ACL list1. We found that SWorD

successfully filtered all hosts contained in the ACL list during the three hours.
Determining how SWorD is performing in terms of false positives is more

difficult. The ISP commonly sees a large number of inbound hosts conducting
scanning. Since fast-spreading worms perform scans to propagate, when we flag
a host as infected we cannot determine if the cause is specifically due to worm
behavior. Therefore, a coarse method is required to determine how many of
the hosts SWorD filtered out were worm-infected or scanning hosts. The coarse
method we used was to analyze the number of SYN-only connections made by
the set of SWorD-filtered hosts as compared to the overall number of connections
made by the set of SWorD-filtered hosts. A “SYN-only connection” is defined as
a single packet flow with no flags set other than the SYN flag. We found that out
of over 130 million SWorD-filtered connections in an hour, over 95% were SYN-
only connections. Examining the hosts in the SWorD-filtered set showed that
out of over one-million SWorD-filtered hosts, over 97% were making SYN-only
connections. From this course measure, we estimate roughly a 3% false positive

1 Any potential Blaster connections would be included in the ACL list, since it contains
all flows attempting to connect to destination port 135.
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rate. There is likely some fluctuation in this estimate. For example, it is possible
that we filtered a legitimate host and that the host made SYN-only connections.
On the other hand, it is possible that a malicious host contacting a hit list did
not make any SYN-only connections, as it may have tried infecting hosts that
respond to its SYN requests.

5.4 Timeliness of Detection

Since we do not have exact information on infected hosts, we can not use the same
method for determining the time to detect an infected host as we do with the
small network. Instead, we refer to our timeliness results for the small network
with w = 100 (see Fig. 7) to predict a null hypothesis for the large network.
Our null hypothesis is that 60% of infected hosts will be detected within three
seconds. We then randomly selected 25 hosts that contacted destination port
135 during the Blaster infection period. We compared the time each of these
hosts sent out the first port 135 connection attempt to the time SWorD flagged
the host. We found that all 25 hosts were flagged within one second. Given the
null hypothesis that 60% will be detected in under three seconds, the probability
that we would observe 25 of 25 detected in under three seconds is 0.00028%. We
therefore reject our null hypothesis in favor of an alternative hypothesis that
greater than 60% will be detected in under three seconds.

6 Comparison with a Related Scheme

In this section, we compare SWorD to Superspreader [18]. We chose Super-
spreader because, similar to SWorD its goal is to detect fast-spreading hosts.
In addition, Superspreader and SWorD are both deployed on the network edge
and neither maintain per-host statistics. One major way the two schemes differ
is that Superspreader uses sampling whereas SWorD does not. For our com-
parison, we implemented the Superspreader one-level filtering algorithm using
a sliding window. More details on the Superspreader algorithm can be found in
the Superspreader paper [18].

6.1 Parameter Selection

For a host to be identified as a k -superspreader, it must contact at least k

b
distinct

destinations within a window of size W . By definition, k is the number of distinct
destinations a host can contact before being considered a superspreader, while
b is a constant designed to scale k according to the amount of sampling being
done. In order to identify Superspreaders in a timely manner, a host is labeled
as a Superspreader after it contacts k

b
distinct destinations.

The Superspreader paper does not discuss parameter selection in specific
detail. Therefore, we devise a method to choose these values based off the volume
of infected traffic we observe from the small network. To select values for k and
b, we computed the number of packets each infected host had in a window of
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size W during the infection period (days 7-15). We set k equal to the average of
these counts over the entire infection period, which we refer to as “total avg.”
For calculating b, we calculated the daily average number of packets from the
infected hosts. We then took the minimum of these daily averages, referred to as
“min daily avg,” and set b=(total avg)/(min daily avg). As in the superspreader
paper, we used an error rate of δ = 0.05. We experimented with other values
of k and b that were one and two standard deviations away and found the best
results using the values we calculated [5].

For our first comparison of Superspreader to SWorD, we used W = 2000,
k = 337, and b = 2. With these parameters, the sampling rate, c1

k
, is equal to

0.25. Note this sampling rate is higher than those used in their paper, which
should only benefit the results achieved by Superspreader in terms of detection
time.

6.2 Accuracy

Accuracy based on definition of a k-superspreader [18]. By definition of
a superspreader, a host is identified as a k -superspreader regardless of whether
or not the host is actually infected. In light of this, we first ran the superspreader
algorithm on our small network trace data based solely on the definition of a
superspreader. According to the superspreader paper, a FP is any host that
contacts less than k

b
distinct destinations but is labeled as a superspreader. A

FN is any host that contacts more than k distinct destinations, but does not get
labeled as a superspreader. According to this definition, our results showed zero
FNs and one FP throughout the 15-day run using W = 2000.

In general, it is not possible to select parameters for SWorD that flag these
same sets of hosts. The main reason for this is that SWorD is not designed to
flag a host unless the “normal” entropy of network traffic is perturbed, thus
indicating an outbreak. The consequence of this is that SWorD may not flag an
individual scanning host because it does not dominate enough of the network
traffic to overcome the effect normal traffic has on the network. This is desirable
in the sense that SWorD focuses on identifying infected hosts from a worm
outbreak, rather than identifying scanners (which can be detected using other
algorithms, such as TRW[7]). SWorD also thus avoids entering the second-tier
algorithm unless a dominating fast-scanning host is present, thus increasing its
speed. Superspreader, on the other hand, is designed to identify every host that
connects to more than k

b
distinct destinations.

Accuracy based on real infected trace data. Using the parameters we
selected in Sect. 6.1, we compared how effective the Superspreader algorithm
was at detecting the infected worm traffic from our small network trace data.
We compared these results against SWorD using the same window size. Super-
spreader was able to detect all infected hosts as opposed to one host missed by
SWorD. However, on average the FP rate for Superspreader was over 25 times
that of SWorD. A daily comparison of FP rates is shown in Fig. 12. An analysis
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of the hosts Superspreader mislabeled as infected showed that over 85% were the
result of bursty web traffic, and so providing Superspreader with a mechanism
for detecting bursty web traffic (as added to SWorD ) will remove this source of
false positives. Of those remaining, all but one mislabeled host was the result of
peer-to-peer traffic. We found no evidence that the remaining mislabeled host
was malicious.

6.3 Storage Requirement

The Superspreader paper [18] does not discuss the storage required for their al-
gorithm under the sliding window scheme. However, we can estimate the storage
requirement. The algorithm must maintain the source and destination IPs for
all packets in the window. The storage requirement for this is 8W bytes. For the
non-sliding window version of the algorithm, there is a 3-byte requirement per
source IP. Since there are at most W sources in the sliding window version, we
add another 3W to the storage cost. This brings the total storage requirement
to 11W bytes.

Comparing the 11W -byte storage requirement for Superspreader to the 24w-
byte storage requirement for SWorD(see Sect. 3.3), we see that SWorD requires
over twice the storage of Superspreader when using similar window sizes. How-
ever, SWorD does not require windows that are as large as those of Super-
spreader [5].

6.4 Timeliness of Detection

Comparing SWorD and Superspreader in terms of time until each infected host
is detected demonstrates that on average SWorD detects infected hosts faster.
Figure 13 shows the proportion of infected hosts detected over time for both al-
gorithms. For SWorD, 88% of all infected hosts were detected within 30 seconds
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as opposed to 83% for Superspreader. Of the 88% that SWorD detected, 51%
were detected within the first 10 seconds. By 20 seconds, SWorD detected 78%.
Superspreader only detected 13% by 20 seconds. Recall from Fig. 7 that SWorD

performs even better with smaller window sizes.

Compared to Superspreader, SWorD is able to achieve faster detection with
higher accuracy. This is primarily because SWorD uses smaller window sizes
and does not require sampling. Since SWorD does not use sampling, it has a
higher storage requirement than Superspreader when comparable window sizes
are used. However, we have shown that when parameters are chosen to maximize
accuracy, SWorD requires less storage. A more detailed comparison of the two
algorithms is available [5].

7 Conclusion

In this paper we presented a technique for detecting and automatically filtering
fast-spreading worms and scanners. Our algorithm is simple to implement and
effective. By bounding the storage and computation overhead, we make deploy-
ment on the network edge feasible.

We tested SWorD on both a small and a large network. On the small network,
we showed that our algorithm is able to quickly detect worm infected hosts – 78%
within six seconds. We also demonstrated that SWorD is able to achieve these
results with high accuracy – zero FNs and an average FP rate of 0.1%, where our
FP rate is based on the number of hosts observed on any given day, rather than
on the traffic volume. Our results from applying SWorD to a large ISP with over
16 million hosts indicate that its effectiveness is not limited by network size or
traffic direction. For example, SWorD successfully detects all Blaster infected
hosts. Taking a random sampling of these hosts, we find detection occurs within
one second of the first infected packet.
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