
Compiler Assisted Elliptic Curve Cryptography

M. Barbosa1, A. Moss2 and D. Page2

1 Departamento de Informática, Universidade do Minho,
Campus de Gualtar, 4710-057 Braga, Portugal.

mbb@di.uminho.pt
2 Department of Computer Science, University of Bristol,

Merchant Venturers Building, Woodland Road,
Bristol, BS8 1UB, United Kingdom.

{moss,page}@cs.bris.ac.uk

Abstract. Although cryptographic software implementation is often per-
formed by expert programmers, the range of performance and security
driven options, as well as more mundane software engineering issues,
still make it a challenge. The use of domain specific language and com-
piler techniques to assist in description and optimisation of cryptographic
software is an interesting research challenge. Our results, which focus on
Elliptic Curve Cryptography (ECC), show that a suitable language al-
lows description of ECC based software in a manner close to the original
mathematics; the corresponding compiler allows automatic production
of an executable whose performance is competitive with that of a hand-
optimised implementation. Our work are set within the context of CACE,
an ongoing EU funded project on this general topic.

Keywords: Elliptic Curve Cryptography (ECC), Implementation, Com-
pilers, Optimisation, Specialisation.

1 Introduction

The increasing ubiquity of mobile computing devices has presented program-
mers with a problem. On one hand, such devices are required to be as compact
and low-power as possible; on the other hand they are increasingly required to
perform significant computational tasks. This dichotomy is further complicated
by security which represents a restrictive overhead within many applications.
Not only must a given device execute algorithms that satisfy the application
context, for example the use of digital signatures on smart-cards, but increas-
ingly it must implement countermeasures against physical attack. An example is
the concept of side-channel attack. By targeting the algorithm implementation
rather than the mathematical underpinnings, such attacks are often able to re-
cover secret information from a device by passive monitoring of features such as
timing variation [20], power consumption [21] or electromagnetic emission [1].

Elliptic Curve Cryptography (ECC) offers a popular solution to the problem
of implementing public key cryptography on mobile computing devices. The se-
curity of RSA, the most popular algorithm in other domains such as e-commerce,

is based on the hardness of integer factorisation; ECC is based on the the El-
liptic Curve Discrete Logarithm Problem (ECDLP). Since there is no known
sub-exponential time algorithm to solve the ECDLP, ECC keys can be shorter
than their RSA analogues while achieving the same security level: a 160-bit ECC
key is roughly equivalent to a 1024-bit RSA key. This means an ECC based sys-
tem is typically more efficient and utilises less resources than one based on RSA.
Furthermore, flexibility in the mathematics that underpins ECC means that
countermeasures against side-channel attack are both well studied and readily
available; see for example [7][Chapters 4 and 5].

At face value, ECC based cryptographic schemes seem an ideal partner for
mobile computing. However, the programmer is still faced with the problem of
actually implementing said schemes. This presents two further hurdles. Firstly,
the programmer is expected to be expert in an an extremely broad and fast mov-
ing field. The assumption that such a rich body of research can be absorbed and
applied without error is tenuous for even the most expert programmer. Secondly,
the programming tools presented to the developer to assist the construction of
software within this specific context are relatively rudimentary. In particular,
conventional programming languages and compilers are less than ideal: they
do not naturally support the types and operations required and thus cannot
perform optimisation and analysis phases typically offered when writing more
conventional software. For example, the compiler cannot apply basic optimi-
sations such as register allocation; it cannot detect or resolve security related
errors as it might do with errors relating to functional correctness. As a result,
cryptographic software is often described in a pseudo-high-level language: there
are structured control flow statements but operations are otherwise at the level
one would expect in a low-level language.

An interesting research challenge is presented by the potential to use domain
specific languages and compilation techniques in the presented context. The
hope is that programmers using the results of such research will derive similar
benefits to those experienced by switching from low-level assembly languages to
higher-level languages. That is, by expressing their programs in a more natural
manner and using automated analysis, optimisation and transformation, a pro-
grammer will improve their productivity, reduce their rate of error and generally
produce software of a higher quality. Systems such as Cryptol [23], Sokrates [8],
LaCodA [24] and SIMAP [29] have started to address this issue at various levels.
Focusing on ECC based primitives, so that our domain is slightly orthogonal to
previous work, we investigate three overarching topics: description of ECC based
primitives in a natural manner using the CAO [30] language; automatic opti-
misation of those primitives using novel extensions to the CAO compiler; and
the security implications of using specific forms of automation. Our results are
intentionally exploratory and we do not present or analyse a complete system.
Instead, we set our work within the context of CACE, an ongoing EU funded
project on this general topic; the CACE project has the broad remit of maturing
research such as that presented here, and producing robust tools from the result.

!

"!

#"!

!

"

!#"

$%!#"&

(a) Point doubling. (b) Point addition.

Fig. 1. A graphical description of point doubling and addition on elliptic curves.

The paper is organised as follows. We use Section 2 to present background
material including brief overview of the fundamentals behind ECC and a de-
scription of our experimental platform. In Section 3 we present an implementa-
tion of curve arithmetic that utilises domain specific programming language and
compilation techniques. Methods for optimising this implementation are then
demonstrated in Section 4: we focus on automatic specialisation of field arith-
metic in Section 4.1, placement of modular reduction operations in Section 4.2,
and cache conscious ordering of field operations in Section 4.3. We present some
conclusions in Section 5.

2 Background

An Introduction to ECC Elliptic Curve Cryptography (ECC) was invented
during the mid 1980s in independent work by Miller [26] and Koblitz [18], then
generalised to include Hyperelliptic Curve Cryptography (HECC) by Koblitz [19]
in 1989. We concentrate here only on ECC, for further reading on all issues
covered in this basic introduction, see Menezes et al. [15] or Blake et. al [6, 7].
Briefly then, an elliptic curve E over the finite field K is defined by the general
Weierstrass equation, for ai ∈ K

E(K) : Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6

The K-rational points on a curve E, i.e. those (x, y) ∈ K2 which satisfy the curve
equation, plus the point at infinite O, form an additive group under a group law
defined by the chord-tangent process. Using basic coordinate geometry and given
two points P1 = (x1, y1) and P2 = (x2, y2), one constructs arithmetic to compute
the point P3 = (x3, y3) = P1 + P2 as follows:

x3 = λ2 + a1λ− a2 − x1 − x2

y3 = (x1 − x3)λ − y1 − a1x3 − a3

where

λ =

3x2
1+2a2x1+a4−a1y1
2y1+a1x1+a3

if P1 = P2

y1−y2
x1−x2

if P1 6= P2

We term the case where P1 6= P2 (resp. P1 = P2) point addition (resp. point
doubling). Calculating the negation of a point, i.e. finding −P1 given P1, is
computationally easy and so subtraction is usually performed using a negation
following by an addition.

Most ECC based schemes use the additive group structure presented by the
points on E as a means to present a discrete logarithm problem as the basis
for security. The Elliptic Curve Discrete Logarithm Problem (ECDLP) is con-
structed by considering scalar multiplication of a point P ∈ E by the integer
value d expressed as Q = d · P or, expanding the right hand side to give a more
natural description

Q = P + P + · · ·+ P + P︸ ︷︷ ︸
total of d summands

.

Given the values of d and P , it is easy to calculate Q using an additive version
of common exponentiation algorithms. However, given only the values of P and
Q, the value of d is computationally hard to recover.

The point arithmetic described above includes an inversion in K, which is an
expensive operation, to compute the value λ. To eliminate it, one can consider the
use of projective coordinates to represent points on E using a triple (x, y, z) ∈ K3

rather than simply (x, y) ∈ K2. Of many systems, one of the most commonly
used is Jacobian projective coordinates, a map between projective and affine
spaces given by (X, Y, Z) 7→ (X/Z2, Y/Z3) where the curve equation is now
given by the homogenised Weierstrass equation

E : Y 2 + a1XY Z + a3Y Z3 = X3 + a2X
2Z2 + a4XZ4 + a6Z

6.

One can show that the resulting point arithmetic can be constructed without
inversions in K. Furthermore, for specific K we simplify the general Weierstrass
equation via a change of variables; the most common cases of K = Fp, for some
large prime p > 3, and K = F2n , for some integer n, yield

E(Fp) : Y 2 = X3 + aXZ4 + bZ6

E(F2n) : Y 2 + XY Z = X3 + aX2Z2 + bZ6

for a, b ∈ Fp and for a, b ∈ F2n , respectively. For E(Fp) it is common to fix
a = −3 since this simplifies arithmetic on points.

An Introduction to the Experimental Platform To provide a consistent
experimental platform for the rest of the paper we selected a typical embedded
processor solution from ARM. More specifically, we selected the ARM946E-S

λ1 ← 3(x1 − z2
1)(x1 + z2

1)
z3 ← 2y1z1

λ2 ← 4x1y
2
1

x3 ← λ2
1 − 2λ2

λ3 ← 8y4
1

y3 ← λ1(λ2 − x3)− λ3

dbl(x1 : gfp, y1 : gfp, z1 : gfp)
: gfp, gfp, gfp

{
l1 : gfp := 3 * (x1 - z1**2)

* (x1 + z1**2);
z3 : gfp := 2 * y1 * z1;
l2 : gfp := 4 *x1 * y1**2;
x3 : gfp := l1**2 - 2 * l2;
l3 : gfp := 8 * y1**4;
y3 : gfp := l1 * (l2 - x3) - l3;

return x3, y3, z3;
}

Fig. 2. Two descriptions of point doubling P3 = (x3, y3, z3) = 2 · P1 given P1 =
(x1, y1, z1) using Jacobian projective coordinates on E(Fp). The left-hand side
is described in terms of the original formula from [6][Page 60], the right-hand
side is the associated translation into CAO.

macro-cell [2] which incorporates a 32-bit ARM9 processor core. Although the
core can be clocked much faster, we opted to use a modest 16 MHz. The macro-
cell allows the processor core to be coupled internally to a configurable amount
of Harvard style cache memory. For each of the data and instruction caches, we
opted for the smallest 4-way set associative format with a 4-kB capacity arranged
in 32-byte lines. Configured as such, the macro-cell is ideal for deployment in
applications where high performance, low cost, small size and low power are key.
ARM cites the embedded, media, communication and networking markets as
targets; the macro-cell plays a central role in the Nintendo DS and Nokia N-Gage
products. Development for, and simulation of, the ARM946E-S was performed
using the ARM Developer Suite (ADS) 1.2.

3 Implementation of Curve Arithmetic

The basic purpose of a compiler for a high-level language is to translate a pro-
gram into a lower-level (or executable) form. Essentially this mechanises the
processes that an expert programmer might perform by hand and, as a result,
removes the associated tedium and error. As such, an ideal route to implemen-
tation of ECC point arithmetic would be to simply write down formula, using
a high-level programming language, as one finds them in a text book and then
execute the compiled result. However, interpreted languages which support the
types and operations required, such as Magma [9], are unlikely to yield efficient
results on a mobile computing device. Conversely, using a language which sup-
ports efficient compilation, such as C, seldom results in easy translation since
there is typically no natural support for required types and operations.

void dbl(ZZ_p& x3, ZZ_p& y3, ZZ_p& z3,
ZZ_p& x1, ZZ_p& y1, ZZ_p& z1)

{
ZZ_p t0, t1, t2, t3, t4;

sqr(t2, z1); sub(t1, x1, t2); add(t0, t1, t1);
add(t1, t0, t1); add(t0, x1, t2); mul(t4, t1, t0);
add(t0, x1, x1); add(t1, t0, t0); sqr(t0, y1);
mul(t3, t1, t0); sqr(t0, t0); add(t0, t0, t0);
add(t0, t0, t0); add(t2, t0, t0); add(t0, y1, y1);
mul(z3, t0, z1); sqr(t1, t4); add(t0, t3, t3);
sub(x3, t1, t0); sub(t0, t3, x3); mul(t0, t4, t0);
sub(y3, t0, t2);

}

Fig. 3. The result of automatically compiling a CAO implementation of point
doubling, shown in Figure 2, into an NTL based function (with slight hand
modification used to improve readability).

As a means of allowing common compilation techniques to be applied to nat-
ural descriptions of ECC, we present the CAO language and associated compiler
system [30]. Figure 2 demonstrates how one might translate text book formula
for point doubling, using Jacobian projective coordinates on E(Fp), into a CAO
function. Notice that the CAO function is able to naturally express the original
formula since the language is equipped with a type system that includes Fp. The
CAO compiler is structured so that back-end code generation can be replaced to
target any platform; in this specific case it produces an NTL [33] based imple-
mentation detailed in Figure 3, which closely matches that one would construct
by hand, using a range of standard optimisation techniques:

Register Allocation One of the most tedious tasks in implementing sequences
of operations on types not supported by a language is finding an allocation
of temporary variables which is efficient, i.e. has an acceptably small mem-
ory footprint. Fortunately, this problem is well studied in the context of
conventional compilers [28, Chapter 16].

Strength Reduction A common implementation task is the conversion of mul-
tiplication or exponentiation by small constants into an efficient addition
chain that is less costly than the naive description. An example is the com-
putation of 8y4

1 in Figure 2. Performing this optimisation manually obfus-
cates the program; early optimisation like this is a poor choice since it limits
both understanding of the algorithm and portability of the program which
implements it. For example, we might make an assumption about the cost
ratio between addition and multiplication and hard code it into our imple-
mentation. If this assumption is false for a given target platform, we must
rethink the implications of our optimisation and potentially replace it with
something more appropriate. However, the compiler can perform this optimi-

sation automatically given knowledge of the types and operations involved;
this is a type of strength reduction [28, Chapter 12]. Further, since it has a
knowledge of the target architecture (and hence the relative costs of oper-
ations) it can selectively apply the optimisation to give the best result. We
typically only need to compute chains for small values and can achieve rea-
sonable results with a basic algorithm, for example the power-tree method
of Knuth [17, Section 4.6.3].

Common Sub-expression Elimination (CSE) Intermediate results can po-
tentially be shared between different parts of the computation without re-
computation, should there be enough registers to accommodate them. An
example is the reuse of the value y2

1 to compute y4
1 via one squaring in Fig-

ure 2. Again, performing the optimisation manually obfuscates the algorithm
and ties us to assumptions that may not hold on a given target platform.
Again, the compiler can perform this optimisation automatically given it
knows about the types and operations involved; this is a type of common
sub-expression elimination [28, Chapter 13].

4 Optimisation of Curve Arithmetic

4.1 Specialisation of Field Arithmetic

The description of ECC in Section 2 highlights the pivotal role of field arithmetic
in overall performance. However, general purpose software libraries are often less
than ideal in this context. Perhaps the most succinct written description of the
problem is given by Avanzi [3] while discussing issues of performance in HECC.
He states that general purpose software libraries:

... all introduce fixed overheads for every procedure call and loop, which
are usually negligible for very large operands, but become the dominant
part of the computations for small operands such as those occurring in
curve cryptography.

In part, this is an obvious statement. Expert programmers routinely optimise
and specialise their programs to avoid such overheads. This is especially true
given that there are various ECC standards which specify a limited range of
parameterisations; one can easily specialise for these particular cases. However,
it is a vastly important statement from a software engineering perspective. Most
programmers are not expert, especially in the context of cryptography where
they may not even fully understand the underlying mathematics; they are bound
by deadlines as well as performance targets; they might need to port their code
to many different platforms and environments rather than for one-off use in a
research paper.

To combat this problem, we investigated the automatic generation of special
purpose run-time support libraries from a corpus of general purpose library
code. That is, if the CAO program uses a given finite field within the high-level
program, the compiler instructs an auxiliary system to construct a run-time

SECT163R1 SECT233R1 SECT283R1 SECT409R1 SECT571R1
Add Sqr Mul Add Sqr Mul Add Sqr Mul Add Sqr Mul Add Sqr Mul

A 5 77 577 7 68 937 7 115 961 10 102 1454 15 212 3545
B 1 27 386 1 33 743 2 42 756 4 48 1166 6 66 3017
C 1 27 373 1 30 681 2 36 719 4 44 1454 6 77 3077

SECP192R1 SECP224R1 SECP256R1 SECP384R1 SECP521R1
Add Sqr Mul Add Sqr Mul Add Sqr Mul Add Sqr Mul Add Sqr Mul

A 9 178 188 10 234 248 11 283 301 13 571 618 30 1099 1179
B 7 58 60 7 76 80 9 147 159 9 221 261 20 384 747
C 7 58 60 7 76 80 9 147 159 9 221 261 20 384 747

Fig. 4. A comparison of operation processing time (in microseconds) between
three different implementations of arithmetic in F2n and Fp for standard values
of n and p.

library specifically to support operations in that field (i.e. replace the calls to
NTL produced by the initial compiler back-end in Section 3). This idea has
recently been addressed by the mpFq system of Gaudry and Thomé [13] who use
special purpose code generation; in contrast we use the Tempo [10] specialiser
which accepts arbitrary C source code as input.

Table 4 compares the performance of three different run-time libraries for
arithmetic in the fields F2n and Fp for values of n and p that match those used
in the SECG recommended domain parameters [32]. We focused on the core
operations of field addition, squaring and multiplication. Although field inversion
would also be required for a full ECC implementation, the use of projective
coordinates means this operation is not significantly relevant to performance.
The three libraries were constructed as follows:

Implementation A Entirely generic, hand written implementation in the sense
that the same correctly parameterised code would work for any n or p. For
arithmetic in F2n the standard table based coefficient thinning method was
used for squaring [15][Pages 52-53], multiplication was performed using the
right-to-left comb method [15][Pages 48-51], the reduction used a generic
word-wise approach [15][Pages 53-56]. For arithmetic in Fp standard integer
addition [15][Page 20], multiplication [15][Page 31] and squaring [15][Page
35] were used; modular reduction was performed using the method of Bar-
rett [15][Page 36].

Implementation B Same as Implementation A except that several core func-
tions were specialised by hand to remove the most obvious bottlenecks
in performance. For example, in the arithmetic for F2n both the addition
and vector shift functions were turned into macros with their inner loops
fully unrolled so as to remove function call and loop overheads. The stan-
dard specialised reduction functions were implemented and utilised for each
field [15][Pages 44-46 and 53-56].

Implementation C Has the same forms of specialisation as Implementation
B but applied automatically using Tempo. In order to specialise a given

C function, the user specifies an execution context which details variables
that will have static, constant values or dynamic, changing values. Tempo
uses the value of static variables to perform aggressive transformations such
as constant propagation, loop unrolling and dead code elimination; the end
result is a function that is semantically the same as the original when the
execution context is the same as that specified.
The input to Tempo was taken directly from Implementation A with the only
other inputs being constants relating to the field parameterisation that de-
fined the execution context. The one caveat to this is the reduction function
for arithmetic in Fp which was automatically generated using an external
program that implemented the method of Solinas [34]. This partly covers
the fact that Tempo cannot make algorithmic selections on behalf of the
programmer, e.g. Barrett reduction versus Solinas reduction for a given p.

We used the ARM C compiler in all cases, with assembly language inserts to
accelerate specific code segments and all compiler options tuned for speed. Com-
parison between Implementations A and B reveal what one would expect: the
specialised version is quicker because the main overheads have been eliminated
by hand. The more interesting result is that Implementation C which was gen-
erated automatically from Implementation A matches the performance of the
hand specialised code in Implementation B: it actually often performs better,
due to a more aggressive loop unrolling strategy than that undertaken by hand,
until the point where it became too aggressive and misses in the instruction
cache hampered the result. In hindsight it should not be surprising that Tempo
was able to perform well with the given library code since the specialisation is
mainly related to loop unrolling, constant propagation and some static control
flow: essentially the specialisation requires no specific domain knowledge.

The absolute timings from Figure 4 are somewhat unimportant and are highly
related to higher-level algorithmic choices. The key thing to note from this ex-
periment is that with the caveat that any specialisation needs to be performed in
context with the application, one can automatically produce a specialised run-
time library which is competitive with a hand written alternative. This positive
result in terms of performance was achieved in a fraction of the time in terms of
programmer effort.

4.2 Lazy Reduction

Avanzi [3][Section 2.2] utilises what he terms lazy modular reduction techniques
to improve the performance of his results. Lazy reduction removes specific mod-
ular reduction operations, combining them in others so that their cost is amor-
tised. When working with the finite field Fp for example, this relaxes the con-
straint that intermediate results are strict members of Fp but improves perfor-
mance by potentially eliminating computation.

An easy example of the potential for lazy reduction is presented by use of
Barrett reduction [4] to implement arithmetic in Fp. Working on a processor
with word-size w one represents p using a vector of k base-b digits where b = 2w.

Index Operation Reduction
0 λ1 ← z2

1 redmul

1 λ2 ← x1 − λ1 redsub

2 λ3 ← x1 + λ1

3 λ4 ← λ2 · λ3 redmul

4 λ5 ← λ4 + λ4

5 λ6 ← λ5 + λ4

6 λ7 ← y1 · z1

7 z3 ← λ7 + λ7 redmul

8 λ8 ← y2
1 redmul

9 λ9 ← x1 · λ8

10 λ10 ← λ9 + λ9

Index Operation Reduction
11 λ11 ← λ10 + λ10 redmul

12 λ12 ← λ2
6 redmul

13 λ13 ← λ11 + λ11 redadd

14 x3 ← λ12 − λ13 redsub

15 λ14 ← λ2
8

16 λ15 ← λ14 + λ14

17 λ16 ← λ15 + λ15

18 λ17 ← λ16 + λ16 redmul

19 λ18 ← λ11 − x3 redsub

20 λ19 ← λ6 · λ18 redmul

21 y3 ← λ19 − λ17 redsub

Table 1. Sequence of operations with delayed reduction for point doubling P3 =
(x3, y3, z3) = 2 · P1, given P1 = (x1, y1, z1) (Jacobian projective coordinates on
E(Fp)).

Barrett presents a method for taking an integer 0 ≤ x < b2k and reducing it
modulo p without the need for an expensive division operation. If p does not
occupy a full k words, this leaves some unused storage. Consider for example
the specification of the SECP521R1 curve [32] where p = 2521 − 1, a value that
requires seventeen 32-bit words of storage but does not occupy 23 bits in the top
word. One would normally input values to the reduction function in the range
[0..p2), represented in 2k words, as the result of a multiplication. However, given
this specific value of p the function can comfortably accept values in, for example,
the range [0..16p2) due to the fact that 16p2 < b2k . The key issue is that for
this sort of suitable p, the cost of reduction with the relaxed input range is no
more than with the strict range: this is ideal for combination with the idea of
lazy reduction.

Montgomery representation [27] offers another efficient way to perform arith-
metic in Fp. To define the Montgomery representation of x, denoted xM , one
selects an R = bt > p for some integer t; the representation then specifies that
xM ≡ xR (mod p). To compute the product of xM and yM held in Montgomery
representation, one interleaves a standard integer multiplication with an efficient
reduction technique tied to the choice of R. We term the conglomerate opera-
tion Montgomery multiplication and denote it by zM = xM ? yM . Ordinarily,
one has that xM , yM , zM ∈ [0 . . . p) but it is possible to construct a redundant,
or non-reduced Montgomery representation so that the input ranges are relaxed
to xM , yM ∈ [0 . . . εp) for some suitable value of ε; roughly, this means selecting
R = bt > ε2p. For example, Walter [35] selects ε = 2 in order to remove the need
for the conditional, final subtraction in the implementation of ?. For suitable p
and ε this again gives potential for combination with the idea of lazy reduction.
However, there is one extra caveat in realising this combination. Consider the in-
teger multiplication of two values held in Montgomery form z = xM ·yM = xyR2,
and a standard value held in Montgomery form wM = wR. Unlike with the use of

Algorithm 1: An algorithm to automatically find lazy reduction points.
Input : A straight-line function F , a bound on computation I and

initial weight Tinit.
Output: A set of lazy reduction points S, or ⊥ on failure.

S ←⊥
for T = Tinit downto 0 do

for i = 0 upto I do
Pick a set R ⊂ F of reduction sites so as to satisfy:
1. if d defines symbol r, which is later input to an operation

requiring a fully reduced operand, place a reduction after d.
2. otherwise place reductions randomly so there are T in total.

Check that the ranges of symbols in F satisfy:
1. for each symbol s, the symbol is within the maximum range.
2. for each definition d, the source operands are within the

range specified by the operation.
3. for each definition d, the target operands are within the

range of some reduction operation.

if R passes all constraints then
Evaluate c = cost(R), the cost of placed reductions.
if S =⊥ or c < cost(S) then

S ← R
return S

Barrett reduction, where values are simply integers and the reduction is simply
accelerated, Montgomery form imposes a further constraint in that one cannot
add together z and wM or, more generally, unreduced and reduced representa-
tions.

Defining Reasonable Constraints Our task is to take a program F and
automatically select a set R ⊂ F of points after which reduction operations will
be placed. We assume that F is straight-line and fairly short (which holds or
can be made to hold for most ECC related functions); that input arguments to
F are fully reduced and that both return values and global variables need to be
fully reduced at the end of the program. Because of the large degree of freedom
involved, we use a Monte Carlo approach to form a solution, guided by a number
of constraints on features such as input and output ranges for given operations.
For example, for a sequence of additions, subtractions and multiplications in Fp

we might impose the following constraints:

1. The values of intermediate results cannot exceed the cmax.
2. We demand that

– x, y ∈ [0..cadd), and z ∈ [0..2 · cadd) for z = x + y type operations.
– x, y ∈ [0..p), and z ∈ (−p..p) for z = x− y type operations.
– x, y ∈ [0..cmul), and z ∈ [0..c2

mul) for z = x · y type operations.

3. We distinguish three reduction operations
– y = redadd(x) = x mod p where x ∈ [0..credadd

) and y ∈ [0..p).
– y = redsub(x) = x mod p where x ∈ (−credsub

.. + credsub
) and y ∈ [0..p).

– y = redmul(x) = x mod p where x ∈ [0..credmul
) and y ∈ [0..p)

For example, we might parameterise our constraint set as

cmax = 16p2 credadd
= 2p

cadd = 8p2 credsub
= p

cmul = 4p credmul
= 16p2

to roughly match the SECP521R1 curve [32] implemented using either Barrett
or Montgomery based arithmetic.

An Optimisation Algorithm Algorithm 1 gives a sketch of the (somewhat
naive) automated approach. Using the parameterisation above and run on the
code sequence for point doubling on E(Fp), our approach automatically produces
the weight 13 solution shown in Table 1 after just a second or so of processing.
This solution would be suitable, for example, in the case of the SECP521R1
curve [32]. Notice that the fact that our redundant representation has relaxed
the ranges of input operands to the reduction operation redmul means that
we can accumulate several additive operations as unreduced intermediates, and
include their reduction in a subsequent call to redmul with no extra cost.

We used the algorithm described above to produce exactly the reduction
points shown in Table 1 which describes an operation sequence for ECC point
doubling. In conjunction with the standard SECP521R1 curve and using our
ARM based experimental platform (with field arithmetic produced by the spe-
cialiser described in Section 4.1), we benchmarked the operation sequence and
found that the optimised version improved the overall execution time by roughly
2%. Note that this figure is closely tied to the operation sequence in question
and choice of underlying field. Although in this case the improvement is admit-
tedly marginal, it is crucial to note that it comes entirely for free: there no extra
effort by the programmer. Furthermore, although the solution is not guaranteed
to be optimal the automated approach ensures easy maintainability should the
high-level implementation be changed and hence require re-optimisation.

4.3 Cache Consciousness

Cache memories [16], which the ARM946E-S is enabled with, are small areas of
very fast memory placed between the processor and main memory. They hold
a subset of main memory, the aim being to hold the working set of a program
and hence accelerate memory access. Typical caches are most effective when
two principles of locality hold in the address stream: (1) temporal locality, that
recently accessed memory addresses are likely to be accessed again in the near
future (2) spatial locality, that two addresses close to each other in memory will
be accessed close together in time. It can therefore be attractive to restructure

programs to better take advantage of the underlying cache memories; see [22]
for an overview of common optimisation techniques.

In the remainder of this section we describe how we build on this observation
in the CAO compiler system. Our goal is to enable the compiler to automatically
restructure a high-level program so it is more cache conscious, and hence more
efficient as highlighted above. Our approach is related to that of Sermulins et al.
[31] where high-level cache-aware optimisations are applied in the compilation
of a domain specific language for streaming applications. Note that Gupta et
al.[14] show that a variant of the cache-aware instruction scheduling problem,
expressed using a graph-based formalism very much in line with the one adopted
in this work, is NP-complete.

An Optimisation Approach The proposed cache aware scheduling technique
is applied within the high-level optimisation phase of the CAO compiler and is
therefore subject to some restrictions. High-level operations, such as finite field
calculations, are seen as atomic instructions. Although the compiler will have
some knowledge of the run-time library, this is pre-compiled code which is not
accessible for optimisation. Furthermore, since the CAO compiler is designed to
target multiple platforms by replacing the back-end, any cache-oriented optimi-
sation introduced at this level must be, to some extent, independent of target-
specific details. Despite these restrictions, we show that it is possible to obtain
performance benefits by introducing high-level cache-aware compiler optimisa-
tions early in the compilation process. For this, we present an algorithm that
performs the analogy of heuristically guided instruction scheduling within a con-
ventional compiler. The algorithm processes straight line instruction sequences
and seeks to improve the temporal locality properties, which we formulate as an
optimisation problem. We begin by defining a problem instance.

Definition 1. Let F be a function constituted of a list of instructions, each of
them executing an operation I from a finite operation set L. Each instruction
reads the values of operands O[1] and O[2] 3 and places the result in an operand
D, all from a finite set of operands O. More precisely, let F = F [1], . . . , F [|F |],
where |F | denotes the length of function F , and

F [i] = (Ii, Di, Oi[1], Oi[2]) ∈ L×O ×O × (O ∪ {⊥})
denotes instruction i of function F , with 1 ≤ i ≤ |F |.
We aim to manipulate the original function into a new version F ′ such that
instructions which access the same data memory position and/or use the same
pre-compiled run-time library operation are closer together. To allow for instruc-
tion reordering, we extend our problem definition to include information about
the data dependencies between instructions within each function. We represent
these dependencies as directed graphs.
3 We allow O[2] to take the special value ⊥ to capture the possibility that some

operations take only one operand e.g. a squaring or a doubling.

Definition 2. Given a set F as in Definition 1, let P be a pair P = (F, G),
where G = (V, E) is a directed graph in which V and E are the associated
sets of nodes and edges, respectively. Let |V | = |F | and, to each instruction F [i],
associate node vi ∈ V . Let E contain an edge from node vi to node vj if and only
if executing instruction F [i] before instruction F [j] disrupts the normal data flow
inside the function. We say that instruction F [i] depends on instruction F [j].

We use the dependency graphs in Definition 2 to guarantee that the transforma-
tions we perform on the functions F are sound. That is, as long as we respect the
dependencies, the program is functionally correct, even though the instructions
are reordered. Definition 3 captures this notion.

Definition 3. A function F ′ is a valid transformation of a function F (written
F ′ W F) if F ′ can be generated reordering the instructions in F respecting the
dependency graph G, i.e. if there is an edge (vi, vj) ∈ E then instruction F [i]
must occur after instruction F [j] in F ′.

The goal is to find F ′ whose temporal locality properties imply a reduction (or
ideally a minimisation) of the overhead due to cache accesses during execution.
An instruction reading (resp. using code) from a memory location which is not
currently in the data (resp. instruction) cache will cause an access to main mem-
ory; this is termed a cache-miss. Roughly speaking our aim is to minimise cache
misses by maximising temporal locality in the data and instruction streams.

Since we want our problem formulation to be at a high level of abstraction,
our approach to approximating said overheads is straightforward. We assign an
integer weight to each basic instruction in set L and, similarly, to each operand
in the set O. This value provides a relative measure for the cost of loading the
instruction code or the operand data into the cache if it is not already there when
a particular instruction is executed. In practise these values should increase with
the sizes of the memory representations of operations and operands. They can
also be used to bias the optimality criteria into favouring operation locality over
operator locality and vice-versa. It is through these values that the compiler can
tune the solution search to match the characteristics of a particular run-time
library or a particular target platform.

Definition 4. Let ω : L → N be a weight function that, for each basic instruc-
tion l ∈ L, provides a relative value ω(l) for the cache miss overhead associated
with loading instruction l. Similarly, let φ : O → N be a weight function that, for
each operand o ∈ O, provides a relative value φ(o) for the cache miss overhead
associated with loading operand o.

Given these cost definitions, we are now in a position to provide a formulation
of the problem of optimising the temporal locality of a function.

Definition 5. Given a tuple (P, ω, φ) as in Definitions 1, 2 and 4, find a func-
tion F ′ such that F ′ W F and that

|F ′|∑
i=1

δIiω(Ii) + δOi[1]φ(Oi[1]) + δOi[2]φ(Oi[2])

Algorithm 2: An optimisation algorithm to improve temporal data and
instruction locality within a function.
Input : (P, ω, φ)
Output: F ′, a quasi-optimal solution to the problem in Definition 5

result← F , best← cost(x)
for s = 1 upto S do

x← F , cost← cost(x)
for t = 1 upto T do

thresh← threshold(t, T)
x′ ← neighbour(x), cost′ ← cost(x′)
if (cost′/cost− 1) < thresh then

x← x′, cost← cost′
if cost < best then

result← x, best← cost
return result

is minimal. The δ values represent the distance, i.e. the index difference, to the
previous instruction where the same operation/operand has occurred. For first
occurrences, this is taken to be |F ′|. For the special case of Oi[2] =⊥ it is 0.

The intuition behind the cost function in Definition 5 is that first occurrences of
operations and operands invariably cause cache misses; for repeated occurrences,
misses are more likely as the distance between repetitions increases.

An Optimisation Algorithm Our approach to solving the problem as de-
scribed above is detailed in Algorithm 2. The algorithm represents an adapta-
tion of Threshold Accepting [12], a generic optimisation algorithm and a close
relative of simulated annealing. Note that we are not aiming to find the opti-
mal solution, but to find a good enough approximation of it that can be used
in practical applications. A neighbour solution is derived from the current so-
lution by randomly selecting a random mutation from a small set of heuristic
transformations. These generally consist of choosing a random instruction and
moving it gradually to another position where it is closer to another instruction
which uses the same operands or operations. Mutations are accepted if they in-
crease the solution cost by less than a threshold which varies with t, starting at
a larger value and gradually decreasing. The number of iterations S and T must
be adjusted according to the size of the problem.

We used the algorithm described above to improve the temporal locality of an
operation sequence for ECC point doubling; the results are described by Table 2.
The left-hand sequence is the natural ordering in the sense that it is converted
directly from the formula [6][Page 60]. The right-hand sequence, produced by
the algorithm, exhibits better temporal locality in the instruction stream, since
access to instructions that implement similar operations are grouped close to-
gether. Again in conjunction with the standard SECP521R1 curve and using our
ARM based experimental platform (with field arithmetic produced by the spe-
cialiser described in Section 4.1), we benchmarked the two operation sequences

Index Original Reordered
0 λ1 ← z2

1 λ1 ← z2
1

1 λ2 ← x1 − λ1 λ2 ← x1 − λ1

2 λ3 ← x1 + λ1 λ3 ← x1 + λ1

3 λ4 ← λ2 · λ3 λ4 ← λ2 · λ3

4 λ5 ← λ4 + λ4 λ7 ← y1 · z1

5 λ6 ← λ5 + λ4 λ5 ← λ4 + λ4

6 λ7 ← y1 · z1 λ6 ← λ5 + λ4

7 z3 ← λ7 + λ7 z3 ← λ7 + λ7

8 λ8 ← y2
1 λ12 ← λ2

6

9 λ9 ← x1 · λ8 λ8 ← y2
1

10 λ10 ← λ9 + λ9 λ14 ← λ2
8

Index Original Reordered
11 λ11 ← λ10 + λ10 λ9 ← x1 · λ8

12 λ12 ← λ2
6 λ10 ← λ9 + λ9

13 λ13 ← λ11 + λ11 λ11 ← λ10 + λ10

14 x3 ← λ12 − λ13 λ13 ← λ11 + λ11

15 λ14 ← λ2
8 x3 ← λ12 − λ13

16 λ15 ← λ14 + λ14 λ15 ← λ14 + λ14

17 λ16 ← λ15 + λ15 λ16 ← λ15 + λ15

18 λ17 ← λ16 + λ16 λ17 ← λ16 + λ16

19 λ18 ← λ11 − x3 λ18 ← λ11 − x3

20 λ19 ← λ6 · λ18 λ19 ← λ6 · λ18

21 y3 ← λ19 − λ17 y3 ← λ19 − λ17

Table 2. Two orderings of operations for the point doubling P3 = (x3, y3, z3) =
2 · P1, given P1 = (x1, y1, z1), using Jacobian projective coordinates on E(Fp).

and found that the optimised version provoked around 1% less instruction cache
misses which improved the overall execution time by roughly the same amount,
i.e. 1%. In a similar way to the lazy reduction example, this figure is closely tied
to the operation sequence in question and choice of underlying field. For this
specific example the improvement is again marginal, but again it is provided
entirely for free in terms of programmer and maintenance effort.

5 Conclusions

Thanks to a wealth of research and associated literature, implementation of ECC
has been demystified to the extent that it is no longer exclusively restricted to
expert programmers. A balance to this increase in understanding is the wide
range of options as regards implementation and parameterisation: even when the
right algorithms and parameters are selected, the engineering and programming
tasks involved in construction of a working ECC based system are far from
trivial.

We investigated the use of language and compilation techniques to assist the
programmer to solve this problem. We introduced the CAO language and asso-
ciated compiler as a means of naturally describing cryptographically interesting
programs. Such programs can be analysed by the compiler and undergo domain
specific, cryptography-aware analysis, transformation and optimisation phases.
Counter arguments to the use of such techniques are common. For example one
might posit that expert programmer will always produce more optimal programs,
or reason that legal issues surrounding patent violation make use of automatic
tools difficult. However, this remains an interesting research area; our ongoing
goal is that the knowledge and experience of expert practitioners be partially
transfered into mechanised tools to improve both productivity, maintainability,
portability and overall software quality.

A significant problem remains in that by using such tools to assist the act
of engineering software, one needs to trust them from a security perspective.
Without a clearer picture of security models for side-channel attack [25], it isn’t
clear how the dual goals of performance and security can be balanced in this
context; this remains an open research question.

Acknowledgements

The authors would like to thank various anonymous referees for their helpful
comments, and Gregory Zaverucha for pointing out the automated method to
generate modular reduction functions for arithmetic in Fp.

References

1. D. Agrawal, B. Archambeault, J.R. Rao and P. Rohatgi. The EM Side-Channel(s).
In Cryptographic Hardware and Embedded Systems (CHES), Springer-Verlag LNCS
2523, 29–45, 2002.

2. ARM Limited. ARM946E-S Technical Reference Manual. Available from: http:
//www.arm.com/documentation/

3. R.M. Avanzi. Aspects of Hyperelliptic Curves over Large Prime Fields in Software
Implementations. In Cryptographic Hardware and Embedded Systems (CHES),
LNCS 3156, 148–162, 2004.

4. P.D. Barrett. Implementing the Rivest Shamir and Adleman Public Key Encryp-
tion Algorithm on a Standard Digital Signal Processor. In Advances in Cryptology
(CRYPTO), LNCS 263, 311–323, 1986.

5. M. Barbosa and D. Page. On the Automatic Construction of Indistinguishable
Operations. In Cryptology ePrint Archive, Report 2005/174, 2005.

6. I.F. Blake, G. Seroussi and N.P. Smart. Elliptic Curves in Cryptography. Cam-
bridge University Press, 1999.

7. I.F. Blake, G. Seroussi and N.P. Smart. Advances in Elliptic Curve Cryptography.
Cambridge University Press, 2004.

8. J. Camenisch, M. Rohe and A-R. Sadeghi. Sokrates - A Compiler Framework
for Zero-Knowledge Protocols. In Western European Workshop on Research in
Cryptology (WEWoRC), 2005

9. Computational Algebra Group, University of Sydney. Magma Computational Al-
gebra System. Available from: http://magma.maths.usyd.edu.au/magma/

10. C. Consel, L. Hornof, R. Marlet, G. Muller, S. Thibault, E-N. Volanschi, J. Lawall
and J. Noyá. Tempo: Specializing Systems Applications and Beyond. In ACM
Computing Surveys, 30 (3), 1998.

11. P. Crescenzi and V. Kann. A Compendium of NP Optimization Problems. Avail-
able from: http://www.nada.kth.se/~viggo/problemlist/

12. G. Dueck and T. Scheuer. Threshold Accepting: A General Purpose Optimization
Algorithm Appearing Superior to Simulated Annealing. In Journal of Computa-
tional Physics, 90 (1), 161–175, 1990.

13. P. Gaudry and E. Thomé. The mpFq Library and Implementing Curve-based Key
Exchanges. In Software Performance Enhancement for Encryption and Decryption
(SPEED), 49–64, 2007.

14. D. Gupta, B. Malloy and A. McRae. The Complexity of Scheduling for Data Cache
Optimization. In Information Sciences, 100 (1-4), 1997.

15. D. Hankerson, A. Menezes and S. Vanstone. Guide to Elliptic Curve Cryptography.
Springer-Verlag, 2004.

16. J.L. Hennessy and D.A. Patterson. Computer Architecture: A Quantitative Ap-
proach, Morgan Kaufmann, 2006.

17. D. Knuth. The Art of Computer Programming, Volume 2: Seminumerical Algo-
rithms. Addison Wesley, 1999.

18. N. Koblitz. Elliptic Curve Cryptosystems. In Mathematics of Computation, 48,
203–209, 1987.

19. N. Koblitz. Hyperelliptic Cryptosystems. Journal of Cryptology, 1 (3), 139–150,
1989.

20. P.C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. In Advances in Cryptology (CRYPTO), Springer-Verlag LNCS
1109, 104–113, 1996.

21. P.C. Kocher, J. Jaffe and B. Jun. Differential Power Analysis. In Advances in
Cryptology (CRYPTO), Springer-Verlag LNCS 1666, 388–397, 1999.

22. M. Kowarschik and C. Wei. An Overview of Cache Optimization Techniques and
Cache-Aware Numerical Algorithms. In Algorithms for Memory Hierarchies, LNCS
2625, 213–232, 2003.

23. J.R. Lewis and B. Martin. Cryptol: High Assurance, Retargetable Crypto De-
velopment and Validation. In Military Communications Conference, 2, 820–825,
2003.

24. S. Lucks, N. Schmoigl and E.I. Tatli. The Idea and the Architecture of a Cryp-
tographic Compiler. In Western European Workshop on Research in Cryptology
(WEWoRC), 2005.

25. S. Micali and L. Reyzin. Physically Observable Cryptography (Extended Ab-
stract). In Theory of Cryptography, LNCS 2951, 278–296, 2004.

26. V. Miller. Uses of Elliptic Curves in Cryptography. In Advances in Cryptology
(CRYPTO), LNCS 218, 417–426, 1985.

27. P.L. Montgomery. Modular Multiplication Without Trial Division. Mathematics
of Computation, 44, 519–521, 1985.

28. S.S. Muchnick. Advanced Compiler Design and Implementation, Morgan Kauf-
mann, 1997.

29. J.D. Nielsen and M.I. Schwartzbach. A Domain-Specific Programming Language
for Secure Multiparty Computation. In Programming Languages and Analysis for
Security (PLAS), 2007.

30. D. Page. CAO : A Cryptography Aware Language and Compiler. Available from:
http://www.cs.bris.ac.uk/home/page/research/cao.html

31. J. Sermulins, W. Thies, R. Rabbah and S. Amarasinghe. Cache Aware Optimiza-
tion of Stream Programs. In ACM SIGPLAN/SIGBED Conference on Languages,
Compilers, and Tools for Embedded Systems, 2005.

32. Standards for Efficient Cryptography Group (SECG). SEC 2: Recommended El-
liptic Curve Domain Parameters, 2000. Available from: http://www.secg.org

33. V. Shoup. NTL: A Library for doing Number Theory. Available from: http:

//www.shoup.net/ntl/

34. J.A. Solinas. Generalized Mersenne Numbers. Technical Report CORR 99-39,
University of Waterloo, 1999.

35. C.D. Walter. Montgomery Exponentiation Needs No Final Subtractions. Electron-
ics Letters, 35, 1831–1832, 1999.

