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Abstract. Current online ticket booking systems either do not allow
customers to reserve a ticket with a locked price, or grant a fixed reser-
vation timespan, typically 24 hours. The former often leads to false avail-
ability: when a customer decides to purchase a ticket after a few queries,
she finds that either the ticket is no longer available or the price has hiked
up. The latter, on the other hand, may result in unnecessary holdback:
a customer cannot purchase a ticket because someone else is holding it,
who then cancels the reservation after an excessively long period of time.
False availability and holdback routinely lead to loss of revenues, cred-
ibility and above all, customers. To rectify these problems, this paper
introduces a transaction model for e-ticket systems to support a reser-
vation functionality: customers can reserve tickets with a locked price,
for a timespan that is determined by the demands on the tickets, rather
than being fixed for all kinds of the tickets. We propose a method for
implementing the model, based on hypothetical queries and triggers. We
also show how to adjust the reservation timespan w.r.t. demands. We ex-
perimentally verify that our model and methods effectively reduce both
false availability and holdback rates. These yield a practical approach to
improving not only e-ticket systems but also other e-commerce systems.

1 Introduction

It is increasingly common for people to book travel packages online. A number
of online ticket booking systems (a.k.a. e-ticket systems or virtual travel agents)
have been launched by airlines [1] or Web service providers (e.g., Expedia [2],
Orbitz [3] and Priceline [4]). While these services allow customers to query airfare
and purchase tickets online, they provide very limited support for one to reserve
a ticket with a locked price.

It is evident that customers want to reserve a ticket before they are ready
to purchase it. For instance, Alice wants to book a ticket via an online service.
After finding a ticket with a reasonable price, she proceeds to build up the rest
of her travel plan by, e.g., issuing queries about hotels and car rental. After 5
minutes, she is happy with the package she found and decides to purchase the



ticket. But she is frustrated to find that either the ticket she liked has already
been sold out, or the price has gone up. She has to start the process again from
scratch, and may get her travel package in place only after repeated failures. She
would certainly like it if the system had allowed her to reserve the ticket with
the price locked when she found it.

Existing e-ticket systems support reservations based on one of the following
approaches.

(a) On one end of the spectrum, reservations are treated as “purchases”: as
soon as tickets are reserved, they are blocked from other customers until they
are finally purchased or the reservation is canceled. The other customers cannot
view or query these tickets as if they were already sold. However, typically certain
percentage of the reservations will be canceled in the end. As a result, this
conservative approach inevitably incurs excessive and unnecessary rollbacks and
transaction management cost. Worse still, with this comes holdback of tickets:
other customers are denied the chance to purchase those tickets that are reserved
but finally not purchased. This often leads to loss of revenue, among other things.

(b) On the other end of the spectrum, reservations are treated as “queries”: no
reservation action is taken. This aggressive approach leads to false availability:
a customer finds tickets with a reasonable price; however, when she is ready to
commit to purchase, she is told that the tickets with the price are actually not
available. While this approach does not suffer from the holdback problem, it
leads to loss of credibility and eventually loss of customers.

(c) Compromising these two extreme approaches, some services allow one to re-
serve a ticket for a fixed period of time, typically 24 hours. That is, a reservation
will expire after 24 hours if no explicit purchase or cancellation is conducted.
This reduces holdback and false availability rates, but only to an extent: in a
travel season when certain tickets are highly demanded, a fixed 24-hour reserva-
tion timespan is often excessively long and may incur the same holdback problem
as approach (a) above. In practice the reservation timespan should be adaptive,
i.e., it should vary in accordance to the demands on the tickets. Furthermore,
it is common that customers decide to commit to purchase in a single session of
querying and purchasing; thus a fixed 24-hour timespan is often an overkill.

We have investigated 30 popular e-ticket systems, and found that all except
seven adopt approach (b), i.e., no reservation function is supported at all. The
seven services that support reservation all follow approach (c) (American Air-
line, Continental, Southwest, United, and US Airways [1], MakemyTrip.com and
Cfares.com): customers are allowed to hold the tickets for 24 hours or until the
midnight of the next day. In addition to the holdback problem with approach (c),
these services do not allow the price of a reserved ticket to be locked; thus al-
though a customer can reserve a ticket she is not guaranteed to get the ticket
with the price she found when making the reservation. In short, the reserva-
tion functionality supported by existing online ticket booking systems neither
rectifies the holdback problem nor reduces false availability.



Contributions. To this end we propose a transaction model for e-ticket systems
to support the reservation functionality while reducing both the holdback rate
and the false availability rate. In this model the customer is allowed to reserve a
ticket, with a locked price, for a timespan adjusted in accordance to demands on
the tickets. We also provide an efficient technique to support the model such that
the addition of the reservation function does not imply any drastic degradation
in performance for existing e-ticket systems.

The main contributions of the paper include the following:
1. A transaction model that supports queries, purchases and in addition, reser-

vations. It reduces the holdback and false availability rates by (a) adapting
reservation timespan based on demands, and (b) making a percentage of
reserved tickets available to other customers, determined by an estimate of
the reservations that eventually turn into purchases.

2. A combination of techniques, including hypothetical queries (see, e.g., [5,6])
and triggers (see, e.g., [7,8]), to efficiently support the transaction model.

3. A method for computing the reservation timespan based on demands on
different tickets.

4. A preliminary experimental study that verifies the effectiveness and efficiency
of our techniques.

These will provide online travel systems with a practical method to support
the reservation functionality. We should remark that although we focus on ticket
booking systems to simplify the discussion, the techniques proposed in this work
are generic enough to be applicable to other e-commerce systems such as finance
services.

Organization. We introduce our transaction model and implementation tech-
nique, as well as a method for computing reservation timespan in Section 2. Our
experimental results are presented in Section 3, followed by related work and
future work in Section 4.

2 A Transaction Model

In this section we first present the transaction model. We then present techniques
for efficiently implementing the model. Finally, we outline the architecture of an
e-ticket system based on this model.

2.1 Supporting Reservations

We propose an e-ticket system that allows customers to reserve tickets, in addi-
tion to querying and purchasing. A customer may reserve tickets with a locked
price, for a timespan s computed by the system based on demands on the tickets.
From the time when the reservation is granted until the end of the timespan s,
the customer may either (a) commit to purchase the tickets or (b) cancel the
reservation. A short while before the end of s, the system sends a reminder to
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Fig. 1. FSM representation of transactions of e-Ticket System

the customer about the reservation; if no action is taken by the customer, the
system cancels the reservation at the end of s, i.e., when the reservation expires.

In the transaction model for the e-ticket system, each ticket is associated
with one of following states: available, reserved or purchased. The state of a ticket
changes from available to reserved when the ticket is reserved by a customer. It
in turn changes from reserved to purchased if the customer commits to purchase,
and to available if the reservation is canceled either by the customer or by the sys-
tem when the reservation expires. While transition may take place from available
to purchased, it cannot change from purchased to available or reserved. More for-
mally, this can be characterized in terms of a (deterministic) finite state machine
(FSM), which is commonly used in modeling Web services (see, e.g., [9,10]).

FSM=(Σ,S,s0,Δ,F ), where:

– Σ = {reserve, cancel, confirm, purchase}
– S = {available, reserved, purchased}
– s0 = {available}
– Δ = S × Σ → S
– F = {purchased}

Figure 1 shows an abstract representation as FSM of the reservation process.
We refer to the set τ of tickets of each flight (train, car, etc) as tickets of type τ .

– We say that tickets of type τ are held-back if when a customer wants to
purchase or reserve a ticket of type τ , all tickets of τ are either purchased or
reserved at the moment, and moreover, some of those reserved tickets change
to available later on.

– We say that tickets of τ are falsely available if a customer is allowed to
reserve a ticket of τ but later on cannot purchase it (i.e., change its state
from reserved to purchased).

Let N denote the number of successful reservations made on tickets of τ that
eventually change from reserved to purchased, nh the number of failed reserva-



tions when tickets of τ are held-back, and nf the number of reservations on
tickets that are falsely available. We define the false availability rate and hold-
back rate to be nf/(N+nf) and nh/(N+nh), denoted by δ and γ, respectively.

We aim to reduce both δ and γ. Since it is not always possible to minimize
both the false availability rate and the holdback rate, we give higher prior-
ity to reducing the false availability rate since it typically inflicts more severe
damages when credibility and customers are concerned. Below we propose two
methods to reduce false availability rate δ while keeping the the holdback rate
γ low.

First, we introduce a parameter α in the range [0, 1], referred to as the purchase
rate, for the set of tickets of each type τ . The purchase rate indicates (an estimate
of) the percentage of the tickets of which the states change from reserved to
purchased. Intuitively, we make (1 − α) percent of reserved tickets available to
customers, so that not all “hot” tickets would be held back. Observe that the
smaller α is, the less the holdback rate is, but on the other hand, the higher the
false availability rate is.

Second, we assign different reservation timespan s to different types of tick-
ets. In Section 2.2, we shall present a method to compute s based on demands
on tickets of type τ . Intuitively, the smaller s is, the less the holdback rate is.
When it comes to the false availability rate δ, the story is a bit more compli-
cated. Making s larger may on one hand hold the ticket longer so that when the
customer decides to commit to the purchase, the ticket will still be available;
but on the other hand, if the purchase rate α is small, the chances are that
the reserved tickets become unavailable and thus it may leads to higher δ. As
will be seen in Section 3, making s larger may reduce δ only if α is sufficiently
large.

For the reservation approaches adopted by existing e-ticket systems surveyed
in Section 1, approach (b) adopts α = 0 and s does not exist, while approaches (c)
uses α = 1 and fixes s to be 24 hours. In our model, we set α to a value between
0 and 1, determined by statistical analysis and estimate, and will be seen in
Section 2.2, we compute s based on demands on tickets of type τ rather than
giving a fixed timespan for all types of tickets. As will be seen in Section 3,
we keep α and s sufficiently large so that the false availability rate remains low
while the holdback rate is reduced.

2.2 Implementation Techniques

A naive approach to implementing reservations is to create and maintain rela-
tions for storing information about available, reserved and purchased tickets, and,
whenever the state of a ticket changes from reserved to purchased (resp. available),
or the other way around, we modify both the reserved and the purchased (resp.
available) tables. This, however, incurs heavy transaction cost. In light of this, we
propose a technique based on hypothetical queries to reduce the overhead. We
also present a method to compute the reservation timespan based on demands
on different tickets.



Relations for Reserved, Purchased and Available Tickets. Along the
same lines as existing e-ticket systems, we store information about tickets of
various states in fact tables:

– Ticket table T (id, �, price) keeps track of the number � of available tickets of
a specific flight id.

– Reservation table R (id, �, ts, price, info) stores reservations made so far. A
customer reserves � tickets on flight id with a locked price, where ts is a
timestamp specifying when the reservation expires, and info denotes some
basic information about the customer such as name, nationality, number of
tickets, etc.

– Purchase table P (id, �, price, info) stores the real purchases.
– Other tables store other information about the flight such as departure time,

arrival time and destinations, etc.

Hypothetical Queries. A hypothetical query is of the form Q when {{U}},
where U is an update (see [6]). It to find the value that query Q would return on
a database DB that would be obtained by executing update U on the original
DB, without actually updating DB.

We regard a reservation as a hypothetical purchase while final commitment to
purchase as a real purchase. Capitalizing on hypothetical queries, when a reserva-
tion is made, we only need to modify the reservation table R, without changing
either T or P . We modify T , R and P only when a reservation is converted
into a real purchase. This reduces the overhead of unnecessary transactions and
rollbacks.

To carry this out, for each query Q on T , we automatically rewrite it into a
hypothetical query QT = Q when {{U}} on both T and R, such that α percent
of the reservations in R are “taken out” from T during the process, where α is
the purchase rate given earlier. More specifically, the update U is of the form:

U ::= del(T, αR) delete α · � tickets of R from T

In a nutshell, for each occurrence of T in Q, we replace it with del(T, αR) by
taking out certain tickets already reserved. Thus

QT = Q when {{del(T, αR)}} (1)

As remarked earlier, we make (1 − α) tickets in R available to customers to
reduce the holdback rate, since typically only α percent of reservations will lead
to real purchases in the end.

A number of techniques have been developed for efficiently evaluating hypo-
thetical queries. Here we adopt the lazy approach of [6]. More specifically, we
first rewrite QT into an equivalent, non-hypothetical query Q

′

T by transforming
each U into an “explicit substitution”, and then applying the substitution and
obtaining a pure SQL query. We illustrate this by using a hypothetical query of
form (1), where Q is an SQL query for finding the number of tickets in stock for
flight k with price p, i.e.,

Q = π�(σid=k∧price=p T ). (2)



We replace the update with explicit substitution:

π�(σid=k∧price=p T ) when {{(T − αR)/T }}

Note that R is a bag of records since for each flight there may be several reserva-
tions for it by different customers. Thus to deduct the total number of reserved
tickets in R, we need to use aggregate function sum. Now we apply the substi-
tution to the query QT and get

Q
′

T ≡ π�(σid=k∧price=p T ) − α sum(π�(σid=k∧price=pR))

This query is equivalent to QT . Similarly we can automatically rewrite other
queries, e.g., queries for finding airfare.

The use of hypothetical queries and automated query rewriting allows us not
to update T and P when making or canceling a reservation, and thus reduce the
overhead of transactions.

Making, Canceling and Committing Reservations. As remarked earlier,
there is no need to update the ticket and purchase tables T and P when a
reservation is made or canaled. Indeed, only the reservation table R needs to be
changed in response to these updates. In contrast, all three tables T, R and P
are updated when a user commits to purchase a reserved ticket.

Making a reservation. Upon receiving a customer request for reserving n tick-
ets for flight k with a locked price p, the system does the following, in one trans-
action. (i) It generates a query Q of form (2) given above, which is to find the
number of available tickets for flight k with price p. The query Q is rewritten into
a hypothetical query of form (1) above, and is evaluated on the ticket table T and
the reservation table R using the evaluation techniques described above. If the
result of the query Q is negative, then the customer request is denied. Otherwise
the following steps are taken. (ii) It computes the reservation timespan s and
based on s, timestamp ts = t + s, where t is the current time. We will show how
s is computed shortly. (iii) It inserts a tuple (id = k, � = n, price = p, info = i)
into the reservation table R, where i is the related customer information. Note
that neither table T nor table P is updated.

Canceling a reservation. When a customer requests to cancel a reservation
of n tickets for flight k, the systems finds the corresponding tuple from the
reservation table R, based on both the flight and customer information. It then
removes the tuple from R. No other tables are updated.

Committing to purchase a reserved ticket. When a customer commits to
purchase reserved tickets, the system does the following, in one transaction. (i) It
first identifies the corresponding tuple r = (id = k, � = n, price = p, info = i) from
the reservation table R, and removes r from R. (ii) It then forms and evaluates
query Q as in step (i) for making reservations. If the result of Q is negative,
then the tickets are falsely available and the transaction aborts. Otherwise the
system proceeds to do the following. (iii) It inserts r into purchase table P .



(iv) It also updates ticket table T by removing n tickets of flight k from T . Upon
the completion of the transaction, the hypothetical purchase of this reservation
becomes a real purchase. Note that only at this stage all three tables T, R and
P need to be modified.

A subtle issue arises when the price of tickets for flight k in the ticket table T
is updated. To keep the price of the reserved tickets for flight k unchanged, the
system does the following. (i) It first finds the total number n of reserved tickets
for flight k in the reservation table. (ii) In the ticket table T , it keeps the price
of α · n tickets for flight k unchanged, while updating the price of the remaining
tickets for flight k, where α is the purchase rate.

Adapting Reservation Timespan. As remarked earlier, we determine the
reservation timespan for different tickets based on demands on the tickets. More
specifically, for tickets of each type τ , we characterize the demands on the tickets
using the following parameters.

– weight w in the range [0, 1], indicating the “popularity” of the flight; this is
determined by statistical analysis of the historical data of the flight, and may
vary in different travel seasons; indeed, the demand for flights to Orlando is
typically higher before Christmas than that during school terms;

– advance parameter d, which is the number d of days prior to the departure
of the flight when the reservation is made;

– the maximum timespan smax; here one may use 24 hours as the default value,
following the practice of most airlines.

We use the following simple formula to compute the reservation timespan s
based on these parameters:

s = (1 − w) · f(d) · smax, (3)

where f(d) is a function in which c is a constant in [0, 1]:

f(d) =
{

c · d/14 if d ≤ 14
c otherwise

Intuitively, the more popular the flight is, the less reservation timespan s is;
furthermore, the less days in advance the reservation is made, the less s is. In
function f(d) we choose constant 14 in accordance to the common practice of
most airlines: “penalty” is incurred if the reservation is made within two weeks
prior to the scheduled departure of the flight.

Triggers for Expiring Reservations. Shortly before a reservation expires,
the system sends the customer a reminder. Recall that when a customer reserves
a ticket, a reservation timespan s and a timestamp ts are computed and stored in
the corresponding tuple in the reservation table. That is, the reservation remains
valid for a period s of time until time ts. Meanwhile, a trigger is set up such that
shortly before the reservation expires, say 30 minutes before ts, action will be
triggered to generate the reminder and notify the customer. If the customer takes
no action before the reservation expires, the system performs the cancellation
operation at time ts, as described above.



Fig. 2. The Architecture of an e-Ticket System

2.3 The Architecture of a Ticket Booking System

Putting these together, we propose to develop a 3-tier ticket booking system
based on our transaction model, as depicted in Figure 2. The top layer is the
user interface for customers to book tickets, the bottom layer is the underlying
database storing fact tables, and the middle-tier processes customer queries,
reservation requests and purchase orders. More specifically, upon receiving a
customer query, the middle-tier converts it into an equivalent hypothetical query
and evaluates it following the strategy given in Section 2.2. Upon receiving a
request for making a reservation, the middle-tier starts a transaction to process
it as described in Section 2.2. In particular, it computes the reservation timespan
using the formula given in Section 2.2. The customer may succeed in making the
reservation if there are enough tickets available. Subsequently the customer may
cancel the reservation or commit to purchase the reserved tickets, which are
again processed using the strategies given in Section 2.2. Furthermore, when a
reservation is made, a trigger is set up, such that the customer will be notified
shortly before the reservation expires, as described in Section 2.2.

3 Experimental Study

Our experimental evaluation focuses on the effectiveness of our reservation model
in reducing the holdback and false availability rates δ and γ. We compare our
approach against the approaches adopted by existing e-ticket systems, namely,
approaches (b) and (c) described in Section 1, referred to as the no-hold and



fully-hold approaches, respectively. We also investigate the impact of the pur-
chase parameter α and reservation timespan s on δ and γ.

3.1 Experimental Setting

We considered a flight with up to 350 seats initially available. We randomly
generated a set of reservations and subsequent confirmations or cancellations.
Each reservation requested n tickets, where n is a number randomly chosen
from [1,5]. We assumed that the flight was popular: there were sufficiently many
customers to query about and book tickets until all the tickets would be sold
out. In a duration of 30 days, we assumed that the arrival of customers followed
a Poisson process (see, e.g., [11]) and customer arrival rate is set to λ = 1
unless other specified. The intervals between successive customer arrivals were
treated as independent random variables. The latency between a reservation
and its subsequent confirmation or cancellation was also generated randomly
within time slot [0, s]; that is, we assumed that most of customers will inspect
their reservations within the timespan s offered by the e-ticket system. For each
reservation, we generated another random value to determine whether or not
the reservation is confirmed or canceled. Unless specified otherwise, we fixed the
confirmation rate to 70% and customer arrival rate to λ = 1.

The experiments were run on a machine with a 2.40GHZ Pentium IV processor
and 512MB of RAM. Each experiment was run 200 times and the average is
reported here.

3.2 Experimental Results

we study the impact of the purchase rate α and reservation timespan s on re-
ducing the false availability and holdback rates δ and γ. More specifically, with
s (resp. α) fixed to certain values we investigate the effect of varying α (resp. s).
The goal is twofold: first, we want to verify that the use of α and s indeed reduces
δ and γ; second, we want to study the behavior of different s and α, and find
out what values we should choose for them. For the reservation timespan s we
either use fixed values or vary its values from 0 to 24 hours, rather than using
formula (3) given in Section 2.2.

Recall notations N, nf and nh from Section 2.1. In each run, N records the
total number of reservations that lead to purchases, nh the total number of
held-back reservations and nf the total number of reservations on falsely avail-
able tickets (i.e., the reservations that will not turn into real purchases when
customers come back and inspect their reserved tickets, before or after the reser-
vations expire), in the entire life-cycle of ticket selling of the flight. The average
of 200 runs is reported.

The effect of varying the purchase rate α. Fixing reservation timespan s
to be 6, 12 and 24 hours, we vary the purchase rate α and study its effect on
the false availability and holdback rates δ and γ. Observe that when α = 0,
it characterizes the no-hold approach, and on the other hand, when α = 1, it
corresponds to the fully-hold approach. As Figures 3 and 4 show, as expected,
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when α increases the holdback rate increases while the false availability rate
decreases. It also tells us that while the no-hold approach does not have the
holdback problem, it incurs a rather high false availability rate. On the other
hand, while the fully-hold approach does not lead to false available reservations,
its holdback rate is rather high. In contrast, if we choose α ≥ 0.8, the false
availability rates reduce to a neglectable value when either s = 6, s = 12 or
s = 24, while their holdback rates are lower than the fully-hold counterparts.

The effect of varying the reservation timespan s. Fixing α to be 0, 0.5, 0.8
and 1, we vary s from 0 to 24 hours and measure the false availability and
holdback rates δ and γ for each s. As shown in Figures 5 and 6, when α increases,
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the holdback rate γ increases while the false availability rate δ decreases, as
expected. One might be tempted to reduce timespan s in order to minimize both
false availability rate and holdback rate. However, this is not a practical solution.
Reducing timespan means that the e-ticket system enforces an inadequate period
of time for customers to reserve tickets, who may then find that the reservations
expire after a short period of time, and cannot be very happy about it. Therefore,
any practical e-ticket system should not use a very small timespan s. On the other
hand, if the timespan is too large (which means customers are allowed to hold
tickets for a long time), the holdback rate goes up; it is more likely that more
customers are unable to purchase the tickets which are in fact available. This
highlights the need for making s adaptive to the demands on the tickets.



For the no-hold approach, i.e., when α = 0, γ becomes 0 but δ is high. For
the fully-hold approach, i.e., when α = 1, δ becomes 0 while γ gets rather
high. When α ≥ 0.8, the false availability rate δ is much lower than the no-
hold approach while the holdback rate is also greatly reduced compared to the
fully-hold counterpart.

Discussion. We have presented several results from our experimental study of
our reservation model. First, the results verify that our approach clearly out-
performs the no-hold and fully-hold approaches adopted by existing e-ticket
systems. With a lower holdback rate compared with fully-hold model, it has ne-
glectable false availability rate in contrast to the no-hold approach. Second, we
find that when α ≥ 0.8, the false availability rate is almost 0 in all cases. These
suggest how e-ticket systems may choose purchase rate α and adjust reservation
timespan s.

4 Concluding Remarks

We have investigated the false availability and holdback problems in connection
with existing online ticket booking systems. To rectify these we have proposed a
transaction model that supports adaptive customer reservations with neglectable
false availability and lower holdback rates. To efficiently implement the model we
have developed a combination of techniques such as the analysis of purchase rate,
hypothetical queries, triggers, and a method for computing reservation timespan
based on demands on tickets. As verified by our preliminary experimental study,
our model and methods significantly improve the existing e-ticket systems. To
the best of our knowledge, this work is the first effort for reducing both the
false availability and holdback rates. It yields a practical approach for providing
effective support for customer reservations in e-commerce systems, including but
not limited to e-ticket systems.

A large number of online ticket booking systems have been developed. We sur-
veyed 30 popular e-ticket systems, including Expedia [2], Orbitz [3], Priceline [4],
MakemyTrip.com, Amadeus.net as well as American Airline, Continental, South-
west, United, and US Airways [1]. As remarked in Section 1, these services only
support limited customer reservations. Different virtual travel agencies offer tick-
ets with substantially different prices and conditions for the same customer re-
quest. We found that ticket prices may vary by as much as 18% across these
agencies. Thus it is desirable for customers to make reservations with a locked
price beforehand.

There has been work on a variety of aspects of e-ticket systems. The need for e-
ticket systems to interact with airline, hotel and payment services was advocated
in [12]. An approach for building a virtual travel agency by composing “hotel
booking” and “flight booking” services was proposed in [13]. A prototype for
a virtual travel agency was developed in [14], based on ontology and semantic
web. An enhanced user interface for B2C booking systems was proposed in [15],
by means of a virtual intermediate travel agent. There has also been a host of
work on generic Web services, notably on Web service compositions (e.g., [10,9]).



However, to our best knowledge, no prior work has studied the false availability
and holdback problems associated with existing e-ticket systems.

Airlines have to deal with reservation cancellations and no-show-ups at flight
departure on a daily basis. To avoid revenue loss, most airlines compromise
cancellations and no-show-ups by over-booking flights, i.e., booking excessive
seats above the physical airplane capacity. There has been previous work on
optimizing over-booking [16] [17] [18], which attempts to accurately estimate
the number of cancellations and no-show-ups. This differs from our work in
that our model provides an adaptive reservation timespan for customers to hold
the tickets with a fixed price. Although over-booking increases seat availability,
they do not allow the customers to purchase their tickets with the price they
agreed upon after various reservation timespans. Furthermore, our work aims to
facilitate the composition of web services for booking a travel package online.
Customers can hold (reserve) a ticket while inspecting successive components
or legs of the travel package. They can examine each component one by one,
reserving a ticket with a fixed price before proceeding to the next component;
and finally, they can “optimize” various picks, combine them to get a reasonable
composition of the entire package, without worrying about the availability of
tickets reserved for previous legs or the hiking-up of the price of those tickets. In
contrast, to the best of our knowledge no airlines provide such a functionality.
In essence, our reservation model is customer-oriented, i.e., to serve the best
interest of customers, while over-booking is airline-oriented, for the best interest
of airline business. The latter does not help with composition of online booking
web services.

Hypothetical queries have proven useful in a wide range of applications such as
decision support, version management, active databases, integrity maintenance
and recently XML updates [19,5,20,21,6]. In this work we leverage hypothetical
queries to reduce the overhead of transaction management incurred by customer
reservations, and capitalize on the implementation technique proposed by [6] to
efficiently support query evaluation (Section 2.2).

There is naturally much more to be done. First, to compute reservation times-
pan one might also want to take into account other information, such as pro-
motion and sale by airlines, beyond what we have considered in Section 2.2.
Second, more experiments should necessarily be conducted on real-world data,
e.g., real-life patterns of customer arrival and ticket booking. Third, transaction
control is far more intriguing and thus deserves a full treatment for e-ticket ser-
vices that are built via compositions of other services. Finally, it is interesting
and practical to investigate the specific need and requirements for providing the
reservation functionality for, e.g., finance services.
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