
Building Adaptive Systems with Service

Composition Frameworks

Liliana Rosa, Lu��s Rodrigues, and Ant�onia Lopes

Faculty of Sciences, University of Lisbon, Portugal
lrosa@lasige.di.fc.ul.pt fler,malg@di.fc.ul.pt

Abstract. Frameworks that support the implementation and execution
of service compositions are a fundamental component of middleware in-
frastructures that support the design of adaptive systems. This paper
discusses the requirements imposed by adaptive middleware on service
composition frameworks, and discusses how they have been addressed by
previous work. As a result, it describes the design of a novel adaptation-
friendly service composition framework that takes into consideration the
requirements at three di�erent levels: service programming model level,
adaptation-friendly services level, and kernel mechanisms level.

1 Introduction

Today's applications need to be designed to operate in a wide range of het-
erogeneous devices, including servers, PCs, PDAs, or mobile phones. Given this
diversity, it is fundamental to be able to design and deploy adaptive applications.
An adaptive application is able to change its behavior to better match the (func-
tional and non-functional) expectations of the user. For instance, by adjusting
the multimedia quality exchanged among di�erent participants, according to the
available network bandwidth.

Unfortunately, building distributed applications that can monitor changes in
their execution environment, as well as in the user requirements, and react to
those changes by adapting their behavior is an inherently complex task. A task
that can be greatly simpli�ed by the use of appropriate adaptive middleware.
A key component of a middleware platform to support the construction and
execution of adaptive applications is a software framework that facilitates the
composition of services. By allowing services to be composed in di�erent man-
ners, and supporting the dynamic recon�guration of service compositions, it
becomes easier to adapt the behavior of applications that are built in a modular
manner.

Network protocols have been speci�ed for a long time in a modular way, using
the layer abstraction. Typically, a communication system is built from a vertical
composition of multiple protocols layers. Therefore, it comes as no surprise that
many software frameworks to build con�gurable communication services have
been designed, implemented, and used in di�erent contexts. Some of the most
relevant protocol composition frameworks are x-kernel [1], Cactus [2], Horus [3],



Ensemble [4], Appia [5], Eva [6], and Samoa [7]. Given the signi�cant amount of
experience that has been gathered with these systems, they become obvious
candidates to inspire the construction of a service composition framework to
include as part of a middleware platform to support adaptive applications.

This paper looks at existing protocol composition frameworks from the point
of view of their adequacy to support the implementation of adaptive services.
Based on our experience in building a generic architecture to support adapta-
tion [8], we identify a number of requirements that need to be satis�ed by any
service composition framework. We then analyze how existing protocol compo-
sition frameworks address these requirements. The contribution of this paper is
the identi�cation of a set of features, lacked by many of the existing protocol
composition frameworks, that are key to support the dynamic recon�guration
of service compositions. Moreover, we describe how we have addressed these re-
quirements in the implementation of an adaptation-friendly service composition
framework named RAppia.

The rest of the paper is structured as follows. Section 2 introduces protocol
composition frameworks. Section 3 identi�es a set of requirements imposed by
adaptive middleware on composition frameworks, and Section 4 analyses how
these are addressed by existing frameworks. The design and implementation of
RAppia is described in Section 5. Finally, Section 6 concludes the paper.

2 Protocol Composition Frameworks

Protocol composition and execution frameworks aim at simplifying the design,
implementation, and con�guration of communication protocols. One of the main
goals of such frameworks is to promote the design of communication services in a
modular way, by encouraging communication functionality fragmentation in dif-
ferent modules, that can be composed in several ways. As a result, the designer
has the opportunity to compose communication services that exactly match the
application needs. A second important goal of these frameworks is to provide
an e�cient execution environment for protocol compositions, by providing run-
time services that support the exchange of data and control information among
components, time management services, bu�er management services, etc.

The reader should be aware that there are similarities among composition
frameworks and general purpose operation systems. Typically, an operation sys-
tem includes a kernel, services that can be implemented partially in the kernel
and partially in user level (such as windows management), a number of user
level services (for instance, the command interpreter and system utilities), and a
programming model (processes, �le system interface, synchronization primitives,
etc). In some sense, a service composition framework is a specialized operating
system (in fact, one of the �rst protocol composition services was even called a
\kernel" [1]). Thus, in this paper, when we refer to service composition frame-
works we analyze them taking a global perspective, considering both the kernel
functionality, the services typically provided with the framework, and the pro-
gramming model enforced by it.



Multiple protocol composition frameworks have been built [1{7]. Although
all of these frameworks aim at achieving similar goals and are based on the
same foundations, inspired by the original work of x-kernel [1], there are some
signi�cant di�erences among them.

In x-kernel, Horus, Ensemble, Cactus, and Appia, communication among
protocols is performed by the exchange of events. With the exception of Cactus,
all frameworks support vertical protocol compositions, i.e., events are processed
in order by all the protocols in the stack. In Cactus, events can be processed
in parallel. In x-kernel and Horus events are delivered to all protocols (which
may process them or just forwards them in the stack). Ensemble proposed some
o�ine tools to extract fast-paths for most common events. Appia and Cactus
allow each protocol to subscribe only the events it is interested in processing.
On the other hand, both Samoa framework [9] and Bast [10] protocol library
follow di�erent approaches. Samoa also relies in protocol compositions but with
a service-based design. Therefore, the framework kernel is particularly di�erent
from the remaining frameworks. In this case, the interaction between protocols
is achieved using remote method invocations. In this approach, each module
exports a set of executers, listeners, and interceptors, each being responsible for
a di�erent service: requests, replies, and noti�cations. In Bast each protocol is
an object, thus, interaction relies in method invocation, and the composition
model is not strictly vertical.

Among these frameworks, only Cactus [11], Ensemble [12], and Samoa [9]
have addressed the problem of dynamic adaptation, supporting the runtime re-
con�guration of protocol compositions. However, these e�orts have considered
only a limited set of protocols (for instance, group communication, in the case of
Ensemble) and speci�c recon�guration strategies. As we will discuss later in the
text, none of these frameworks can claim to provide generic support for multiple
recon�guration strategies.

3 Adaptation Requirements

Our previous work on the development of a generic architecture to support the
adaptation of service compositions [8, 13], gave us insight on the needs, chal-
lenges, and goals that adaptation brings. The highlights of adaptation are re-
lated to context monitoring, to detect changes that will trigger adaptation, and
adaptation management, that conducts and performs all the process of recon�g-
uring the composition. Our experience allowed to identify several requirements
that have to be satis�ed by composition frameworks. We note that di�erent
requirements impact di�erent aspects of the composition framework: some re-
quire changes to the runtime support provided by the framework (also known
as the framework kernel), some can be satis�ed by adding additional services
to the framework, others a�ect the programming model enforced by the frame-
work. These requirements are identi�ed and described in detail in the following
sections.



3.1 Context Monitoring

The context information characterizes the execution context. Since the execution
context may change with time, this information has a dynamic nature. Thus,
given that the execution context is dynamic, a particular con�guration of the
application, that was adequate in given context may become inadequate later on,
and require adaptation. Therefore, it is of utmost importance to maintain the
context under constant monitoring, such that the context information re
ects
the current state of the environment.

The context information may include information from di�erent sources,
ranging from user preferences to hardware characteristics of devices hosting the
application [14]. This information can be generated by the services themselves,
or captured from other origins, such as the operating system or the device.
The information itself can be used to infer other context properties, i.e. higher
level context information, such as system stability, based on low-level context
information such as network error rate, connectivity information, etc. Context
information capture can be performed on-demand, or continuously, in a periodic
manner [15]. Moreover, services can produce noti�cations that signal infrequent
occurrences, such as the failure of a component, or that some control variable
exceeded a prede�ned threshold. From these observations on context capture,
the following requirements can be identi�ed:

Requirement 1: the composition framework should support a program-
ming model that makes easier for sources of context information to make
this information easily accessible (in particular when these sources are the
composable service implementations themselves).

Requirement 2: the composition framework should provide the mecha-
nisms to support the capture of context information, both continuously or
on-demand, as well as mechanism to handle noti�cations generated by con-
text sources.

To perform adaptation is not enough to gather context information; it is also
necessary to analyze the collected information in order to detect relevant changes.
The analysis can be directly embedded in the mechanisms used to collect the
context information or may be performed by an external component. In either
way, the following requirement can be identi�ed:

Requirement 3: the composition framework should include, or be aug-
mented with, services that are able to analyze the context information and
report relevant changes.

3.2 Recon�guration Actions

In this paper, we are concerned with the construction of adaptive distributed
systems whose adaptation logic can be separated form the core application logic.
In this way, it is assumed that the structure of the application is organized into



two discrete layers, with the core application logic built on the top of a compo-
sition of domain-speci�c and general middleware services. Adaptiveness results
from the dynamic recon�guration of this composition of services, in reaction to
changes in the users' preferences or in the execution context.

There are two main ways in which the application may be adapted. To start
with, the behavior of each individual service may be adapted, usually by setting
prede�ned con�guration parameters [16, 17]. Furthermore, when an appropriate
composition framework is used, one may also change the services included in the
service composition and the way these services are composed [18, 19]. When we
restrict ourselves to communication services, recon�guration of the composition
boils down to the addition, removal, or exchange of protocols. Therefore, we
identify the following requirement:

Requirement 4: the composition framework has to provide support for
dynamic recon�guration, including mechanisms to perform parameter con-
�guration, and mechanisms to perform the addition, removal, and exchange
of services to a given composition.

When applying a recon�guration action, the correctness of the service com-
position has to be preserved. To achieve this goal, several issues need to be ad-
dressed during the recon�guration process. A �rst issue is related to the amount
of required synchronization among the nodes involved in the recon�guration.
For instance, in some cases, each node may perform the local recon�guration of
the service composition without explicit coordination with other nodes; in other
cases, a node may not be allowed to proceed with the local recon�guration until
it becomes aware that all the other nodes are also ready to recon�gure. Another
issue is related to the state information that may have to be transferred from
one system con�guration to the other. The third issue is related to the dynam-
ics of each individual service during recon�guration. Namely, in some cases, a
service may be required to be placed in a quiescent state before recon�guration
is performed. Note that di�erent services impose di�erent constraints on the
way issues above are handled and, for any given service, di�erent recon�gura-
tion actions may also impose di�erent constraints [13]. Thus, the mechanisms
enumerated should be rich enough to satisfy a wide range of constraints, such
that the recon�guration may be performed with the minimal interference on
the execution of the services in the composition. This results in the following
requirement:

Requirement 5: the composition framework should provide, either embed-
ded in its kernel or as a set of additional services, a comprehensive set of
mechanisms to support the coordination among nodes, to transfer service
state information between services, and to enforce a quiescent state of a
service.

3.3 Selection of Adaptation Targets

We are interested in building distributed adaptive applications. Therefore, service
compositions will be executed in multiple nodes of the system. As a result, when



a recon�guration needs to be performed, it may need to a�ect all nodes or just
a subset of the nodes involved in the application. Furthermore, only a subset of
the service composition may be a�ected by the recon�guration.

When specifying the adaptation logic of a system, it is very hard to specify
it in a generic and reusable manner if one is required to explicitly name each
individual instance of every service that is a�ected by the adaptation. On the
contrary, it is much more powerful to specify the adaptation target indirectly,
for instance, using service type hierarchies or using meta-information [20] to tag
all services with their properties. The service composition framework may con-
tribute to simplify the implementation of an adaptive system if it provides the
programming abstractions and the runtime mechanisms that allow to map these
high level abstractions (such as service type hierarchies) in run-time artifacts,
for instance, using a re
ective approach. Thus:

Requirement 6: the composition framework should provide mechanisms to
reason or obtain information on the system.

4 Adaptation Support in Existing Composition

Frameworks

To understand the suitability of protocol composition frameworks for adapta-
tion, it is important to analyze how each of the requirements identi�ed in the
previous section already is, or can be satis�ed, by existing protocol composition
frameworks.

4.1 Addressing the Requirements

Requirement 1: the composition framework should support a programming
model that makes easier for sources of context information, in particular when
these sources are the composable service implementations themselves, to make
this information easily accessible.

Most composition frameworks that have been developed to support protocol
composition are event-based, i.e., di�erent services communicate by exchanging
events. Thus, the preferable method to make context information available is via
the exchange of context events. The event model simpli�es the implementation
of context noti�cations: a service that wants to provide a noti�cation about a
relevant change in the context information needs simply to create and trigger
a new ContextNoti�cation event. When context information needs to be read
on demand, each service must be ready to process ContextQuery events and
respond with ContextAnswer events.

At �rst sight, it may seem that every protocol composition framework is
equally �tted to satisfy this requirement. However, there are a number of im-
plementation and modelling issues that have a signi�cant impact on how this
support is provided. To start with, context information is often service speci�c.



Thus, the programmer will likely need to re�ne the base events provided by the
framework. Thus, the composition framework cannot limit the set of events ex-
changed among services to a set of �xed events de�ned a priori (as, for instance,
the Horus system). Furthermore, when context is read on-demand, a Contex-
tQuery event needs to be delivered to all services that can potentially answer
the query. To avoid the event to be delivered to every service of the composition
and avoid a performance overhead, the framework should allow each service to
explicitly list which events it is interested in (to our knowledge, only Cactus
and Appia support this feature). Finally, the framework should encourage pro-
grammers to proactively provide support for context gathering in the service
implementations. Thus, the events such as ContextNoti�cation, ContextQuery,
and ContextAnswer should make part of the service implementation model. To
our knowledge, none of the existing protocol composition frameworks provides
this feature explicitly.

Requirement 2: the composition framework should provide the mechanisms
to support the capture of context information, both continuously or on-demand,
as well as mechanism to handle noti�cations generated by context sources.

When building distributed adaptive applications the adaptation policy typ-
ically depends on the global context, i.e., of the aggregate context information
collected from the di�erent participants in the system. Therefore, it is not enough
to support the local gathering of information. Each node should provide support
for exporting context information to other nodes. To support on-demand read-
ing of context information, each node must accept remote invocation from other
nodes. To disseminate context information, nodes should be connected to a con-
text dissemination bus. This type of support can be added to any of the existing
composition frameworks, given that it may be implemented as a set of additional
services. Still, to our knowledge, no composition framework includes such ser-
vices in their distributions, although a fairly detailed pattern language [21] could
be used to provide the necessary support.

Requirement 3: the composition framework should include, or be augmented
with, services that are able to analyze the context information and report relevant
changes.

As soon as it is possible to gather and distribute local context information,
it becomes possible to analyze and interpret this information to extract the rel-
evant information for the adaptation. Although the analysis can be potentially
executed in a single central location, that collects all the context information
gathered from all the nodes in the system, in some cases this approach may
introduce ine�ciencies in the system. For instance, consider that, for adaptation
purposes, one is concerned with the average value of a context variable measured
in a speci�c node in the system. The average could be computed at a central
location, based on multiple remote readings of the context variable. However,



it is possible to save signaling tra�c, if the average is computed directly at the
source node of the context information. To support the later approach, it is re-
quired that the context gathering and dissemination subsystem can be built as a
composition of services itself. This is possible to achieve with any of the existing
protocol composition frameworks.

Requirement 4: the composition framework has to provide support for dy-
namic recon�guration, including mechanisms to perform parameter con�gura-
tion, and mechanisms to perform the addition, removal, and exchange of services
to a given composition.

Although all existing protocol composition frameworks support o�ine con-
�guration of the service compositions, only a few support the modi�cation of
the composition in runtime. From those that support dynamic recon�guration,
some severely restrict the way a composition may be recon�gured in runtime.
For instance, Ensemble only supports the replacement of a vertical composi-
tion (a protocol stack) to another (even when both stacks have several layers
in common), avoiding the problems caused by having part of the composition
operational while the rest is being changed. From this point of view, Cactus is
the most 
exible of all existing composition framework, as it allows for services
to be added and removed in runtime without restrictions.

The recon�guration process can be also simpli�ed if the addition, removal,
and exchange of services to a given composition can be controlled from a remote
node (for instance, a recon�guration manager). This means that the composition
framework should include a monitor able to interpret recon�guration commands
that may be activated, for instance, via remote invocations. To our knowledge,
none of the existing frameworks supports such interpreter.

Requirement 5: the composition framework should provide, either embedded
in its kernel or as a set of additional services, a comprehensive set of mechanisms
to support the coordination among nodes, to transfer service state information
between services, and to enforce a quiescent state of a service.

Several protocol composition frameworks, such as Ensemble, Cactus, or Samoa,
have implemented concrete instances of the mechanisms enumerated above. How-
ever, these mechanisms are usually designed with the goal of implementing a
small number of prede�ned recon�guration strategies, i.e, a particular sequence
of operations such as coordination, enforce quiescent state, state transfer, etc.
For instance, Ensemble implements a recon�guration strategy that requires the
composition of each node to reach a quiescent state; the state is then captured;
a new composition is instantiated and the state loaded into the con�guration at
every node; �nally, the new composition is restarted. Cactus and Samoa o�er
more e�cient strategies but, in practice, the mechanisms supported only serve
the prede�ned, built-in, strategies, and are only applicable in a limited number
of situations. To our knowledge, no composition framework as attempted to o�er



a library of mechanisms required to support the coordination among nodes, to
transfer service state information between services, and to enforce a quiescent
state of a service that can be combined in di�erent manners to implement mul-
tiple strategies.

Requirement 6: the composition framework should provide mechanisms to
reason or obtain information on the system.

Some existing protocol composition frameworks o�er these mechanisms. These
mechanisms can be based on re
ection techniques, provided by the meta-level
architectures o�ered by the language in which they are implemented. Although
well developed re
ective mechanisms are used in di�erent contexts [22, 23], some
even involving protocol compositions [24], their use is rudimentary in protocol
composition frameworks, due to complex issues, s.a. protocol composition consis-
tency and dependencies, or event 
ow. Ensemble, Cactus, and Appia frameworks
allow to identify the protocols based on their names. Samoa framework supports
the separation between the notion of protocol speci�cation and protocol imple-
mentation but this is not enough when adaptation is not limited to the exchange
of protocol implementations of the same protocol speci�cation (the single adap-
tation action that is currently supported in Samoa).

4.2 Discussion

When discussing how the requirements are addressed by existing protocol compo-
sition frameworks, we have also identi�ed that each requirement can be satis�ed
at a di�erent level of abstraction. Some requirements may require speci�c sup-
port from the protocol composition framework runtime (for instance, the ability
to change the composition in runtime). Other requirements can be satis�ed by
a number of complementary services that can be implemented on top of an ex-
isting composition frameworks. Finally, other requirements are better satis�ed
by enforcing a particular service programming model. We have observed that,
although most of these requirements have been previously addressed by di�er-
ent frameworks, none of the existing composition framework satis�es completely
the full set of requirements. Moreover, some of these requirements identi�ed in
the context of protocol composition frameworks also apply to component-based
frameworks. However, these requirements have to be address in a di�erent man-
ner.

5 An adaptation-friendly Composition Framework

As a result of the previous analysis, we have implemented a service composition
framework, named RAppia, that ful�lls the set of requirements we have iden-
ti�ed. This service composition framework has been built as an extension to
one of the protocol composition framework surveyed: the Appia [5]. In the next
paragraphs we describe the design and implementation of RAppia.



5.1 RAppia Basics

RAppia is a service composition framework implemented in the Java program-
ming language. It inherits the composition model from the Appia protocol com-
position framework, that is common to many other similar frameworks (such
as x-kernel, Horus, and Ensemble). In RAppia services can be composed in a
layered manner, creating stacks of services. Typically, services at the bottom
of a service composition o�er more basic functionality (such as reliable multi-
cast communication) and services at the top of the service composition support
higher level abstractions (such as distributed shared object, publish-subscribe,
etc).

An instance of a service composition is named a service channel. Each layer
of a service channel is an instance of the corresponding service in the service
composition. Thus, a service channel consists of a stack of service instances. Each
instance maintains the state required to provide the desired service. Note that
an application may create multiple service channels with the same composition
(for instance, to maintain multiple shared objects).

Service instances interact through the exchange of events. Events in RAp-
pia are object-oriented data structures. The Event class has two fundamental
attributes: channel, and direction. The �rst is a reference to the service channel
where the event will 
ow, and the second indicates in which direction the event
is 
owing along the service stack. Note that a session just forwards an event
up or down in a channel, without having explicit knowledge of the concrete ser-
vice that is executed above and below in the stack. This allows the stack to be
recon�gured without changing the code of each service implementation.

When building distributed applications, many services are distributed. Fur-
thermore, many services require the exchange of messages among di�erent nodes.
The information that needs to be sent over the wire is included in a special �eld
of the events used for inter-service communication called a Message.

In RAppia, two or more service channels that share a given service may opt
to share the same instance of that service. A shared service implementation may
correlate events exchanged in di�erent service channels with the help of locally
maintained state.

Grounded on these basic mechanisms, the adaptation support is built consid-
ering three di�erent aspects: the service programming model, adaptation-friendly
services, and kernel mechanisms. These aspects are described next.

5.2 Service Programming Model

The adaptation requirements have been taken into consideration in the program-
ming model used to implement services for RAppia. This has been re
ected into
three separate aspects: the set of events that need to be taken into considera-
tion by each service implementation (which address requirements 1 and 5 ), how
service properties are exposed (which addresses requirement 6 ), and how ser-
vice implementation may exchange control information in a distributed setting
(which is related to requirement 5 ).



Event Processing In RAppia a service is implemented as a set of event han-
dlers. In runtime, when events are delivered to a service, the appropriate handler
is called. Typically, a handler does some processing and forwards the event to
the next service in the composition. The framework does not restrict the type
hierarchy of events that can be triggered and exchanged in the system. Still
RAppia de�nes a number of \system" events that should be handled by any
service implementation. These include events to provide easy access to context
information produced by the protocols (see requirement 1 ), events to handle
state transfer and to place the service in a quiescent state (see requirement 5 ).
More precisely, the following events are de�ned by RAppia:

{ ContextQuery, ContextAnswer, and ContextNoti�cation events. The �rst
event is used to query a service for speci�c context information (such as
the available bandwidth of a node at the present time), the second to reply
to the query event(the reply with the bandwidth reading), and the later to
allow a service to provide an asynchronous noti�cation of context informa-
tion (for instance, a drop in the bandwidth to zero). It is interesting to notice
that although many composition frameworks de�ne a number of mandatory
events (for instance, an Init event used to initialize a service), to the best of
our knowledge, no previous framework has been concerned with this sort of
functionality, even if this is extremely relevant as these are basic services of
any manageable object (from a systems' management perspective).

{ SetParameter event. This event is used to update con�guration parameters
in runtime such as, for instance, timeout values.

{ MakeQuiescent and Resume events. The �rst event is used to request a
service to reach a quiescent state (as we have noted, often recon�guration
can only be performed if the service is in a quiescent state). This event is
propagated in the channel in the Down direction. When the event reaches
the bottom of the channel, its direction is reversed and when it reaches the
top of the channel, the entire channel is in a quiescent state (as depicted in
part of Figure 1). The second event, Resume, is used to resume the service
after recon�guration.

{ GetState and SetState events. These events allow to transfer the service state
from one instance to another, whenever the recon�guration requires instances
to be swapped (for instance, to install a software update). As illustrated in
Figure 1, GetState event is propagated in the channel in the Down direction.
When the event is received, each session adds a state object to the event,
which includes all the state information to be transfered. The SetState event
is propagated in the channel in the Up direction, after recon�guration. Each
session reads the corresponding state object and initializes its state variables
accordingly.

Type Hierarchies The de�nition of adaptation targets meta-information, namely
for individual services and service channels, can be achieved through type hier-
archies. The meta-information from services is de�ned based on the properties of



Service A Service A

Service B

Service C

Service X 

Service C

Following configurationPrevious configuration

GetState
Event

1

2

3 4

MakeQuiescent
Event

SetState
Event

Fig. 1. Replacing service B by X: reaching quiescence and state transfer.

the services such as: group communication, ordering, reliable, etc. Each service is
tagged with the properties that it o�ers, from a well known set. The association
of meta-information with service channels cannot be based in the same principle
since channels with the same composition can be used for di�erent purposes.
Therefore, the meta-information is based on the type of task they perform, for
example: control, audio, text, video, etc.

The association of meta-information with services and service channels allows
to de�ne type hierarchies, based on the tag hierarchy. Therefore it will exist a
hierarchy of service types and another of service channel types. These hierarchies
are domain dependent, in the sense that applications with di�erent domains may
require di�erent hierarchies. Further details on service type speci�cation and
hierarchies can be found in [25].

Message Headers Most composition frameworks support a message abstrac-
tion that can be used by service implementations to exchange data with remote
peers. In a service channel, each service may add/remove its own data to/from
the message. The information added/removed by each service layer is typically
called the service header.

There are two main approaches to manage service headers that have been
implemented in existing protocol composition frameworks. One approach models
the message as a stack of headers, exporting a push/pull interface to add/remove
headers. This is the approach most widely adopted. Unfortunately, this solution
is not very adaptation-friendly as it requires a strong coordination during re-
con�guration (for instance, a header cannot be pushed unless the corresponding
service is active in the remote node to perform the matching pull). Another ap-
proach, adopted in the Cactus [2] framework, consists in modelling the message
as a pool of headers. This approach is more 
exible, given that the header can
be add/removed in di�erent orders. RAppia adopted this approach.

Each header in the pool is identi�ed by a textual label. The methods available
to handle headers are \addHeader(label,header)", \getHeader(label)", \remove-



Header(label)", and \hasHeader(label)". The method \addHeader(label,header)"
adds a header associated with the given label; \getHeader(label)" reads the
contents of the header associated with the given label; \removeHeader(label)"
removes from the pool the header associated with the given label, and \has-
Header(label)" checks if the message contains the header with the given label.
The management of the label namespace is orthogonal to the RAppia operation.
However, RAppia requires each protocol to declare the labels of the headers
it produces and requires, which mimics the Appia conventions to received and
produced events. Therefore, the runtime can detect clashes in the header label
namespace.

5.3 Adaptation-Friendly Services

RAppia includes two adaptation-friendly services: a generic and con�gurable
context sensor (that addresses requirement 2 ) and a recon�guration monitor
(that addresses requirements 4 and 5 ). These services are described in the next
paragraphs. Note that these services could also be adapted to be integrated in
other composition frameworks, for instance, to Cactus.

Context Sensor The context sensor is a service that is able to locally handle the
capture of context information from running service compositions (as described
in requirement 2 ). The context sensor is depicted in Figure 2, and works as
follows.

The context sensor belongs to multiple service channels: a remote invocation
channel, a context noti�cation dissemination channel, and one or multiple sensed
service channels, whose purpose is described below.

{ The remote invocation channel is used to allow remote nodes to query con-
text information on the sensed service channels. The context sensor receives
context queries from this channel and forwards it to all sensed service com-
positions. Subsequently, it collects the correspondent context answers and
sends back a reply on the sensor invocation channel.

{ The context noti�cation dissemination channel is used to disseminate to one
or more remote nodes context noti�cations generated by any of the sensed
compositions. The generic sensor simply intercepts any noti�cation gener-
ated by one of the sensed compositions and forwards it to the noti�cation
dissemination channel. The sensor is oblivious to the composition of the
noti�cation dissemination channel. By selecting an appropriate dissemina-
tion channel, noti�cation can be sent point-to-point to a centralized context
monitor, in multicast to multiple nodes, or injected in a publish-subscribe
infrastructure.

{ The sensed service compositions channels are one or more channels whose
context is locally monitored by the generic sensor.

Furthermore, the sensor can be also requested to perform periodic readings of
on-demand readable context information and autonomously generate noti�cation



Application

Context Sensor

Sensed Channel 1

Service Y Service X

Service A Service W

Service B

Service C

Service D

Service Z 

Service L

Service K

Sensed Channel 2

Remote
Invocation
Channel

Context
Notification
Dissemination
Channel

Fig. 2. Context sensor.

with a con�gurable period. Therefore, the sensor is prepared to, upon request,
generate context noti�cations for variables that otherwise, would have to be read
using explicit polling.

Finally, by carefully composing the noti�cation dissemination channel, the
programmer may easily introduce local processing at the sensed node to reduce
network tra�c. For instance, by adding a �lter service to noti�cation dissem-
ination channel, one can prevent noti�cations, whose value is below a given
threshold, to be disseminated to the network. In a similar manner, it is possible
to include more sophisticated services in the noti�cation channel, for instance,
to compute the average of multiple noti�cations.

Recon�guration Monitor The recon�guration monitor is a service that inter-
acts directly with the kernel of the composition service framework and exports
a control channel through which it receives multiple recon�guration commands.
The recon�guration monitor is depicted in Figure 3. Each recon�guration com-
mand instructs the monitor to take one or more particular steps of a given re-
con�guration sequence. The commands exported by the recon�guration monitor
are as follows.

{ MakeQuiescent : this command instructs the monitor to put one or more
services in a quiescent state, using the MakeQuiescent event.

{ Resume: this command instructs the monitor to resume the activity of a
service that was previously put in a quiescent state.

{ Store/LoadState: these commands determine the capture of state informa-
tion, and the loading in the end of the recon�guration. For this purpose the
monitor uses the GetState and SetState events.

{ Recon�gure: this command instructs the monitor to recon�gure the compo-
sition of a given service channel. The recon�guration involves one or more



of the following actions: remove a service from the service channel, to add
a service to a service channel, or to replace an instance of a service by an
instance of an alternative service.

For more details on the recon�guration monitor and the commands please
refer to [13].

Application

Reconfiguration Monitor
Service Y Service X

Service A Service W

Service B

Service C

Service D

Service Z 

Service L

Service K

Reconfigurable
Channel 2

Reconfigurable
Channel 1

Control
Channel

Fig. 3. Recon�guration monitor.

5.4 Kernel Mechanisms

To address requirement 4, the kernel of the RAppia composition framework
includes two adaptation-friendly mechanisms that, to our knowledge, are not
supported by any other composition framework: automatic bu�ering of events
addressed to services in a quiescent state and automatic update of event routes,
as described below.

Event Bu�ering As we have discussed previously, in order to recon�gure a
service one may be required to put that service in a quiescent state. Typically,
when in a quiescent state, the service is unable to process new events. Therefore,
the RAppia kernel is able to recognize when a service is in a quiescent state and
bu�er all events addressed to that service. As soon as the service is resumed, the
RAppia kernel restarts the delivery of events to the service. This functionality
allows a service to be recon�gured without forcing the entire service channel to
be put in a quiescent state.



Dynamic Update of Event Routes The RAppia kernel is able to use infor-
mation about which events are handled by each service to optimize the 
ow of
events in a service composition. In particular, for each type of event, an event
route is created. This ensures that an event is only delivered to the services that
are interested in handling that event.

In an adaptive setting, the composition of a service channel may change in
runtime. Furthermore, RAppia does not require the entire composition to be
set in a quiescent state in order to perform the recon�guration. Therefore, the
RAppia kernel is built such that event routes are automatically recomputed
when a recon�guration occurs.

5.5 Discussion

We have implemented a prototype of the RAppia framework with the described
features. This prototype is currently being used to build middleware systems for
mobile networks, whose dynamic settings demand adaptation support. In this
middleware, the RAppia adaptation-friendly services play an important role.
Sensors can be con�gured to capture di�erent context information, and the re-
con�guration monitor allows to develop several di�erent strategies to apply the
recon�guration actions, that are tailored to the service being recon�gured. More-
over, these mechanisms allowed us to build both a context monitor (to reason
about context information), and an adaptation manager to control the adapta-
tion process. A detailed description of these additional middleware components
is outside the scope of this paper (the interested reader is referred to [13]).

6 Conclusions

Service composition frameworks are a signi�cant component of any adaptive
middleware infrastructure. Given the large experience in the design and imple-
mentation of composition frameworks oriented for communication protocols, it is
interesting to use them as the basis for a adaptation-friendly service composition
framework. This paper has identi�ed a set of requirements imposed by adaptive
middleware on composition frameworks. Subsequently, we have analyzed how
these requirements have already been addressed in the context of protocol com-
position frameworks. Based on this analysis we propose an adaptive friendly
service composition framework that has been obtained by extending an existing
protocol composition framework with an augmented programming model, new
adaptive services and a set of adaptation-friendly kernel mechanisms.

Acknowledgments

The authors are grateful to the anonymous referees for their comments on a pre-
vious version of this paper. This work was partially funded by FCT project MI-
CAS { Middleware for Context-aware and Adaptive Systems { (POSI/EIA/60692/2004)
through POSI and FEDER.



References

1. Hutchinson, N.C., Peterson, L.L.: The x-kernel: An architecture for implementing
network protocols. IEEE Trans. Softw. Eng. 17(1) (1991) 64{76

2. Hiltunen, M.A., Schlichting, R.D., Ugarte, C.A., Wong, G.T.: Survivability through
customization and adaptability: The cactus approach. discex 01 (2000) 0294

3. van Renesse, R., Birman, K.P., Ma�eis, S.: Horus: a 
exible group communication
system. Communications ACM 39(4) (1996) 76{83

4. Cadot, S., Kuijlman, F., Langendoen, K., van Reeuwijk, K., Sips, H.: Ensemble:
A communication layer for embedded multi-processor systems. In: LCTES '01:
Proceedings of the ACM SIGPLAN workshop on Languages, compilers and tools
for embedded systems, New York, NY, USA, ACM Press (2001) 56{63

5. Miranda, H., Pinto, A., Rodrigues, L.: Appia, a 
exible protocol kernel supporting
multiple coordinated channels. In: Proceedings of The 21st International Con-
ference on Distributed Computing Systems (ICDCS-21), IEEE Computer Society
(2001) 707{710

6. Brasileiro, F., Greve, F., Tronel, F., Hur�n, M., Narzul, J.P.L.: Eva: An event-
based framework for developing specialized communication protocols. In: NCA '01:
Proceedings of the IEEE International Symposium on Network Computing and
Applications (NCA'01), Washington, DC, USA, IEEE Computer Society (2001)
108{120

7. Wojciechowski, P., R�utti, O., Schiper, A.: SAMOA: A Framework for a
Synchronisation-Augmented Microprotocol Approach. In: Proc. of IPDPS '04 (18th
International Parallel and Distributed Processing Symposium). Volume 01., Los
Alamitos, CA, USA, IEEE Computer Society (2004) 64{74

8. Rosa, L., Rodrigues, L., Lopes, A.: Building adaptive services for distributed
systems. Technical report, Dept. Informatics, University of Lisbon (2007)

9. R�utti, O., Wojciechowski, P.T., Schiper, A.: Service interface: a new abstraction
for implementing and composing protocols. In: SAC '06: Proceedings of the 2006
ACM symposium on Applied computing, New York, NY, USA, ACM Press (2006)
691{696

10. Garbinato, B., Guerraoui, R.: Flexible protocol composition in bast. In: ICDCS '98:
Proceedings of the The 18th International Conference on Distributed Computing
Systems, Washington, DC, USA, IEEE Computer Society (1998) 22{30

11. Chen, W.K., Hiltunen, M.A., Schlichting, R.D.: Constructing adaptive software in
distributed systems. In: ICDCS '01: Proceedings of the The 21st International Con-
ference on Distributed Computing Systems, Washington, DC, USA, IEEE Com-
puter Society (2001) 635{643

12. van Renesse, R., Birman, K., Hayden, M., Vaysburd, A., Karr, D.: Building adap-
tive systems using ensemble. Softw. Pract. Exper. 28(9) (1998) 963{979

13. Rosa, L., Rodrigues, L., Lopes, A.: A framework to support multiple recon�gura-
tion strategies. Technical report, Dept. Informatics, University of Lisbon (2007)

14. Chen, G., Kotz, D.: A survey of context-aware mobile computing research. Tech-
nical report, Hanover, NH, USA (2000)

15. Acharya, A., Ranganathan, M., Saltz, J.H.: Sumatra: A language for resource-
aware mobile programs. In: MOS '96: Selected Presentations and Invited Papers
Second International Workshop on Mobile Object Systems - Towards the Pro-
grammable Internet, London, UK, Springer-Verlag (1997) 111{130

16. Kwon, Y., Fang, Y., Latchman, H.: Performance analysis for a new medium access
control protocol in wireless lans. Wirel. Netw. 10(5) (2004) 519{529



17. Kwon, Y., Fang, Y., Latchman, H.: Improving transport layer performance by using
a novel medium access control protocol with fast collision resolution in wireless lans.
In: MSWiM '02: Proceedings of the 5th ACM international workshop on Modeling
analysis and simulation of wireless and mobile systems, New York, NY, USA, ACM
Press (2002) 112{119

18. Ket�, A., Belkhatir, N., Cunin, P.Y.: Automatic adaptation of component-based
software: Issues and experiences. In: PDPTA '02: Proceedings of the International
Conference on Parallel and Distributed Processing Techniques and Applications,
CSREA Press (2002) 1365{1371

19. Liu, H.: A component-based programming model for autonomic applications. In:
ICAC '04: Proceedings of the First International Conference on Autonomic Com-
puting (ICAC'04), Washington, DC, USA, IEEE Computer Society (2004) 10{17

20. Crawley, S., Davis, S., Indulska, J., McBride, S., Raymond, K.: Meta information
management. In: FMOODS '97: Proceeding of the IFIP TC6 WG6.1 Interna-
tional Workshop on Formal Methods for Open Object-based Distributed Systems,
London, UK, UK, Chapman & Hall, Ltd. (1997) 193{202

21. da Silva e Silva, F.J., Kon, F., Yoder, J., Johnson, R.: A pattern language for
adaptive distributed systems. In: SugarLoafPLoP'2005: Proceedings of the 5th
Latin American Conference on Pattern Languages of Programming, Campos do
Jord~ao, Brazil (2005) 19{48

22. Chiba, S., Masuda, T.: Designing an extensible distributed language with a meta-
level architecture. In: ECOOP '93: Proceedings of the 7th European Conference
on Object-Oriented Programming, London, UK, Springer-Verlag (1993) 482{501

23. Fabre, J., Nicomette, V., Perennou, T., Stroud, R., Wu, Z.: Implementing fault-
tolerant applications using re
ective object-oriented programming. Technical re-
port (1995)

24. Agha, G., Fr�lund, S., Panwar, R., Sturman, D.: A linguistic framework for dy-
namic composition of dependability protocols. In: Dependable Computing and
Fault-Tolerant Systems VIII, IFIP Transactions, Springer-Verlag (1993) 345{363

25. Rosa, L., Lopes, A., Rodrigues, L.: Policy-driven adaptation of protocol stacks.
In: ICAS '06: Proceedings of the International Conference on Autonomic and Au-
tonomous Systems, Washington, DC, USA, IEEE Computer Society (2006) 5{12


