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Abstract. We propose an algorithm to produce automatically a 3-D
CAD model from a set of range data, based on non-uniform rational
B-splines (NURBS) surface fitting technique. Our goal is to construct
automatically continuous geometric models, assuming that the topology
of the surface is unknown. In the propose algorithm, the triangulated
surface is partitioned in quadrilateral patches, using Morse theory. The
quadrilateral regions on the mesh are then regularized using geodesic
curves and B-splines to obtain an improved smooth network on which
to fit NURBS surfaces. NURBS surfaces are fitted and optimized us-
ing evolutionary strategies. In addition, the patches are smoothly joined
guaranteeing C1 continuity. Experimental results are presented.

1 Introduction

Three-dimensional reconstruction is the process by which the 3D geometry of
real-world objects are captured in computer memory from geometric sensors
such as laser scanners, photogrammetric cameras, and tomography machines.
This reconstructed models consist of two main information; first, its physical
characteristics such as density, volume and shape; second, its topological struc-
ture such as the adjacency between points, surfaces, and volumes.

Finding a useful and general representation of 3D shape from 3D sensors that
is useful for industrial and medical applications has proven to be a nontrivial
problem. Up to recently, there are no real automated ways to perform this task,
hence the flurry of surface reconstruction packages available in industry such
as Polyworks, RapidForm, Geomagic to name a few. Many of these software
packages can perform some of the reconstruction task automatically but many
of them requires extensive user inputs especially when ones deal with high-level
representation such as CAD modeling of complex industrial parts or natural
shapes such as the one found in medical applications.
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There are many ways to perform this high-level surface reconstruction task
from 3D sensors. In most schemes, surface reconstruction starts with the registra-
tion of various views produced by the 3D sensor. Then, each views are generally
referenced to each other relative to a common central coordinate system. In some
systems, this task is performed using data to data registration, other system use
external positioning devices such as mechanical arms or optical tracking sys-
tems. Following this process each views are then triangulated to create a unique
non-redundant 3D mesh. Many of the commercial packages can do this mesh-
ing process automatically. Because of sensor occlusions and limitations, the mesh
produced by the triangulation process is frequently plagued with holes that need
to be filled in order to create a leak free solid model. Most commercial systems
use some sort of semi-automated algorithms but more recent new algorithms [1]
based on radial basis functions were introduced to perform this task automat-
ically. In most cases, the hole filling process keeps the original discontinuities
of the real object, and generates a complete closed triangular model. Following
this process many commercial software require extensive manual processing to
lay on the 3D mesh a network of curves where NURBS surfaces can be fitted.
This process is extremely labor intensive and require a strong experience in 3D
modeling and data processing to complete the task.

In this paper, we present a possible solution to this problem using an auto-
mated NURBS extraction process where the 3D mesh is converted automatically
into a smooth quadrilateral network of NURBS surfaces based on Morse’s the-
ory. Section 2, presents a literature review of the state-of-the-art of automated
NURBS fitting algorithms. Section 3, describes how Morse’s theory can be ap-
plied to determine critical points from an eigenvalue analysis of the Laplacian
of the surface mesh. Section 4, describes how to regularize those curves join-
ing the critical points using geodesics calculation and b-spline fitting. Section 5,
describes how to fit smooth NURBS with C1 continuity constraints for each
regions using an evolutionary strategy. Section 6, presents some experimental
results and compares these results to a well know algorithm. We then conclude
and discuss future work.

2 Literature Review

Eck and Hoppe [2] present the first complete solution to the fitting problem
of a network of B-spline surfaces of arbitrary topology on disperse and un-
ordered points. The method builds an initial parametrization, which in turn
is re-parameterized to build a triangular base, which is then used to create a
quadrilateral domain. In the quadrilateral domain, the B-spline patches adjust
with a continuity degree of C1. This method, although effective, is quite complex
due to the quantity of steps and process required to build the net of B-spline
patches. It is also limited to B-spline as oppose to NURBS.

Krishnamurthy and Levoy [3] presented an approach to adjust NURBS surface
patches on cloud of points. The method consists of building a polygonal mesh
on the points set. Using this 3D mesh, a re-sampling is performed to generate a
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regular mesh, on which NURBS surfaces patches can be adjusted. The method
has poor performance when dealing with complex surfaces and with surfaces
with holes. Other limitation is the underlying difficulty on keeping continuity on
the NURBS surface patches.

Boulanger et al. [4] describe a linear approximation of continuous pieces by
means of trimmed NURBS surfaces. This method generates triangular meshes
which are adaptive to local surface curvature. First, the surface is approximated
with hierarchical quadrilaterals without considering the jagged curves. Later,
jagged curves are inserted and hierarchical quadrilaterals are triangulated. The
result is a triangulation which satisfies a given tolerance. The insertion of jagged
curves is improved by organizing the quadrilaterals’ hierarchy into a quad-tree
structure. The quality of triangles is also improved by means of a Delaunay
triangulation. Although this method produces good results, it is restricted to
surfaces which are continuous and it does not accurately model fine details.

A different approach is presented by Yvart et al. [5], which uses triangu-
lar NURBS for dispersed points adjustment. Triangular NURBS do not require
that the points-set has a rectangular topology, although it is more complex than
NURBS. Similar to the previous works, it requires intermediate steps where tri-
angular meshes are reconstructed, re-parametrize, and where continuity patches
G1 are adjusted to obtain a surface model.

Dong et al. [6] describe a fundamentally new approach to the quadrangu-
lation of manifold polygon meshes using Laplacian eigenfunctions, the natural
harmonics of the surface. These surface functions distribute their extrema evenly
across a mesh, which connect via gradient flow into a quadrangular base mesh.
An iterative relaxation algorithm simultaneously refines this initial complex to
produce a globally smooth parameterization of the surface. From this, they can
construct a well-shaped quadrilateral mesh with very few extraordinary vertices.
The quality of this mesh relies on the initial choice of eigenfunction, for which
they describe algorithms and hueristics to efficiently and effectively select the
harmonic most appropriate for the intended application.

3 Determination of Morse Critical Points Using Spectral
Coding of the Laplacian Matrix

The proposed procedure estimates an initial quadrilaterization of the mesh, using
a spectral coding scheme based on the eigen-value analysis of the Laplacian
matrix of the 3D mesh. The method is similar to the one proposed in Dong et
al. [7]. Initially, the quadrilateral’s vertices are obtained as a critical points-set
of a Morse function. Morse’s discrete theory [6] guarantees that, without any
concerns on the topological complexity of the surface represented by triangular
mesh, a complete quadrilateral description of the surface is possible.

Since one requires a scalar function for each vertex, it has been shown by [7]
that the eigenvalue of the Laplacian matrix behaves like a Morse-Smale complex
creating a spectral coding function that can be used to determine which vertices
are Morse critical points. One advantage of eigenvalue analysis over other coding
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schemes is that by selecting the dimension of the eigenvector one can directly
define the number of critical points on the surface as higher frequencies produce
a higher number of critical points. The eigenvalues assigned to every vertex of
the mesh is then analyzed to determine if the vertex is a Morse critical point. In
addition, according to a value set obtained as the neighborhood of the first ring
of every vertex, it is possible to classify the critical points as maximum, minimum
or ”saddle points.” Once the critical points are obtained and classified, then they
can be connected to form a quadrilateral base of the mesh using the following
Algorithm 1.1:

Algorithm 1.1. Bulding method of MS cells.
Critical points interconnection();
begin

Let T={F,E,V} M triangulation;
Initialize Morse-Smale complex, M=0;
Initialize the set of cells and paths, P=C=0;
S=SaddlePointFinding(T);
S=MultipleSaddlePointsDivission(T);
SortByInclination(S);
for every s ∈ S in ascending order do

CalculeteAscedingPath(P);
end
while exists intact f ∈ F do

GrowingRegion(f, p0, p1, p2, p3);
CreateMorseCells(C, p0, p1, p2, p3);

end
M = MorseCellsConnection(C);

end

4 Regularization of the Quadrilateral Regions

Because the surface needs to be fitted using NURBS patches, it is necessary to
regularize the quadrilateral regions boundaries connecting the critical points on
the mesh. Regularization means here that we need a fix number of points (λ)
on each boundary and that the boundary is described by a smoothing function
such as a B-spline. The Algorithm 1.2 is proposed to regularize the path on the
mesh joining the critical points. In this algorithm, the link between two Morse
critical points on the mesh is defined by a geodesic trajectory between them.
A geodesic trajectory is the minimum path joining two points on a manifold.
To compute this geodesic path on the mesh, we use a Fast Marching Method
(FMM) algorithm [8]. This algorithm compute on a discrete mesh the minimal
trajectory joining two critical points in O(nlogn) computational complexity. At
the end of the regularization process, a B-splines curve is fitted on the geodesic
path and the curve is re-sampled with λ points to obtain a grid which is used to
fit the NURBS surfaces. This is a much simpler and robust algorithm that the
one proposed by Dong where an uniform parameterization is computed.
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Algorithm 1.2. Quadrilateral path regularization algorithm.
Regularization();
begin

1. Quadrilateral selection;
2. Determination of common paths between regions by computing the
geodesics on the mesh connecting both points;

3.1 Smoothing of the geodesic path using B-splines fitting functions;
3. Determination of common boundary points by interpolating λ points on
the path;

end

5 Surface Fitting Using Optimized NURBS Patches

In order to fit smoothly NURBS surfaces on the quadrilateral network a method
based on an evolutionary strategy (ES) is proposed. In order to fit a NURBS
surface onto a grid, one needs to determine the weights of control points of a
NURBS surface, without modifying the location of sampled points of the original
surface. The main goal of this algorithm is to reduce the error between the
NURBS surfaces and the data points inside the quadrilateral regions. In addition,
the algorithm make sure that the C1 continuity condition is preserved for all
optimized NURBS patches. The proposed algorithm is composed of two parts:
first an optimization of the NURBS patches parameters is performed, and second
a NURBS patch intersections is computed.

5.1 Optimization of the NURBS Patches Parameters

A NURBS surface is completely determined by its control points P i,j and by
its weight factors wi,j . The main difficulty in fitting NURBS surface locally
is in finding an adequate parametrization for the NURBS and the ability to
automatically choose the number of control points and their positions.

Weight factors wi,j of NURBS surfaces determine the local influence degree
of a point on the surface topology. Generally, as in Dong [6], weights of control
points for a NURBS surface are assigned in an homogeneous way and are set
equal to 1 in most common algorithms, reducing NURBS to simple B-spline sur-
face. The reason for this simplification is that control points weights determina-
tion for arbitrarily curved surfaces adjustment is a complex non-linear problem.
This restricts fitting NURBS to a regular points-set. It is necessary that every
row has the same number of points, making it impossible to fit the surface on
a disperse unordered points-cloud. When a surface of explicit function is fitted
using NURBS, the following Equation is normally minimized:

δ =
np∑

l=1

∥∥∥∥∥Zl −
∑n

i=0
∑m

j=0 Ni,p(u)Nj,q(v)wi,jP i,j∑n
i=0

∑m
j=0 Ni,p(u)Nj,q(v)wi,j

∥∥∥∥∥

2

(1)

where Ni,p(u) and Nj,q(v) are base B-spline functions of p and q degree in the
parametrical directions u and v respectively, wi,j are the weights, P i,j the con-
trol points, and np the number of control points. If the number of knots and
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their positions are fixed, same as the weights set, and only the control points(
{{P i,j}n

i=1}m
j=1 ∈ R

3
)

are considered during minimization of Equation 1, then
we have a linear mean square problem. If knots or the weights are considered
unknown it is necessary to solve a non-linear problem during the fitting process.
In many applications, the optimal position of knots is not necessary. Hence, the
knots location problem is solved by using heuristics.

In the proposed algorithm, multiple ES of type “+” are used. These generally
are denoted as follows: (γ,+ μ), where γ is the size of the population and μ is
the size of the descendence. Symbol “,+” is used to indicate the existence of
two replacement possibilities: deterministic replacement by inclusion (or type
“+”) or deterministic replacement by insertion (or type “,”). The optimization
process can be described as follows: Let P = {P 1, P 2, . . . , P n} a points-set in
R

3 sampled from the surface of a physical object, our problem consists of:

E(s) =
1
n

n∑

i=1

dPi,Si < δ (2)

where dPi,Si represents the distance between a point of the set P of sampled
points of the original surface S, and a point on the approximated surface S′. To
get the configuration of surface S′, E is minimized to a tolerance lower than the
given δ. Manipulation is performed by means of an evolution strategy (μ + λ)
configured as follows:

– Representation Criteria: Representation is performed using pairs of real
vectors. Representation using triples is often used, where the last vector
controls the correlation between mutations of each component, but, because
of the expense of the method, we decided to use only duplets.

– Treatment criteria of non-feasible individuals: A filtering of individu-
als is performed ignoring non-feasible individuals.

– Genetic Operators:
• Individual: is composed of the weights of the control points belong-

ing to the original points-cloud and the parameters of mutation step-
adaptation. The initial values wi, δi of every individual are uniformly
distributed in interval [0.01, 1.0]. This range is chosen because it is not
possible to set the weight to zero.

• Mutation: Individuals mutation will not be correlated with n σ′s (mu-
tation steps) as established in individual configuration, and it is per-
formed as indicated in the following equations:

σ
′

i = σie
(c0.N(0,1)+ci.Ni(0,1)), x

′

i = xi + σ
′

i.Ni(0, 1) (3)

where N(0, 1) is a normal distribution with expected value 0 and variance
1, c0, ci are constants which control the size of the mutation step. This
refers to the change in mutation step σ. Once the mutation step has been
updated, the mutation of individuals is generated wi.

– Selection Criteria: The best individuals in each generation are selected
according to the fitness function given by Equation (2).
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– Replacement criteria: In ES, the replacement criteria is always determin-
istic, which means that μ or γ best members are chosen. In this case, the
replacement by inclusion was used (type “+”), in which the μ descendants
are joined with the γ parents into a single population, and from it, the γ
best members and are taken for the new population.

– Recombination operator: Two types of recombination are applied
whether object variables wi or strategy parameters σi are being recombined.
For object variables, an intermediate global recombination is used:

b
′

i =
1
ρ

ρ∑

k=1

bk,i (4)

where b
′

i is the new value of i, and ρ is the number of individuals within the
population. For strategy parameters, an intermediate local recombination is
used:

b
′

i = uibk1,i + (1 − ui)bk2,i (5)

where b
′

i is the new value of i, and ui is a real number which is distributed
uniformly within the interval [0, 1].

5.2 NURBS Patch Intersections

Several authors use complex schemes to guarantee continuity of normals in recon-
structed models. Loop [9] proposes a continuity schema in which three different
types of patches are used for special cases. In neighborhoods with big curves
Bi-quadratic Bezier patches are used. At corners with triangular neighborhoods,
cubic Bezier patches are used, and at regular zones, bi-quadratic spline patches
are used. In a similar way Eck and Hoppe [2] use a model in which bi-quadratic
B-splines functions and bi-cubic Bezier functions are fused to guarantee conti-
nuity between patches.

Continuity in regular cases (4 patches joined at one of the vertexes) is a
solved problem [2]. However, in neighborhoods where the neighbors’ number is
different than 4 (v � 3 → v �= 4), continuity must be adjusted to guarantee a
soft transition of the implicit surface function between patches of the partition.
Continuity C0 shows that a vertex continuity between two neighboring patches
must exist. This kind of continuity only guarantees that holes at the assembling
limit between two parametric surfaces does not exists. C1 shows that conti-
nuity in normals between two neighboring patches must exist. This continuity
also guarantees a soft transition between patches, offering a correct graphical
representation.

In this algorithm, C1 continuity between NURBS patches is guaranteed, using
Peters continuity model [10] which guarantees continuity of normals between bi-
cubical Spline functions. Peters proposes a regular and general model of bi-cubic
NURBS functions with regular nodes vectors and the same number of control
points at both of the parametric directions. In such a way, Peter’s model was
adapted by choosing generalizing NURBS functions, with the same control points
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number at both of the parametric directions, bi-cubic basis functions and regular
expansions in their node vectors.

6 Experimental Results

The tests were performed using a 3.0 GHz processor, with 1.0 GB of RAM,
running Microsoft Windows XP operating system. The methods were imple-
mented using C++ and MATLAB, and graphics programs used OpenGL 1.1.
The 3D data used were digitized with a Minolta Vivid 9i. The precision of the
measurements were in the order of 0.05 mm.

Figure 1 shows the result of NURBS extraction on a pre-colombian ceramic
object. It was necessary to integrate 18 range images to produce a complete
model, as shown in Figure 1(a). In Figure 1(b) the registered and triangulated
model of the object is shown, which is composed of 22217 points, with an av-
erage error of 0.0254. The surface has two topological anomalies associated to
occlusions, which were corrected using a local radial base function interpolation
scheme describe in [11]. This technique guarantee that the new reconstructed
region adjusts smoothly with the other and also keeps the sampling density of
the original mesh intact. The final model is obtained with 391 patches of opti-
mized NURBS surfaces with a fitting error of 1.80×10−4 (see Figures 1(e), 1(f)).
The reconstruction model of the object took an average computing time of 21
minutes.

6.1 Comparison Between the Proposed Method and Eck and
Hoppe’s Method

The work by Eck and Hoppe [2] performs a similar adjustment using a network
of B-spline surface patches which are iteratively refined until they achieve a

(a) Initial images set. (b) Registered images. (c) Holes detection and
analysis.

(d) Holes filling. (e) Extracted quadrilateral
regions.

(f) Final model obtained us-
ing NURBS patches.

Fig. 1. Reconstruction of a pre-colombian object using a quadrilateral network of
NURBS patches
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(a) (b) (c) (d) (e)

Fig. 2. Comparison between the proposed method and Eck and Hoppe’s method. a)
triangulated model, b) 27 patches model (proposed method without optimization), c)
27 patches model (proposed method with optimization), d) 29 patches model (Eck
and Hoppe’s method without optimization), e) 156 patches model (Eck and Hoppe’s
method with optimization).

preset error tolerance. The process of optimization performed by Eck and Hoppe
reduces the error by generating new patches, which considerably augments the
number of patches which represent the surface. The increment of the number
of patches reduces the error because the regions to be adjusted are smaller and
more geometrically homogeneous. In the method proposed in this paper, the
optimization process focus on improving fitting for every patch by modifying
only its parameterizations (control points and weights). For this reason, the
number of patches does not increase after the optimization process. The final
number of patches which represent every object is determined by the number of
critical points obtained in an eigenvector associated with the eigenvalue selected
from the solution system of the Laplacian matrix, and it does not change at any
stage of the process. Figure 2 shows two objects (foot and skidoo part) reported
by Eck and Hoppe. The model created with the proposed method , is composed
of 27 and 25 patches, while Eck and Hoppe use 156 and 94 patches for the same
precision. This represent a reduction of 82% and 73% less patches respectively.

7 Conclusion

The methodology proposed in this paper for the automation of reverse engi-
neering of free-form three-dimensional objects has a wide application domain,
allowing to approximate surfaces regardless of topological complexity of the orig-
inal objects.

A novel method for fitting triangular mesh using optimized NURBS patches
has been proposed. This method is topologically robust and guarantees that
the complex base is always a quadrilateral network of NURBS patches which is
compatible with most commercial CAD systems. This algorithm is simpler and
robust and do not require an extensive optimization of the surface parameteri-
zation as in Dong.

In the proposed algorithm, the NURBS patches are optimized using multiple
evolutionary strategies to estimate the optimal NURBS parameters. The result-
ing NURBS are then joined, guaranteing C1 continuity. An other advantage of
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this algorithm over Dongs is that the formulation of C1 continuity presented in
this paper can be generalized, because it can be used to approximate regular and
irregular neighborhoods which present model processes regardless of partitioning
and parametrization.

In the future, we are planning to explore other spectral coding functions that
are more intrinsic and invariant to the way the object is immersed in 3-D space.
One possible avenue is the use the eigenvalue of the curvature matrix instead of
the Laplacian.
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