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Abstract. A general framework for image segmentation is presented in this pa-
per, based on the paradigm of water flow. The major water flow attributes like 
water pressure, surface tension and capillary force are defined in the context of 
force field generation and make the model adaptable to topological and  
geometrical changes. A flow-stopping image functional combining edge- and 
region-based forces is introduced to produce capability for both range and ac-
curacy. The method is assessed qualitatively and quantitatively on synthetic and 
natural images. It is shown that the new approach can segment objects with 
complex shapes or weak-contrasted boundaries, and has good immunity to noise. 
The operator is also extended to 3-D, and is successfully applied to medical 
volume segmentation.  

1   Introduction  

Image segmentation is a fundamental task. For example, in retinal images, vessel 
structures can provide useful information like vessel width, tortuosity and abnormal 
branching which are helpful in medical diagnoses. However, natural images often 
comprise topologically and/or geometrically complex shapes, like the vessels. The 
complexity and variability of features, together with the image imperfections such as 
intensity inhomogeneities and imaging noise which cause the boundaries of considered 
features discontinuous or indistinct, make the task very challenging.  

Many methods have been proposed in medical image segmentation. Active contours 
or snakes [1] are one of the most powerful established techniques. An active contour is 
essentially a parameterized curve which evolves from an initial position to the object’s 
boundary so that a specified energy functional can be minimized. The methods achieve 
desirable features including inherent connectivity and smoothness that counteract ob-
ject boundary irregularities and image noise, so they provide an attractive solution to 
image segmentation. However, there are still many limitations. Classical parametric 
snakes use edge information and need good initialization for a correct convergence. 
Moreover, they cannot handle topological and geometrical changes like object splitting 
or merging and boundary concavities. Many methods have been proposed to overcome 
these problems. Balloon models [2], distance potentials [3], and gradient vector flow 
(GVF) [4] have been developed to solve the problems of initialization and concave 
boundary detection. Snake energy functionals using region statistics or likelihood in-
formation have also been proposed [5, 6]. A common premise is to increase the capture 
range of the external forces to guide the curve towards the boundaries. For complex to-
pology detection, several authors have proposed adaptive methods like the T-snake [7] 
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based on repeated sampling of the evolving contour on an affine grid. Geometric active 
contours [8, 9] have also been developed where the planar curve is represented as a 
level set of an appropriate 2-D surface. They work on a fixed grid and can automatically 
handle topological and geometrical changes. However, many methods solve only one 
problem whilst introducing new difficulties. Balloon models introduce an inflation 
force so that it can “pull” or “push” the curve to the target boundary, but the force 
cannot be too strong otherwise “weak” edges would be overwhelmed. Region-based 
energy can give a large basin of attraction and can converge even when explicit edges 
do not exist but it cannot yield as good localization of the contour near the boundaries 
as can edge-based methods. Level set methods can detect complex shapes well but also 
increase the complexity since a surface is evolved rather than a curve.  

Instead of model-based methods, some proposed the morphological watershed based 
region growing techniques [10, 11]. The approach is based on the fact that smooth 
surfaces can be decomposed into hills and valleys by studying critical points and their 
gradient. Considering pixel properties (intensity or gradient) as elevation and then 
simulating rainfall on the landscape, rain water will flow from areas of high altitude 
along lines of steepest descent to arrive at some regional minimal height. The catch-
ment basins are defined as the draining areas of its regional minima and their bounda-
ries can then be used in object extraction. Though assuming water collection, the 
method does not use the features of water itself and focuses on the image’s geo-
graphical features. The non-linearity arising from issues like finding steepest descent 
lines between two points makes the method complicated. Moreover, the region growing 
framework often yields irregular boundaries, over-segmentation and small holes.  

Unlike the mathematical models introduced above, we propose a physical model 
focusing on water itself rather than the landscape of images. Water is chosen because 
features like fluidity and surface tension can lead to topological adaptability and 
geometrical flexibility, as well as contour smoothness. We completely redefined the 
basis of our previous water-flow based segmentation approaches [12, 13] by adopting 
the force filed theory which has been used in feature extractions [14]. The method 
shows decent segmentation performance in quantitative and qualitative assessments. 
Further, the nature of physical analogy makes the working principles and parameters 
easy and explicit to interpret. The 3D extension is also more natural and straightforward 
than mathematical models like T-surfaces [7].  

2   Methodology 

Water flow is a compromise between several factors: the position of the leading front of 
a water flow depends on pressure, surface tension, and adhesion (if any). There are 
some other natural properties like turbulence and viscosity, which are ignored here. 
Image edges and some other characteristics that can be used to distinguish objects are 
treated as the “walls” terminating the flow. The final static shape of the water should 
give the related object’s contour.  

Some physical principles are first introduced. The flow velocity is determined by 
total flow driving force and the flow resistance. The relationship between the flow 
velocity v, the flow resistance R and the total driving force F is given by: 
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D
= A R⋅v F                                                   (1) 

where A is the cross-sectional area of the flowing water and is set to unity here. FD 
comprises the pressure, surface tension and adhesion. The flow is mainly driven by the 
pressure pointing outwards. The surface tension, which is the attractive force between 
water surface elements, can form a water film to bridge gaps in object boundaries. The 
adhesion, which is defined as the attractive force from image edges to water surface, 
can assist water in flowing inside narrow braches.  

For the image analogy, one pixel in the image is considered to be one basic water 
element. An adaptive water source is assumed at the starting point(s) so that the water 
can keep flowing until stasis, where flow ceases. The image is now separated into dry 
and flooded areas by the water. Only elements at water contours are adjacent to dry 
regions, so only contour elements are of interest in the implementation.  

The implementation of the flow process of one contour element is shown by the 
flowchart in figure 1. Applying same procedures to all the contour elements forms one 
complete flow iteration. As shown by figure 1, the flow process is separated into two 
stages – the acceleration stage and the flow stage. In the first stage, the considered 
element achieves an initial flow velocity determined by the driving force FD and re-
sistance R. Then we examine the movements at possible flow directions pointing from 
the considered contour element toward adjacent dry points one by one. For the direction 
i, the component velocity scalar vi is calculated. If vi > 0, the process then progress to 
the next stage, where the element is assumed to be flowing to the dry position related to 
the direction i and some image force is acting on it. To reconcile the flow velocity with 
the image force and hence conduct the movement decision processor, dynamical for-
mulae are used. The movement decision is made according to the sign of J and  

2 2 iimvJ F S= +                    (2) 

where S and m are defined as the fixed flow distance in one iterative step and the water 
element mass. In this equation, Fi is the scalar image force at direction i. It is defined to 
be positive if consistent with i, and negative if opposite. J ≥ 0 means that the initial 
kinetic energy exceeds the resistant work produced by Fi during S and thus the contour 
element is able to flow the target position at direction i.  

The definitions and calculations of the factors and parameters introduced above then 
need to be clarified. In this paper, the force field theory is embodied into the water flow 
model to define the flow driving force FD.  

 

Fig. 1. The flowchart of implementing the flow process for one water contour element 
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2.1   Force Field, Water Driving Force, and Flow Velocity 

In this new water flow model, each water element is treated as a particle exhibiting 
attraction or repulsion to other ones, depending on whether or not it is on the contour / 
surface. The image pixels at the dry areas are considered as particles exhibiting attrac-
tive forces to water contour elements. Now both the water elements and the dry area 
image pixels are assumed to be arrays of mutually attracted or repelled particles acting 
as the sources of Gaussian force fields. Gauss’s law is used as a generalization of the 
inverse square law which defines the gravitational and/or electrostatic force fields. 
Denoting the mass value of pixel with position vector rj as L(rj), we can define the total 
attractive force at rj from other points within the area W as 
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Equation (3) can be directly adopted into the framework of the water flow model, 
provided the mass values of different kinds of elements are properly defined. Here the 
magnitude of a water element is set to 1, and that of a dry image pixel is set to be the 
edge strength at that point (an approximation of the probability that the considered 
pixel is an edge point). The mass values of water contour elements and image pixels 
should be set positive, and those of the interior water elements should be negative be-
cause equation (3) is for attractive forces.  

From equation (3), the flow velocity is inversely proportional to the resistance of 
water (the cross-sectional area A has been set to 1). In a physical model, the resistance is 
decided by the water viscosity, the flow channel and temperature etc. Since this is an 
image analogy which offers great freedom in selection of parameter definitions, we can 
relate the resistance definition to certain image attributes. For instance, in retina vessel 
detection, if the vessels have relatively low intensity, we can define the resistance to be 
proportional to the intensity of the pixel. Further, if we derive the resistance from the 
edge information, the process will become adaptive. That is, when the edge response is 
strong, resistance should be large and the flow velocity should be weakened. Thereby, 
even if the driving force set by users is too “strong”, the resistance will lower its in-
fluence at edge positions. Thereby the problem in balloon models [2], where strong 
driving forces may overwhelm “weak” edges, can be suppressed. Therefore, such a 
definition is adopted here. The flow resistance R at arbitrary position (u, v) is defined as 
a function of the corresponding edge strength:  

exp{ ( , )}R k u v= ⋅E           (4) 

where E is the edge strength matrix and the positive parameter k controls the rate of fall 
of the exponential curve. If we assign a higher value to k, the resistance would be more 
sensitive to the edge strength, and a lower k will lead to less sensitivity. Substitute 
equations (3) and (4) to equation (1), the resultant flow velocity can be calculated. From 
figure 1, we can see that each possible flow direction is examined separately, so the 
component velocity at the considered direction, vi needs to be computed:  

cosiv γ= ⋅v                (5) 

where γ is the angle between the flow direction i and the resultant velocity direction. 
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2.2   Image Forces 

If vi ≤ 0, the contour element will not flow to the corresponding direction i. Otherwise, 
the movement decision given by equation (2) should be carried out, during which the 
image force is needed.  

The gradient of an edge response map is often defined as the potential force in active 
contour methods since it gives rise to vectors pointing to the edge lines [3]. This is also 
used here. The force is large only in the immediate vicinity of edges and always 
pointing towards them. The second property means that the forces at two sides of an 
edge have opposite directions. Thus it will attract water elements onto edges and pre-
vent overflow. The potential force scalar acting on the contour element starting from 
position (xc, yc) and flowing toward target position (xt, yt) is given by:  

, [ ( , )]cost tP iF x y β= ∇E                   (6) 

where ∇E is the gradient of the edge map and β is the angle between the gradient and 
the direction i pointing from (xc, yc) to (xt, yt). The gradient of edges at the target posi-
tion rather than that at the considered water contour position is defined as the potential 
force because the image force is presumed to act only during the second stage of flow 
where the element has left the contour and is moving to the target position.  

The forces defined above work well as long as the gradient of edges pointing to the 
boundary is correct and meaningful. However, as with corners, the gradient can 
sometimes provide useless or even incorrect information. Unlike the method used in 
the inflation force [2] and T-snakes [7], where the evolution is turned off when the 
intensity is bigger than some threshold, we propose a pixel-wise regional statistics 
based image force. The statistics of the region inside and outside the contour are con-
sidered respectively and thus yield a new image force: 
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+ −
I I       (7) 

where subscripts “int” and “ext” denote inner and outer parts of the water, respectively; 
μ and n are the mean intensity and number of pixels of each area, separately; I is the 
original image. The equation is deduced from the Mumford-Shah functional [6]:  

( ) ( )1 2

2 2( ) ( ) | ( , ) | | ( , ) |inside C outside Cint extF C F C I x y I x yμ μ− + −∫ ∫+ =       (8) 

where C is the closed evolving curve. If we assume C0 is the real boundary of the object 
in the image, then when C fits C0, the term will achieve the minimum. Instead of 
globally minimizing the term as in [6], we obtain equation (9) by looking at the change 
of the total sum given by single movement of the water element. If an image pixel is 
flooded by water, the statistics of the two areas (water and non-water) will change and 
are given by equation (9). The derivation has been shown in [13, 14].  

Edge-based forces provide a good localization of the contour near the real bounda-
ries but have limited capture range whilst region-based forces have a large basin of 
attraction and relatively low detection accuracy. A convex combination method is 
chosen to unify the two functionals:  



 Image and Volume Segmentation by Water Flow 67 

, ,(1 )i P i S iF F Fα α= + −           (9) 

where all terms are scalar quantities, and α (0≤α≤1) is determined by the user to control 
the balance between them.  

2.3   Final Movement Decision 

If the scalar image force is not less than zero, then J given by equation (2) must be 
positive (because the initial velocity vi needs to be positive to pass the previous decision 
process as shown in figure 1). Since only the sign of J is needed in this final deci-
sion-making step, the exact value of J need not be calculated in this case and the ele-
ment will be able to flow to the target position. If the scalar image force, however, is 
negative (resistant force), equation (2) must be calculated to see if the kinetic energy is 
sufficient to overcome the resistant force. As the exact value of J is still unnecessary to 
compute, equation (2) can be simplified  

2
i iJ Fvλ= +         (10) 

where λ is a regularization parameter set by users which controls the tradeoff between 
the two energy terms. It can be considered as the combination of mass m and dis-
placement S. Its value reflects smoothing of image noise. For example, more noise 
requires larger λ. The sign of J from equation (10) then determines whether the con-
sidered element can flow to the target position at direction i. 

2.4   Three Dimensional Water Flow Model 

The extension of the water flow model to 3-D is very straightforward and natural be-
cause the physical water flow process is just three dimensional. Still, assume one voxel 
of the volume matrix represents one basic water element, and define the water elements 
adjacent to dry areas as surface elements under certain connectivity (here the 
26-connectivity is chosen). Now the forces acting on surface elements are of interest.  

The implementation process is exactly the same as the one shown in figure 1. The 
difference is that now the factors discussed above need to be extended to 3-D. Equation 
(3) is again used to calculate the total driving forces given that the position vectors r’s 
are three dimensional. The definition of flow resistance is also unchanged, provided 
that the edge / gradient operator used is extended to 3-D. Simply defining the image 
force functions given by equations (6), (7) and hence (9) in Ω⊂ R3, the same equations 
then can be used to calculate the 3-D force functionals.  

3   Experimental Results 

The new technique is applied to both synthetic and natural images, and is evaluated 
both qualitatively and quantitatively.  

3.1   Synthetic Images  

First, the goodness of analogy to water flow is examined. Figure 2 indicates water 
flowing in a cube-like object with and without adhesive force. The evolution is 
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                            (a) without adhesion         (b) with adhesion 

   
                            (c) without adhesion          (d) with adhesion 

Fig. 2. Imitating water flowing inside a tube-like course with a narrow branch 

initialized at the left end of the pipe. We can see that the water stops at the interior side 
of the step edge and the front forms a shape which is similar to that observed on natu-
rally flowing water. Figures 2(a) and (b) have slightly different front shapes – the two 
edges of the water flow faster due to the effect of adhesive forces. The adhesion also 
helps flow into narrow branches, as indicated in figure 2(d). Without the adhesive 
force, the surface tension will bridge the entrance of the very narrow branch and thus 
the water cannot enter it, as shown in figure 2(c).  

Introducing the region-based force functional enables the operator to detect objects 
with weak boundaries, as shown in figure 3. The region-based force will stop the flow 
even if there is no marked edge response. The segmentation result here is mainly de-
termined by the value of α.  

To assess the immunity to noise, a quantitative performance evaluation is also per-
formed. The level set method based on regional statistics [6] is chosen for comparison. 
The test image is generated so that the ground truth segmentation result can be com-
pared. The shape of the considered object is designed as a circle with a boundary 
concavity to increase the detection difficulty. Different levels of Gaussian and Impul-
sive noise are added. The mean square error (MSE) is used to measure the performance 
under noise. 

2
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∑=         (11) 

where II and ID are the number of ideal and detected contour points respectively and dk 
is the distance between the kth detected contour point and the nearest ideal point. The  

 

    

Fig. 3. Segmentation of the object with weak-contrasted boundaries (α=0) 
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quantitative results are shown by figure 4(a) and (b). For both noise, the performance of 
the water flow model is markedly better than the level set operator especially when the 
noise contamination is severe (SNR less than 10dB). The performance superiority of 
the water operator under noisy conditions is further illustrated qualitati- vely by the 
segmentation results for Gaussian noise (SNR: 13.69) and impulsive noise (SNR: 
11.81), see figure 4(c) to (f). This robustness to noise is desirable for many practical 
applications like medical image segmentation.  

 

(a)         (b) 

    

(c) LS (MSE: 0.83)   (d) WF (MSE: 0.13)    (e) LS (MSE: 1.02)    (f) WF (MSE: 0.31) 

Fig. 4. Quantitative evaluation and detection examples for level set method (LS) and water flow 
operator (WF), left for Gaussian noise and right for Impulsive noise  

3.2   Natural Images 

Natural images with complex shape and topology are also assessed. Figure 5 shows the 
result for the image of a river delta with different parameters, where the river is the 
target object. It is suited to performance evaluation since gaps and “weak” edges exist 
in the image. One example is the upper part of the river, where boundaries are blurred 
and irregular. There are also inhomogeneous areas inside the river, which are small 
islands and have lower intensity. Our water flow based operator can overcome these 
problems. As shown in figure 5(a), a reasonably accurate and detailed contour of the 
river is detected. At the upper area, the very weak boundaries are also detected. This is 
achieved by using high value of k in equation (4) that gives the operator a high sensi-
tivity to edges. The contour is relatively smooth by virtue of surface tension. The flu-
idity leading to topological adaptability is shown well by successful flow to the 
branches at the lower area. Most of them are detected except failure at several narrow 
branches. The barriers are caused either by natural irregularities inside them or noise. 
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(a) α=0.5, λ=1, k=50 

 
(b) α=0.5, λ=1, k=0 

Fig. 5. Water-flow detection results for river delta photo with different parameters: increased λ 
reduces the significance of image forces, and smaller k makes flow less sensitive to edges, 
therefore the detail detection level is lower in (b)  

Different initializations inside the river were tried and with the same parameters 
chosen, the results are almost the same, as expected. The operator is insensitive to the 
source positions. By changing the parameters, however, some alternative results can be 
achieved. For example, figure 5(b) shows a segmentation of the whole basin of the 
river. It is analogy to a flood from the river. The water floods the original channels and 
stops at the relatively high regions. This shows the possibility of achieving different 
level of detail just by altering some parameters.  

The new water flow model is also applied to segment the complex and variable 
anatomical features in medical images that typically have limited quality and are often 
contaminated by noise. Figure 6 presents the example results for several MR images. 
The water sources are all set inside the object of interest and parameter are chosen as 
k=20, α=0.5, λ=1. The resultant contours are relatively smooth by virtue of surface  
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(a)        (b)       (c) 

Fig.6. Segmentation results in real medical images: a) brain in a sagittal MR image, b) carotid 
artery in a MR carotid MRA image and, c) grey/white matter interface in MR brain image slice 

tension. The operator can find weak-contrasted boundaries as shown by figure 6(a) 
where the indistinct interface between the brain and the spine is detected. This is achi- 
eved by combining a high value of k that gives the operator a high sensitivity to edge 
response and the region-based forces. The fluidity of water leads to both topological 
adaptability and geometrical flexibility, and the capillary force assists in detecting 
narrow tube-like features. Figure 6(b) and (c) illustrate those – the complex structures 
and irregular branches are segmented successfully.  

Retinal vessel segmentation plays a vital role in medical imaging since it is needed 
in many diagnoses like diabetic retinopathy and hypertension. The irregular and com-
plex shape of vessels requires the vessel detector to be free of topology and geometry. 
Furthermore, digital eye fundus image often have problems like low resolution, bad 
quality and imaging noise. The water flow model is a natural choice. Figure 7 shows the 
segmentation results. Multiple initializations/water sources are set inside the vessel  
 

  

(a) (b) 

Fig. 7. Segmenting vessels in retinal images with low resolution and quality (k=50, α=0.5, λ=1) 
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structures to lighten the problems caused by gaps on the vessels. In figure 7(a), multiple 
flows of water merged, leading to a single vessel structure. In figure 7(b), some water 
flows merged and some remained separated. This can be improved by post-processes 
like gap-linking techniques.  

 

(a) 

   
(b)        (c) 

Fig. 8. An example of the MRI volume segmentation by 3-D water flow analogy: a) the water 
flow model segments the lateral ventricles of brain; b) – c) cross-sections of the results  

3.3   Medical Images Volume Segmentation 

The 3-D water flow model is expected to have comparative performance in volume 
segmentation. We have applied our 3-D water model to a variety of medical images so 
as to segment anatomical structures with complex shapes and topologies. Figure 8 
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presents a typical example where the model is applied to a 181×217×181 MR image 
volume of a human brain. The water source is set inside the lateral ventricles and the 
parameters are set at k=5, α=0.5, λ=1. The operator detects most parts of the lateral 
ventricles. Two cross-sections of the fitted model are also shown in figure 8.  

4   Conclusions  

This paper introduces a new general framework for image segmentation based on a 
paradigm of water flow. The operator successfully realizes the key attributes of flow 
process under the structure of force field generation. The resistance given by images is 
defined by a combination of object boundary and regional information. The problems 
of boundary concavities and topological changes are settled whist the attractive feature 
of snakes, the smoothness of the evolving contour, is achieved. Those are approved by 
the results on synthetic and real images. Good noise immunity is justified both quan-
titatively. Besides, the complexity of the algorithm is relatively low. Therefore the 
method is expected to be of potential use in practical areas like medical imaging and 
remote sensing where target objects are often complex shapes corrupted by noise. A 
3-D version of the operator is also defined and implemented, and is applied to the 
medical volume segmentation area. The algorithm here uses the simple edge potential 
forces. In the future we seek to embody more refined edge detectors [15] or new force 
functionals like GVF [3] into the water flow based framework.  
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