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Abstract 

Segmentation is an important first step in many computer vision applications. 

The identification of key regions within an image or video allows for a higher level 

analysis of the media content. This thesis explores the application of this low level 

process to the monitoring of human performance. In such a context, a proposed 

segmentation algorithm would be required to impose a minimum of constraints in order 

to assure the integrity of the performance and the proper transfer of key data to higher 

level analysis components. 

Classical approaches to the segmentation problem either make assumptions on the 

content of the media or impose unreasonable constraints on their targets and 

environments. In doing so, the integrity of performance measurements cannot be assured 

and semantic interpretation therefore becomes skewed. The method presented within this 

thesis allows for unconstrained environments by using a spatiotemporal colour-texture 

segmentation routine that represents the media content as a set of homogenous texture 

regions. The routine is assisted by a non-parametric clustering algorithm in order to 

produce an initial colour-texture representation. The regions obtained from this 

algorithm undergo a merging and tracking process in order to produce a final segmented 

representation of a target. Experimental results reveal that the system is robust for 

complex environments and provides several advantages over current segmentation 

processes. 
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Chapter 1 Introduction 

The following chapter introduces the work and research done within this thesis on 

the motion capture of human targets within unconstrained environments. The context in 

which this research has been undertaken gives perspective on the importance this work 

has on the pedagogical and the computer vision communities. The motivations and 

challenges associated to this work are also described and pave the way to the introduction 

of a newly developed framework which attempts to address the issue at hand. 

1.1 Context 

Despite recent advancements in information technology, very few techniques 

have been proposed that would allow for the robust capture of motion involved in human 

performance without imposing constraints on the environments in which they are 

executed. While several commercial and academic research tools have dealt with the 

problem of motion capture, often called MoCap, few have been able to provide the 

necessary information for a complete evaluation and comparison of gestures involved 

within a performance. When taken in the context of athletics, ergonomics or musical 

performance, a tool such as this could potentially provide the means with which chronic 

stress injuries could be observed, analysed and corrected before they became a serious 

problem. The application of this technique can be extended into the field of pedagogy to 

provide quantitative measurements on performance and allow observation of the 

evolution of habits and practices involved within the learning process. 
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Current techniques involving motion capture rely heavily on active sensor 

technologies in order to record gestures executed by performers. These sensors are often 

encumbering devices that inhibit the natural movement of performers and thus 

compromise the integrity and accuracy of the very motions they are acquiring. The 

environments in which these sensors can operate must also be controlled or may 

introduce error in the acquisition process. These technologies are typically costly and 

tedious to setup, making their use limited at best. This research uses the term markerless 

[1] in order to indicate a technique that does not require any form of physical apparatus or 

limiting visual cue to perform motion capture. 

The research introduced by this thesis stems from a multi-disciplinary effort that 

aims to bring together professionals from the fields of information technology and piano 

pedagogy in order to advance current motion capture technology by means of passive 

techniques. Ultimately the goal of this research is to provide the means with which a 

musician's movements can be captured without any direct interaction with the individual 

or his environment. This would allow pianists to perform in day-to-day environments, 

without the need to wear sensors or markers, thus allowing their performance to be 

uncompromised. These day-to-day environments, referred to as unconstrained 

environments within this work, are free of any type of manipulations that may have been 

done in order to simplify the motion capture process. 

Within the field of professional pianists, the impact of injuries related to posturing 

and motion is quite severe. The current injury rates for professional adult pianists vary 

from 39% to 47%; for students the rate is lower, but still significant at 17% [2]. These 

injuries often result in professionals having to seek medical treatment and incur a lost of 
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income, often compensated by a shift in career focus. Medical costs associated to the 

type of musculoskeletal disorders described here can climb up to several thousand dollars 

per year for an individual. With an estimated 100 000 students graduating from musical 

schools within the United States and Canada every year [2], the need to provide music 

professionals with better injury prevention instruments is obvious. 

1.2 Motivations 

Recently there has been significant advancement in the field of computer vision 

techniques. However, none have yet addressed the complex problem faced here without 

having to impose unreasonable constraints upon musicians or athletes and their 

environments. Many techniques in the field of motion capture using passive sensors still 

rely on contrasting backgrounds or even assumptions on the motion and complexity of 

the scene. These impositions yield an environment that is foreign to a performer and can 

potentially compromise the integrity of his actions, leading the performer to behave 

differently than he would in a more comfortable environment. The limitations of such 

techniques may also obfuscate key performance markers through the application of 

arbitrary data representations or manipulations. 

Deng et al. [3] have proposed a segmentation technique which not only relies on 

colour information but also on texture data in order to cut a scene into semantic regions. 

While the technique was proven efficient for the segmentation of real world scenes, it 

suffers from several shortcomings and often imposes assumptions on data prior to 

manipulations. Their technique is also known to over-segment and, while the authors 

have proposed a colour histogram based merging process, it fails to take into account 
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potential and yet important edges between regions. This thesis uses this technique as a 

starting point, improves upon the shortcomings of the original ideas and applies the 

resulting scheme to the context of human segmentation in unconstrained environments. 

1.3 Challenges 

The goal of this framework is to allow performers to conduct their activity in an 

environment that is familiar to them. In the context of piano playing the described 

environments could be classrooms, concert halls or even home studios. Identification or 

tracking markers also need to be avoided since they may inhibit natural movement; these 

include sensor devices or constraints on attire. The chosen process should even go as far 

as allowing single target segmentation when the performance is being assisted by another 

person. This is particularly relevant in pedagogical contexts where a student may be 

performing alongside an instructor. 

Severe algorithmic challenges are also present and need to be addressed. Since 

the motion capture is strictly based on visual representation, the chosen algorithm must 

allow for a certain level of robustness whenever scene changes occur. These changes 

may be subtle lighting changes, shadowing effects, sudden movements or even lack of 

movements. The list of visual challenges goes on and while the work done here is by no 

means a panacea, it should attempt at handling some of the major difficulties often 

encountered for this context. 
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1.4 Objectives 

This work attempts to fulfill the following set of objectives for the segmentation 

of targets within unconstrained environments using passive computer vision and pattern 

recognition techniques: 

1) Develop a process that does not, by any means, interfere with the performance or 

natural behaviour of the targets. The process should allow humans to perform in 

day-to-day environments uninhibited by outside influences. 

2) Use techniques that manipulate visual data with a minimal set of assumptions 

with regards to their representation or distribution. Parametric models or specific 

data representations may lead to incorrect performance evaluations brought on by 

faulty assumptions or misrepresentations. 

3) Identify and track human body parts and key motions exhibited throughout a 

performance using visual data only. 

1.5 Proposed Framework 

The goal of this research is to provide the foundation framework to a more 

complete motion capture system that does not interfere with the movement of a target. A 

purely passive system should rely strictly on visual data in order to capture motion. A 

multi-camera setup with sophisticated calibration algorithms provide the means with 
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which three-dimensional data can be computed. However, the first step in motion 

capture for the performance evaluation of a musician is the identification of the target 

from within the scene. This type of visual identification is commonly known as 

segmentation and is used here as the basis for the proposed framework. A segmentation 

algorithm is used in conjunction with several other techniques to allow not only the 

identification of the target but its tracking throughout a performance. 

The following thesis presents a framework capable of region-based segmentation 

of targets within complex environments while imposing a minimum of constraints. The 

framework can be described in terms of five key modules that allow the creation of 

semantically significant regions that, when amalgamated in a meaningful way, allow for 

the proper segmentation of targets within a video or image content. The first module uses 

a non-parametric clustering algorithm in order to perform an initial analysis of colours. 

The module yields a classification for each pixel colour present within the media content. 

This classification for every pixel can also be interpreted as a colour-texture 

representation of the media. The second module computes the set of membership values 

each pixel has with the various classes. By taking into consideration the fact that a pixel 

colour cannot always be strictly classified within a specific colour group, the framework 

is able to adapt its colour-texture representation to take into account gradient colours. 

The third module performs an analysis on the final colour-texture representation in order 

to extract homogenous regions. These regions are identified based on an iterative and 

hierarchical methodology and are said to be homogeneous in the sense that they are local 

regions having a consistent colour-texture pattern. The fourth module attempts to merge 

similar adjacent regions based on colour and edge criteria. The merging process is used 
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to avoid potential over-segmentation problems. The fifth and final module tracks the 

regions produced between media sections. The tracking process takes advantage of the 

high frame rate of video capture devices in order to identify correspondences based on 

overlap. The segmentation process is performed on an overall image or frame and 

produces regions for the entire media content. The onus of initially identifying which 

regions are parts of a surveyed target is put on a human operator. The identification 

requires intimate knowledge of key performance markers for any given activity. Once 

the identification is made, it can be maintained throughout a sequence by means of the 

presented framework. 

The framework presented here is applied to the context of human target 

segmentation in real world scenes; however it can be generalized for a single image or 

even multi-dimensional data sets. The process is intended for unconstrained 

environments and uses a minimal set of assumptions. Sensor quality and scene 

representation may affect the outcome of the segmentation in a number of different ways. 

1.6 Organization 

This thesis is organized into six chapters. Chapter One introduces the work and 

research done for this project. Chapter Two reviews some of the important and most 

recent techniques relevant to the field of motion capture and segmentation. Chapter 

Three proposes an experimental comparison of some of the techniques discussed in the 

literature and puts a focus on their shortcomings within unconstrained environments and 

for the context presented here. Chapter Four presents an in-depth description of the 

proposed segmentation framework. It highlights the major procedures involved in the 
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segmentation and tracking as well as describes how the technique has been modified and 

enhanced from the original algorithm proposed by Deng et al. [3]. Chapter Five 

discusses the experimental setup of the framework and its performance. Chapter Six 

provides conclusions and a look at future work. 
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Chapter 2 Literature Review 

Motion capture is a complex task often achieved through the use of sophisticated 

tracking sensors and environmental setups. The first portion of this chapter will give a 

short review on some of the traditional motion capture approaches. This review will 

cover active sensing techniques and highlight the many shortcomings and constraints 

these techniques must impose in order to succeed. The second portion of this chapter will 

strictly review passive techniques and in particular focus on segmentation algorithms that 

can be used to achieve the motion capture. 

2.1 Traditional Motion Capture Techniques 

As previously mentioned, many of the current motion capture techniques used 

today by professionals require the use of encumbering sensor devices or impractical 

environmental setups. The two most popular methods of active sensing include the use 

of magnetic and optical markers. Each of these markers has its own advantages and 

disadvantages, their common property being that they must be secured onto the moving 

target. These approaches use an active sensing methodology in order to extract three 

dimensional positional data regarding the human target. 

The magnetic trackers can be used to capture motion by projecting magnetic 

fields. These fields are measured by a stationary sensor able to interpret the signals into 

positional information. The size of the actual markers makes it difficult to acquire a large 

number of data points and incur a lower resolution motion capture. These sensors must 
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also rely on cabling in order to transmit information and further inhibit natural motion. 

Typical magnetic systems operate at a frequency of approximately 100 Hz and are mostly 

appropriate for larger movements [4]. Several issues with regards to measurement errors 

are present with this type of capture [5]. Cross-talk between sensors, influence from 

external magnetic fields and marker design [6] can all contribute to a loss in precision. 

This type of motion capture is best suited for large general movements and recovery of 

three-dimensional data. 

In the case of optical trackers, motion capture is performed through the 

segmentation of key colour or optical markers placed upon a target. Marker size can be 

quite small and allow a very fine resolution of motion capture. Typical systems operate 

at a frequency of approximately 240 Hz thus allowing very fine movements to be 

observed [4]. Due to the large number of sensors that have to be positioned in order to 

acquire small movements, this approach usually interferes with the target's performance. 

The VICON [7] system, popular in medical applications and gait analysis is a perfect 

example of an optical based motion capture system. This system uses specialized 

reflective orbs that are placed on the target; cameras sensitive to the reflectance emitted 

by these orbs are used in order to acquire the data. With the help of a multi-camera setup 

and a calibration procedure, three dimensional positional data can be reconstructed. 

Other systems such as the one proposed by Drouin et al. [8] do not require specialized 

materials in order to acquire data. In their technique, brightly coloured balls are secured 

onto the target and traditional segmentation algorithms are used. This however requires 

that the targets wear very dark clothing in order to create a contrast with these markers. 

10 



The motion capture techniques reviewed here provide full three dimensional 

positional data at the cost of comfort and simplicity. While their ability to correctly 

acquire movement data is not an issue, their capacity for non-interfering with a 

performance is questionable. The use of either magnetic or optical markers severely 

restricts the natural movement of a performer and cannot be used for the context 

considered here. 

2.2 Motion Capture Segmentation Techniques 

Segmentation is the foundation to many computer vision applications and it has 

been explored for many years and in multiple contexts. As such, there are numerous 

methodologies available and this section will give an overview of those most pertinent to 

the field of motion capture. The techniques presented here only acquire motion data in 

two dimensions. A multi-camera setup with sophisticated calibration and reconstruction 

algorithms can be used in order to obtain the full three dimensional information. The 

proposed techniques are broken down into the following categories: background 

modelling, contour-based, region-based, statistical methods, and others. The 

classification of segmentation methodologies is difficult due to the fact that many of them 

have been devised for very specific applications and do not necessarily correspond to one 

specific category. The review also makes the distinction between sequential image and 

video block segmentation techniques. 
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2.2.1 Sequential Image Techniques 

The field of sequential image techniques has been explored thoroughly for a 

variety of applications. These techniques achieve segmentation on a single image or 

frame at a given time. In the case of a video, the frames would be segmented 

individually and in sequence. It should be noted that despite the method's sequential 

nature, a priori information can be gathered in order to improve the results as the 

sequence progresses. Computational simplicity and minimal memory requirements are 

key advantages to these techniques. 

2.2.1.1 Background Modelling Methods 

The first set of methods reviewed stems from the classical background 

differentiation and threshold approaches to segmentation. Background differentiation 

implies that the objects that compose a scene can be separated into two categories: 

objects of interest or those that belong to the foreground and trivial non-important objects 

belonging to the background. This separation is achieved by modelling the background 

component. The modelling process will typically define the background either by using a 

parametric representation or an adaptive image created using some initial assumptions. 

The creation of a parametric criterion, or threshold, can be done using a trial-and-error 

methodology. An alternate method of creating this threshold would be through the 

acquisition and analysis of current scene data. 

One of the more established threshold approaches was proposed by Otsu [9]. The 

technique attempts to identify the sections of a histogram that belong to the foreground 

and background. These histograms are constructed using grey-level images under the 
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assumption that these images have a distinct bimodal distribution. This technique could 

equally be categorized as a statistical method since it performs an analysis on the image 

histograms in order to determine how best to segment colour. Due to its strict foreground 

and background classification however, it is more appropriately described in this section. 

Unfortunately this approach is dated and has several key limitations. Not only does the 

use of grey-level images severely impede the distinctiveness of objects contained within 

some image sections, but the assumption that an image histogram would follow a 

bimodal distribution is inappropriate for complex scenes where a vast number of colours 

and textures are present. 

In the case of background modeling techniques one of the most successful 

algorithms was introduced by Stauffer and Grimson [10]. In their technique the authors 

fully acknowledge the reality that foreground representation cannot entirely be satisfied 

using a parametric methodology and that the chosen algorithm must also account for the 

dynamic nature of colours within video sequences. Instead of opting for the global model 

of a background, the authors chose to model the colour behaviour for each individual 

pixel. The model is created using Gaussian statistics in which the mean and variance of a 

distribution is determined by a pixel's mean colour and variation through time. Each 

pixel can be modelled using several Gaussian distributions depicting its various colour 

behaviours as seen in Figure 2.1. As new images are interpreted, the pixel values are 

analyzed against current Gaussian distributions to identify which best describes the 

current behaviour. Once identification is made, the distributions in question are updated 

using an Expectation-Maximization (EM) algorithm. If a set of image pixels have re-

occurring colour patterns, the Gaussian distributions for these patterns will gain 
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importance in the form of a weight indicator. Distributions having sufficient weight are 

considered redundant colours for a given pixel and are assumed to indicate a background 

colour. 

g 
a J 
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re 

Figure 2.1 - Per Pixel Representation of Weighted Gaussian Distributions 

Wren etal. [11] have shown that this kind of background modelling is feasible for 

the tracking of human bodies in scenes having good to ideal lighting conditions, low 

temporal noise and well defined motion patterns. Several authors have proposed 

variations and improvements to this type of background modelling. Horprasert et al. [12] 

introduced a variant to this technique where shadows are identified in order to reduce the 

number of false-positive segmented pixels. The detection takes into account both the 

chromatic and brightness aspects of a pixel's colour; if the brightness is reduced but the 

chromaticity remains relatively similar, the pixel is considered shadow and is not falsely 

segmented. In the case of Atev et al. [13] the technique is modified to take into account 
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sudden brightness and contrast changes. These modifications, while novel in concept, are 

mostly suited to applications relating to traffic monitoring. 

The use of Mixture of Gaussians for background modelling has several 

shortcomings for the type of application considered in this research work. Its capacity to 

learn background and foreground models relies heavily on the motion of foreground 

objects. When tracking musicians, movements performed by the subject can be quite 

subtle causing the colours that make up each individual pixel to change rather 

infrequently and would ultimately be classified as a background component. This 

problem represents a serious challenge in the application of the technique. The next 

difficulty in applying this algorithm stems from its initialization procedure. While it is 

not necessary to initialize the system without any foreground objects, not doing so would 

mean that the modelling time of the background would be increased significantly. Newly 

revealed background sections would register as a foreground object since the system 

would not have spent the required amount of time learning the particular distributions of 

that section. More on the shortcomings of this type of technique will be discussed in 

Chapter 3. 

2.2.1.2 Contour-Based Methods 

An important class of segmentation techniques includes those that rely on image 

edge information in order to delineate objects. One of the most popular edge-based 

techniques are Snakes (or active contours), introduced by Kass et al. [14]. The goal of 

this technique is to deform a contour so that it matches the boundary of a given object. 

The deformation of the contour is driven by an iterative energy minimization procedure 
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that allows contour curves to converge on a target's edges. The energy function involved 

is designed in such a way that its local minima are achieved when the contour 

corresponds to the bounding edges of the object being examined. 

The technique has also been extended for the segmentation of video objects in 

[15]. In this case, the contours are projected onto subsequent frames using a rigid body 

motion estimation process after which they are re-adapted to the edge information of the 

object. The computational complexity is quite high and as is indicated by the authors, the 

technique is not well suited for large non-rigid movements. 

Active contours are typically not appropriate for situations where objects may be 

partially occluded or where reliable edge-information is difficult to obtain. The former 

problem was resolved by Peterfreund [16] with the introduction of Kalman Snakes. 

Using a combination of optical flow measurements along with a Kalman filter, the 

contours were made resilient to partial occlusion effects. In the case of unreliable edge-

information, Sun et ah [17] proposed the use of a Veterbi search algorithm in order to 

find the best possible positioning of key points along the boundary curve. For the 

complex scenes used in this research as well as the potential for a large dynamic range of 

motions, contour-based methods are not ideal. 

2.2.1.3 Region-Based Methods 

Another popular approach to image segmentation consists in dividing an image 

into coherent regions that could be used to represent a given object. These techniques 

perform an analysis of the data space in order to produce a simplified grouped 

representation of the data. The union of these regions makes the process of segmentation 
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and tracking much simpler. The means by which an algorithm decides to group data 

varies from technique to technique. 

Vincent and Soille [18] introduced a technique based on an immersion process 

analogy that computes watersheds in greyscale images. The authors simulated the 

flooding of water within an image in order to produce so-called water basins 

corresponding to local image minima. Watersheds are defined as the boundaries between 

these minima. The method is efficient enough that it has become the foundation to 

multiple popular segmentation techniques [19]-[23]. Wang [19] uses the watershed 

technique for a video segmentation algorithm where an initial region partition of the 

video frames is obtained based on a multi-scale gradient image. In other words, the 

watershed algorithm is driven by image edges. To produce a more coherent partitioning 

throughout the video, Wang uses a motion based merging process to bring together 

similar regions. Motion estimation is also used to project these regions into subsequent 

frames for the purpose of finding correspondences between regions. In the case of Shien 

et al. [20] the region tracking process is driven by modifying current regions thereby 

speeding up the process since it no longer necessitates the computation of the watershed 

algorithm in later video frames. Tsai et al. [21] introduce the concept of 3D watershed 

volumes. These volumes are generated by amalgamating several regions together which 

are found to correspond between image frames. The spatiotemporal relationship between 

these volumes is computed in order to merge together similar volumes and extract 

pertinent video objects. 

An important issue occurring with the use of the watershed technique is that it is 

prone to severe over-segmentation. The use of gradient data in order to produce regions 
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in complex images yields a plethora of regions that would otherwise be merged together. 

In Haris et al. [22], this issue is addressed with the introduction of a Region Adjacency 

Graph (RAG). RAG is the means by which the region merging process can be 

represented. A graph is constructed where its nodes are represented by the image regions 

and its vertices are linking together adjacent regions. The traversal cost of a vertex is 

given by a merging metric; typically a difference in region features such as colour. The 

minimum cost edge within the graph is found and used to merge together similar regions. 

Once the merge is completed, the graph is updated to reflect the new segmentation 

configuration. The process results in an iterative means in which similar regions can be 

combined in order to obtain a final segmentation. Hernandez et al. [23] take this method 

one step further by introducing a joint region merging criterion. The criterion combines 

both colour and edge information to produce more relevant graph vertices, thereby 

combining similarly coloured areas while maintaining edge integrity throughout the 

process. 

Other clustering-based methods such as that of Chen et al. [24] opt to produce 

regions based on the similarity of pixel properties. In their technique the authors group 

together pixels based on an algorithm derived from a modified £-means (see Appendix 

A). The original modification was proposed by Pappas [25]. The authors acknowledge 

the lack of spatial constraint in the application of the &-means and address this issue 

through the use of a Gibbs random field model. This Adaptive Clustering Algorithm 

(ACA) allows for the grouping of pixels based not only on their colour similarity but also 

on their connectivity. Following a texture analysis based on predefined filters a final 

segmentation is derived. The advantage of this technique is the fact that the clustering 
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algorithm allows for gradient colours. The disadvantage however is that if texture 

regions cannot be well represented or interpreted through the selected filters, the method 

may fail in properly producing accurate colour-texture regions. 

Another technique used in the segmentation of colour-texture regions is proposed 

by Deng et at. [3]. This technique, named JSEG by its authors, constitutes the basis for 

the framework proposed within this thesis. In their work, image data undergoes an initial 

clustering based on their Peer Group Filtering method [26]. This clustering methodology 

is very similar to the &-means but is preceded by a filtering process that blurs pixel 

colours based on Gaussian statistics while trying to conserve edge integrity and remove 

impulsive noise. No attempt is made to spatially constrain the clustering process. Instead 

the authors take advantage of the spread nature of the clusters and choose to interpret this 

as its own colour-texture representation of the image. The colour-texture data is 

interpreted in order to measure points of local homogeneity. This homogeneity is 

represented by what the authors call the /-value, a measure of spatial cluster distribution. 

The set of 7-values for an image in turn becomes a gradient representation of not only 

edge information, but also of colour-texture boundaries. Using a novel seed growing 

algorithm, regions can be produced based on this gradient representation. 

Despite the fact that JSEG was shown to be useful in fields of segmentation other 

than real life scenes, such as satellite imagery [27], several points of improvements were 

brought up by Wang et al. [28]. Their first observation was the fact that the clustering 

method used in the technique was still strongly based on the &-means algorithm which 

heavily relies on a parametric description of the data. In the case of real world scenes, 

colours are not always known to follow specific statistical distributions. For this reason 
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Wang et al. propose the use of a non-parametric clustering technique called the Fast 

Adaptive Mean-Shift initially introduced by Georgescu et al. [29]. Another suggested 

improvement was the modified representation of /-values that the authors called Soft J-

Values. Clustered pixels may have properties akin to more than just a single cluster 

group; in fact, a membership value of a given pixel can be computed for each of the 

cluster groups. Wang et al. produce a set of Soft J-Values that are a weighted sum of 

these membership computations. This new weighted clustering allows for 7-values to 

have smoother transitions between regions connected with gradient colours. This 

resolves many of JSEG's most important shortcomings. 

2.2.1.4 Statistical Methods 

Many techniques rely on the inherent statistical properties of the information 

found within an image in order to accurately segment objects of interest. Similar to the 

background modelling techniques introduced earlier, the exception with these techniques 

is that they attempt to model actual objects rather than background-foreground 

relationships. 

Colour is an important and powerful cue in identifying objects, the advantage of 

using colour characteristics stems from the fact that they are highly invariant to most 

transformations [30]. That is, whether an object rotates, translates or deforms in some 

way, the colours that comprise it remain approximately the same. Many techniques have 

taken advantage of this fact and have used colour in the segmentation of human skin in 

order to segment faces and hands [30]-[34]. While invariant to most movements, colours 

are highly susceptible to lighting conditions; shadows, sensor errors, light colour 
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temperature and directionality of the light source, all contribute in the way colours are 

represented [32]. Yang et ah [33] have observed that despite environmental conditions, 

skin colours have a tendency to cluster within the RGB colour space. Specifically the 

clustering effect can be modeled using a Gaussian distribution (see Figure 2.2). 

Range of accepted values 

Figure 2.2 - Gaussian Representation of Skin Coloured Pixels 

To mitigate the effects of illumination on the colour distributions, a normalization 

of the RGB tri-stimulus values can be done. Du et al. [34] have defined a 2D Gaussian 

probability function representing the likelihood of a pixel belonging to skin. A threshold 

is applied to the likelihood value to obtain an appropriate representation of skin patches 

within an image. This technique is called a Probabilistic Skin Filter. The challenge with 

this technique is in the initialization of the Gaussian distribution model. While the model 

can be created using a priori knowledge of skin colour, it is still highly dependent on the 

actual skin representation within a sequence. The extension of this type of segmentation 

to other colours comprising a target is questionable. While many have assumed that 
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colours will exhibit a Gaussian-like distribution within an image, this criterion is not 

sufficiently discriminative for proper segmentation. 

Comaniciu and Meer [35] introduced a new method of analysing colour 

distributions based on a non-parametric representation. Their so-called Mean-Shift 

analysis iteratively converges a local data window onto the nearest suitable distribution 

mode. The convergence is achieved through the estimation of the density gradient which, 

in turn, provides a vector pointing toward the direction of the highest distribution 

concentration. A non-parametric interpretation such as this allows colours to have any 

type of distribution and does not impose any constraint to their behaviour. The authors 

have also shown how this type of analysis can lead to a very good segmentation of 

images where colour regions have sufficiently contrasting edges. Several improvements 

have been introduced to the analysis process to allow for variable bandwidth windows 

during the density gradient estimation process as well as optimizing the overall 

performance for high dimensional data [29]. In Bradski [36], Mean-Shift was used in the 

context of a perceptual user interface. Human face segmentation, position and orientation 

were provided using a Mean-Shift convergence where distribution modes were computed 

based on image moments within local windows. Since this modification allowed the 

Mean-Shift procedure to re-adapt its density gradient estimation for every new frame, the 

technique was called the Continuously Adaptive Mean-Shift (CAMSHEFT). The 

CAMSHIFT technique was later extended by Allen et al. [37] to allow the segmentation 

to work for an arbitrary number and types of feature spaces. In their improvement, the 

authors used a histogram back-projection technique [38] to estimate a feature space's 
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density gradient. Despite its efficient design, the Mean-Shift and CAMSHIFT techniques 

are susceptible to the discriminative capabilities of colour analyses or lack thereof. 

Finally, the use of histograms is also an important and classical statistical 

approach to segmentation. They offer an invariant, non-parametric representation of the 

colours of an image region. Swain and Ballard [38] have shown how histograms can be 

used to differentiate objects among different viewpoints. They also introduce the concept 

of histogram back-projection that allows for a probabilistic representation of pixel based 

on histogram data. More recently histograms have grown to encompass other types of 

data than just colour. Schiele and Crowley [39] propose the use of multidimensional 

receptive field histograms. These data representations are based on the local response of 

an image to various operators called receptive fields. An example of such a 

neighbourhood operator includes the use of a Laplacian or gradient operator, the response 

to a Gabor filter and the use of Gaussian derivatives. By amalgamating these responses 

into a multidimensional data representation the authors claim to have a highly 

discriminatory description of an image or object. A discussion is provided within [39] on 

the different comparison methods available to test these discriminatory descriptions. For 

real scene images however, where prior data is unavailable, the selection of receptive 

fields is made ambiguous. Improper selection can yield poor segmentation results or 

divergence whenever image characteristics evolve. Despite this, Pelisson et al. [40] show 

the potential of the overall process by identifying advertisements in sport sequences. 
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2.2.1.5 Other Segmentation Methods 

As mentioned before the categorization of segmentation techniques is made 

difficult due to the number of novel and specialized methods. This section tries to give 

notice to some of the more influential approaches that cannot clearly be associated with 

any of the previous categories. In particular, it looks at methods based on neural 

networks and those relying on feature identification and meshing. 

Over the years, several techniques [41]-[45] have proposed the use of neural 

networks for assisting in the segmentation process. Neural networks employ a large 

number of interconnected processing nodes that perform simple computations. Neural 

networks aim to imitate the biological reasoning capabilities of human beings. Their 

ability to learn and generalize patterns makes them powerful classifiers. Several authors 

[41]-[43] have proposed the use of Multi-Layered Perceptrons (MLPs) in order to classify 

image pixels into appropriate segmentation classes (typically foreground and 

background). In each case the networks are trained using a set of pre-segmented images 

that may or may not contain the object of interest. The major variations between 

techniques involve the choice of image features fed to the input layer of the network. 

McCrae et aL [41] use a simple three-dimensional RGB vector for classification, while 

[42] and [43] suggest the use of more comprehensive input vectors of 9 and 31 

dimensions respectively. The network's ability to segment is highly dependent on the 

available training data and the possible transformations an image may undergo. The 

previously mentioned neural network classifiers are not resilient to any kind of 

environmental changes. The network configurations remain static and do not adapt to 

changes in data representation. Only recently have a few papers proposed adding an 
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adaptability mechanism to neural networks [44] [45]. These techniques rely on complex 

retraining algorithms in order to modify the network in response to a decrease in 

performance. Along with the retraining of the network comes the difficulty in obtaining 

new training data and evaluating current segmentation performance. 

In feature-based segmentation, discriminative key points of an image are 

identified and tracked through each video frame. The Scale-Invariant Feature Tracking 

(SIFT) technique introduced by Lowe [46] can achieve this goal quite successfully. 

There is also a set of techniques such as [47] which map a mesh to feature points in order 

to perform tracking based on feature inter-relationships. In the case of human 

performance evaluation, the set of features which are key indicators of an individual's 

performance may not be known or may be difficult to segment or track. This drawback 

makes feature-based approaches unsuitable for human performance evaluation without 

some kind of known relationship between performance indicative features and segmented 

features. In the case of Shi and Malik [48], the segmentation is interpreted as a graph 

partitioning problem. They introduce the normalized cut criterion which measures both 

the similarity and dissimilarity between groups within the graph. The optimal 

partitioning of this graph is shown to correspond to the solving of a generalized Eigen

value system. Graph construction however, relies on the creation of a set of weights 

between nodes. The authors suggest the use of a probabilistic interpretation of the 

differences in brightness or colour between two nodes. In complex real scene images 

however, colours may exhibit particular textures that should also be taken into 

consideration. 
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2.2.2 Video Block Techniques 

The concept of processing a set of frames in blocks rather than consecutively has 

received an increasing amount of attention. The lack of popularity was, in part, due to 

the high computational cost of processing multiple frames at a time. However, with 

advances in the technology used to perform these operations, video block processing has 

quickly expanded into a viable option for future techniques. The obvious advantage of 

such techniques is the fact that they allow image data to be manipulated across multiple 

frames at once; temporal properties and behaviours can then be observed. Segmentation 

performed on multiple frames at once makes tracking obsolete since the identification is 

being performed dependently of nearby frames. 

Allmen et al. [49] were among the first to introduce this type of multi-frame 

segmentation. Their algorithm relies on what they call dynamic perceptual organization 

groups. They compute and organize together sets of motion through a sequence of 

images in order to provide a higher level representation of objects in a scene. More 

recently Shi and Malik [50] have also introduced a method which achieves segmentation 

by grouping regions of similar motion. This grouping is obtained by extending their 

previous normalized cuts algorithm using graph weights obtained through a probabilistic 

representation of motion. In DeMenthon [51] however, motion is not the main grouping 

criterion. Video block segmentation is done using a modified Mean-Shift approach. The 

algorithm is applied to a 3D volume representation of a video sequence in order to group 

together 7-tuple feature vectors. These vectors include colour motion angle components. 

While proven to be quite effective, the technique is highly computationally expensive 

requiring a hierarchical approach in order to render it feasible. 
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Another interesting entry into these types of techniques consists of the 

modifications that Deng et al. [3] added to their JSEG algorithm in order to allow it to 

segment multiple frames in a batch process. While initially the technique does not lend 

itself very well to video block segmentation, its authors have introduced a supplementary 

temporal segmentation criterion named the //-value. This value represents a measure of 

the temporal disparity among pixel classifications between two subsequent frames 

stacked on top of each other. When seed determination is undergone, intersection with 

seeds in subsequent frames is taken into account to assure a temporal homogeneity. This 

determination takes into consideration the 7rvalue in order to attenuate the influence of 

sections having high temporal disparity. This in fact allows the algorithm to produce a 

segmented video without the need for costly motion analysis. 

2.3 Chapter Summary 

In this chapter an overview of the contributions of several segmentation 

algorithms was presented. Particular distinctions were made among the algorithms that 

are performed on a sequential basis and those that are performed on a video by grouping 

several frames into blocks. The set of single image techniques were roughly categorized 

into background modelling, contour-based, region-based, statistical and other groupings. 

A majority of the algorithms, regardless of their categorization were found to make 

simplistic assumptions relating to the colour composition of the images. In the case of 

background modelling, techniques often relied on the necessity of motion while, in 

contour-based methods, the prominence of edges was the driving factor. Statistical 

methods relied on feature distinctiveness and region techniques seemed to have issues 
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with over-segmentation. Multi-image segmentation techniques gave insight on how the 

process could be achieved by looking at image properties through time. Many of the 

methods still relied on the pervasiveness of motion or made assumptions that limited their 

application for different contexts. 
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Chapter 3 Method Comparisons 

Many of the techniques discussed in the literature review suffer from multiple key 

shortcomings in the context of motion capture in unconstrained environments. In order to 

better illustrate these limitations this chapter illustrates some sample results from trial 

implementations of these techniques. The algorithms chosen for this comparison are 

only a subset of the overall review but include the Mixture of Gaussian, Probabilistic 

Skin Filter, CAMSHIFT and Neural Networks techniques. 

3.1 Mixture of Gaussians 

The first technique presented in this comparison is the Mixture of Gaussian 

algorithm, first introduced by Stauffer and Grimson [10]. As explained within the 

literature review, the technique attempts to model individual pixel behaviours using a 

Gaussian representation. The pixels are given any number of Gaussian models that may 

adequately represent their colour patterns throughout a video. These models evolve 

based on the prevalence of pixel colours. The more frequently a colour appears for a 

given pixel, the more weight is attributed to the corresponding Gaussian model. This 

weight will determine if a model is identified as background or foreground. 

In the trial implementation no consideration was given to the initial background. 

For a truly unconstrained segmentation to occur, restrictions such as static backgrounds 

and assumptions on scene composition cannot be made. The Mixture of Gaussian 

algorithm must therefore rely on its ability to learn background and foreground colour 
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behaviours in order to function. One of the immediate pitfalls in this type of application 

is introduced by the variable duration of a sequence. A performance could last anywhere 

between a few seconds to more than a couple of hours. Learning parameters for the 

proper modelling of colours and their behaviours must be carefully selected in order to 

avoid any foreground-background misrepresentations. A shorter sequence would in fact 

require a faster learning process that would permit background elements to quickly be 

identified. For longer sequences more time can be spent learning these background 

elements provided that the initial correctness of the segmentation is not crucial. 

Consequently, the faster the learning rate, the faster foreground objects must move in 

order to avoid having their own colour behaviours being identified as background. 

Figure 3.1 clearly demonstrates the issues in background learning exhibited by the 

Mixture of Gaussian technique. The background elements that remain static are quickly 

identified through the sequence frames (depicted in black). However, in evaluating 

performance such as piano playing, some foreground elements also exhibit this same 

static behaviour, thus the algorithm interprets these elements as background. This 

phenomenon can be seen along the lower body of the pianist within Figure 3.1. The 

misrepresentation evolves as the sequence goes on to eventually encompass the majority 

of the pianist's lower body, torso and upper arm. Quicker moving elements such as the 

pianist's head and hands remain clearly visible. Initial occlusions in the scene also result 

in segmentation error. Occluded elements are always identified as foreground since their 

colour behaviours have yet to be observed. In a scene where prior background 

information is not available, no guarantee can be made that the occluded elements will 

have sufficient exposure to result in their integration to the background. This issue is 
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observed by the visible background wall surrounding the pianist; the wall becomes un-

occluded as the pianist moves. 

Figure 3.1 - Mixture of Gaussians Progression (four frames over a period of 19 seconds) 

Other problems presented by the Mixture of Gaussians stem from its inability to 

handle subtle lighting changes, the introduction of new objects or the need to distinguish 

between two closely moving objects. In indoor environments there is a high potential for 

light changes to occur. If such a change does in fact happen the algorithm must spend 

time re-learning all the pixel colour behaviours under the new conditions. Some research 

has recently been introduced to mitigate this issue [11]-[13]. In the case where other 

superfluous moving objects may be present or introduced into the scene, the original 

algorithm cannot make a distinction between the key target and these new additions. The 
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ability to distinguish between moving objects requires an additional layer of complexity 

to the overall segmentation. In cases of performance monitoring, trainers, instructors or 

teachers may be present in the scene but are not objects of interest. While a powerful 

means of segmentation, the Mixture of Gaussian approach finds it uses within a confined 

set of applications. Its shortcomings make its application difficult at best for 

unconstrained environments. 

3.2 Probabilistic Skin Filters 

In recent research [30]-[34], multiple applications have used the fact that skin 

tones tend to cluster within the RGB colour space in order to segment human features. 

This colour property is said to follow Gaussian statistics [33]. By constructing an 

appropriate statistical model and applying a threshold to each pixel's membership to this 

model, identification of skin patches can be made. The problem with this approach is in 

the adequate construction of the Gaussian model and the computation of an appropriate 

threshold. 

The trial implementation done within this work used skin colour samples 

extracted throughout the sequence in order to estimate proper variance and mean of a 

Gaussian model that would conform to the skin tone of the pianist. A membership 

threshold was computed through trial and error in order to obtain the best perceivable 

results throughout the sequence. As can be observed in Figure 3.2 much of the skin can 

clearly be segmented using this type of statistical analysis. Skin pixels are depicted in 

white in Figure 3.2. However it does not prevent other colours within the scene to overlap 

with these statistics, thus creating false identification of skin patches. The identification 
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is also heavily dependent on the manner in which the skin has been parameterized, in 

Figure 3.2 both the musician's hand and legs are left unidentified. While steps can be 

taken to reduce the amount of segmentation noise brought upon the application of the 

threshold, in cases such as these the complexity of the noise removal supersedes the 

statistical analysis. Ultimately this type of segmentation may only be appropriate in very 

precise situations where the object of interest is characterized by skin and found in 

somewhat less complex backgrounds. 

Figure 3.2 - Gaussian Skin Colour Representation 

3.3 Continuously Adaptive Mean-Shift 

The techniques compared up to this section have relied on parametric description 

of both the spatial and temporal properties of image colour components. In the 

application of skin filters, research demonstrated that the use of Gaussian models was 

appropriate for that type of segmentation. However, the overlapping colour properties of 

the different elements within a scene make it difficult if not impossible to properly 

segment a complex target such as a human. Comaniciu has introduced a new method of 
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interpreting complex data such as image colour spaces using a non-parametric approach 

[35]. This methodology will be reviewed in-depth within Chapter 4. Building upon this 

analysis, more complex segmentation and tracking algorithms have been introduced. 

This section takes a closer look at the Continuously Adaptive Mean-Shift [36] algorithm 

as well as its application to the segmentation of human targets within unconstrained 

environments. 

The goal of this implementation was to segment multiple user selected areas 

throughout a sequence. These areas were first defined by a human operator as a set of 

rectangular windows at the start of the sequence. A colour histogram is constructed for 

each area and acts as its descriptor for the subsequent frame in the sequence. When an 

area is to be segmented from a new frame, its histogram descriptor is back-projected [38] 

onto the image. Histogram back-projection involves replacing pixel colours with their 

normalized histogram bin value. An image having undergone a histogram back-

projection will result in a probabilistic representation of its colours. The area's window 

is then iteratively converged from its previous position to its new found location. This 

iterative displacement is computed based on the center-of-gravity found within the 

window. Window dimensions and orientations are set using various image moment 

calculations. 

In Figure 3.3 the progression of the CAMSHTFT algorithm can be seen. In the 

initial frame a user has selected to segment the pianist's general torso (depicted by the 

window superimposed in red). The subsequent frames demonstrate the results of a 

histogram back-projection and the final converged region of the window. In the case of 

the histogram back-projection, greyscale values are use to represent the histogram bin 
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values to which pixels belong. While a colour histogram is clearly insufficient to 

uniquely identify the region of interest, it does attribute the general area where the region 

was found with the highest probability. Despite its general correctness, the segmentation 

of these user specified regions quickly degenerates as colour properties of a region evolve 

throughout the sequence. As colour changes or as objects having similar colour 

properties collide, the window convergence process is skewed and may erroneously jump 

from one image element to another. In the sequence above, the initial area window 

jumps from the pianist's torso to the upper arm. This jump is caused by the fact that the 

upper arm adopts colour properties that are similar to the torso while the colour properties 

of this latter element are modified due to local lighting changes brought upon by motion. 

While the algorithm has the capacity to adapt to histogram colour changes over time, this 

adaptability is highly dependent on the slow progress of the change and the histogram's 

ability to uniquely identify a region of interest. These problems are only aggravated 

when smaller less distinguishable image elements require segmentation. In these cases, 

the use of a colour histogram does not provide a sufficiently unique descriptor and 

prevents any type of adaptation. 
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Figure 3.3 - Segmentation Using CAMSHIFT Approach 

In an attempt to improve on the performance of the general algorithm, several 

measures were put into place to allow the construction of more descriptive histograms 

[52]. The construction of the histograms was extended using the concepts of 

Multidimensional Receptive Field Histograms (MRFH) [39]. By using the local 

responses of several filters a more descriptive representation of an area was achieved. In 

this extension of the original CAMSHIFT implementation, the MRFHs were created 

using a combination of colour space as well as gradient magnitude and Laplacian data 

computed at different scales. Figure 3.4 shows a slice of this multi-dimensional 

histogram and its probabilistic response when a back-projection is performed into the 
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originating scene. Once again the back-projection will result in a probabilistic 

representation of the image based on the histogram values. The histogram's ability to 

produce a discriminating description of an image element is uncanny. To improve upon 

these results, histogram construction was performed using a weight mask on the user 

selected regions [53]. 

20 Receptive Field Histogram 

b) 
Figure 3.4 - Use of Multidimensional Receptive Field Histogram for Segmentation: 

a) Results of Several Receptive Fields, b) A 2D Slice of a Multidimensional 
Receptive Field Histogram, c) Results of Back-Projecting the MRFH 

Since the regions being selected will most likely contain non-pertinent 

information, in particular around the boundaries of the selection, a Gaussian kernel is 

used to apply weights to the particular values being used in the histogram. The last 

improvement introduced within the original CAMSHIFT allows for the non-parametric 
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description of selected image elements. Geometrical bounding boxes can often poorly 

define an image region and may even introduce too many background elements to the 

histogram construction process thereby compromising data integrity. To reduce this 

compromising factor, bounding boxes are only used in the initialization process to define 

which image elements are of interest. 

Once the histograms have been constructed and back-projected within a 

subsequent frame, the image element of interest is segmented by applying a threshold to 

the histogram response. In order to constrain the search space in which an image element 

can be found, the application of the threshold is confined within a boundary that is 

slightly larger than the segmented result of the previous frame. The results produced 

after the threshold application are cleaned using standard image noise reduction and hole 

filling techniques. The segmented area can be used to adapt the MRFH through evolving 

scene changes and to better describe the region in subsequent frames. 

The added discrimination to the histograms and the non-parametric region 

identification significantly improved results to the overall technique. Figure 3.5 

demonstrates how well these added features allowed for a better segmentation. Despite 

all these improvements the algorithm has a tendency of converging towards the most 

prominent features of the MRFHs. The boundary pixels of a region tend to have 

properties that are not predominant within the histograms. When a back-projection is 

made these boundary pixels have a very low probability which results in their exclusion 

from the final segmentation. This phenomena progresses throughout a sequence and 

eventually results in segmented regions that insufficiently cover the regions of interest. 

The exclusion of near boundary pixels is clearly observed within Figure 3.5. In this 
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figure the boundary of the pianist's shirt is excluded from the segmentation, this is 

aggravated by local light changes brought upon by motion. The segmentation of smaller 

regions is also a major problem. Since these regions do not contain an abundance of 

information, the Receptive Fields selected to describe them must be acutely tuned in 

order to capture a discriminative description. This is not trivial and often involves 

considerable amount of guesswork for arbitrary elements. 

User Selected Area 

Frame 10 

Frame 55 

Figure 3.5 - Segmentation Using Modified CAMSHIFT with Receptive Field Histograms 
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The technique presented within this section shows great potential in segmentation 

of human targets in unconstrained environments. However, a significant amount of work 

is required in order to identify which characteristics should be used when segmenting 

particular image elements. For now the modified CAMSHIFT algorithm is best suited to 

simple environments with good lighting conditions, small slow motions and good object 

colour contrasts. 

3.4 Neural Network - Multi-Layered Perceptron 

The following section looks at some trial implementations of neural network 

based algorithms for segmenting human targets. The goal of these implementations was 

to assess the feasibility of using a neural network for segmentation within unconstrained 

environments. All the implementations shown here are based on a multi-layered 

perceptron (MLP) neural network; literature covering this type of network is both 

abundant [41]-[43] and applications similar to the one expressed within this work can be 

found. 

One of the disadvantages of using an MLP network is the required training that 

enables it to learn how to classify input vectors. Training was performed using a gradient 

descent approach and used pre-segmented images as input. These pre-segmented images 

were taken at various points within the sequence and were segmented by hand. The 

creation of the training set was very tedious and prone to human error. Figure 3.6 shows 

training set examples with the original frame image on the left and the corresponding 

pixel classification on the right, where the region of interest is depicted in white. A large 

amount of frames, approximately 1 frame per second, were used in the training set in 
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order to optimize the algorithm's results. While this type of initialization was less than 

ideal, the goal here was only to test the approach's feasibility within the context of this 

work. 

Figure 3.6 - Neural Network Training Data Examples 

One of the major problems in using neural networks for segmentation stems from 

the data's high level of dimensionality. Image frames used here had a width of 320, a 

height of 240 and used a 24 bit colour representation. Feeding an entire image to an MLP 

network would have required an unreasonable number of input nodes and consequently 

computing resources. Literature on the topic [41]-[44] has suggested various data 

representations that minimize the required number of inputs. This literature was 

reviewed in the previous chapter and formed the basis of the different input sets tried 
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within this implementation. Each trial network was fed one pixel data vector at a time in 

order to perform its classification; this avoids the need for an arbitrarily large input layer 

to the network. Figure 3.7 shows the resulting segmentation of several different types of 

input sets. The various input vectors were tested in order to determine which would 

provide the best results. In Figure 3.7a) the input data consisted solely on colour space 

information. Several colour spaces were used such as L*u*v*, YCrCb, RGB and HSV in 

order to identify colour groupings that could be used to classify pixel segmentation. In 

Figure 3.7b) gradient information was used as well local neighbourhood information. 

Nearby pixel data such as variance, mean, colour and gradient were also fed into the 

network in order to distinguish pixels based on their local inter-relationships. Finally in 

Figure 3.7c) an amalgamation of the best discriminating inputs was chosen. A 

combination of local data values as well as colour space information was used. 
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a) b} 

c) 

Figure 3.7 - Neural Network Based Segmentation Results Based on Several Different Input Vectors: 
a) Using Multiple Colour Space Vector, b) Using Gradient Magnitude and Neighbourhood Vector, 

c) Using Statistical and Colour Vector 

Despite the MLP's powerful ability as a classifier, the segmentation of images in 

unconstrained environments remains mediocre. The largest problem stems from the 

selection of input data. The data input to the network should be able to properly 

discriminate the target of interest from the remaining image elements. The selection of 

discriminating data is not obvious and requires a hefty amount of data pre-processing. 

There is also no guarantee that a discriminative input set will be appropriate across 

different sequences. The input sets chosen within these implementations were able to 

properly distinguish certain features such as the pianist's upper body and arm, but were 

not as successful in bringing out small image elements such as the pianist's head and 
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hand. The inputs used here were chosen arbitrarily and thus might not take advantage of 

the images' most discriminating data. In order to get better results a methodology for 

identifying which data would be most appropriate needs to be created. Another problem 

with this kind of MLP use is the overwhelming imbalance in the classification sets. The 

number of possible background or non-segmented image elements far exceeds the 

amount of segmented image data. It becomes virtually impossible to train a network to 

identify all possible instances of data that is not to be segmented. While MLPs have 

great potential for classification, their use in segmentation is limited to simple 

environments having a limited set of possible backgrounds. 

3.5 Chapter Summary 

This chapter examined the various implementations of the techniques introduced 

within the literature review. The performance of these algorithms was tested in an 

unconstrained environment to determine their feasibility for the context presented here. 

While many of the techniques have great potential in segmenting human targets, few 

seem able to extend their applicability beyond that of their originating papers. 

Addressing the shortcomings of the above techniques would require a considerable 

amount of work. The Mixture of Gaussian, probabilistic skin filters, CAMSHIFT and 

MLP network based algorithms were only able to achieve partial results. 
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Chapter 4 Motion Capture in Unconstrained 

Environments Using J-Value 

Segmentation 

The approach discussed here aims at providing a robust means of segmenting 

natural colour images in the hope of identifying and tracking human beings and 

extracting the necessary information to later perform a performance evaluation on the 

individual's activity. The techniques compared in the previous chapter only partially 

succeeded to capture the human target residing in a minimum constraint environment. To 

produce results that could eventually lead to a performance evaluation, significant if not 

overly tedious changes need to be made to the compared algorithms. The focus of this 

research and this chapter is to introduce such a technique which succeeds in the two 

dimensional motion capture of musicians in an unconstrained environment. 

The proposed technique is categorized as a region-based motion capture 

segmentation algorithm and uses colour-texture information in order to produce 

homogenous regions within a set of frames that are then tracked throughout the sequence. 

As mentioned before, the technique is based on Deng and Manjunath's JSEG 

implementation [3] with key improvements in order to make it more appropriate to the 

context considered here. Our algorithm is described as a set of five key processes: 

clustering, soft-classification map creation, J-value segmentation, merging and tracking. 

This chapter will cover in detail the workings of all the key processes and explain how 

these processes work together to produce a final result. 

45 



4.1 Non-Parametric Clustering of Images 

The first important step of the technique presented here is an initial clustering of 

the image colour data. Originally proposed within the JSEG technique was a clustering 

algorithm based on a k -means method that produced Gaussian parameterized clusters. 

The technique also made used of a Peer-Group Filtering approach described in [26] to 

initially filter noise and large colour variations. This JSEG clustering procedure 

proposed by Deng et al. [3] introduced a serious limitation for the application of the 

algorithm on real life images. This limitation was identified by Wang et al. in [28]. The 

use of a A:-means clustering approach assumes that the colour data present within a 

sequence must follow Gaussian-like statistics. In real scenes and texture-rich images 

such an assumption cannot always be made. Also, in natural scenes colours often have a 

tendency to smoothly transition between two regions. These colour gradients are usually 

the result of local lighting changes and should, in most cases, be considered as a single 

colour region rather than separate regions. In order to address this limitation Wang et al. 

[28] suggested the use of a non-parametric approach to colour clustering, a subsequent 

major modification to the original JSEG technique. 

The improvement to clustering is also adopted within this work by using the Fast 

Adaptive Mean-Shift (FAMS) algorithm introduced by Georgescu et al. [29]. FAMS is a 

refined version of the original Mean-Shift algorithm and supports adaptive bandwidth 

filters based on a pilot density estimate routine of nearby values. The authors of FAMS 

have also acknowledged the fact that the original Mean-Shift algorithm became 

prohibitively slow for high dimensional spaces, and have introduced an approximation 

technique based on locality-sensitive hashing (LSH) in order to optimize the algorithm. 

46 



The FAMS algorithm allows for a better initial clustering and can be applied just as 

easily to single or multiple sequence frames. 

In order to properly cover the FAMS clustering algorithm used as part of this 

technique, the properties of the Mean-Shift algorithm must first be covered. The Mean-

Shift algorithm is, in short, a non-parametric, kernel-based procedure to analyze 

multimodal feature spaces [35]. It is used within this technique to cluster colour 

distributions within a set of frames without applying constraints with regards to the 

nature of the distributions. In many of the papers covering the use of a Mean-Shift 

clustering, the data vectors used are composed of both spatial and colour information. In 

the case presented here, only colour information is of interest. By clustering video data 

independent of spatiality a subsequent region creation process can make its own decision 

on how best to group nearby pixels. 

The following explanation of the Mean-Shift and its improved version, FAMS, is 

given with respects to a d -dimensional data space. However, as mention before, for the 

purpose of the technique presented within this thesis, only colour data is used, in this case 

the L*u*v* channels. Some basic concepts with regards to kernel density estimation are 

given in Appendix B. Suppose that we are given n data points such as 

xtE.Rd, i-l,...,n associated with a bandwidth fy>0. The multivariate kernel 

density estimator at location JC is defined with the following: 

The density estimator is based on a spherically symmetric kernel K satisfying: 

x — x, ^ \ 
(4.1) 
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K(x) = c, ,k(\\x\r)>0\\x\\<l (4.2) 

where k(x) is a function defining the kernel profile and ckd is a normalization constant so 

that K{x) integrates to 1. The density gradient estimator can be obtained from the 

gradient of the density estimator from equation (4.1) yielding: 

2c 

% j ^ - v V w = „ ^ T 2 2>-*<)r ( * - * / ) 
h 

2\ 

(4.3) 

If the derivative of the kernel profile k(x) exists such that the function 

g(x) = -k'(x) is defined, the introduction of g(x) into equation (4.3) will give the 

following: 
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where the last term is called the Mean-Shift: 
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This term, by definition, points in the direction of the maximum increase in the 

density. In the segmentation algorithm the kernel profile is represented by a simple 

polynomial equation where the highest order can be modified by the operator. 

Since the Mean-Shift term always points to the maximum increase in density, 

the kernel can be shifted onto this maximum iteratively until a distribution mode is 

reached. Data points that have been shifted onto during the iterative procedure can be 

labelled based on the mode to which they have converged. Similarly, if a set of Mean-

Shift iterations lands on a point that has already been labelled, then all preceding points 

can inherit the label inclusively. Thus, data pixels are grouped based on the modes to 

which they converge. This type of clustering is highly desirable since it does not impose 

any type of parametric representation on the data clusters and also allows the clustering 

of points that may have smooth transitions. In terms of colour clustering, Mean-Shift 

allows gradient colours to be group together despite local, yet smooth, colour changes 

and allows for complex colour patterns to be clustered together. 

The FAMS algorithm improves upon the Mean-Shift in two significant ways; it 

attempts to optimize the selection of the bandwidth size ht for a given point xt and also 

introduces a way to speed-up the overall clustering process. In [29] the bandwidth 
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parameter ht is computed based on a pilot density estimate of the point xt using its k -

nearest neighbours. The bandwidth ht is given by the following: 

*i=h"^*li (4-6) 

Here the term x, is the data point for which we want to compute the kernel bandwidth h, 

using its k-nearest neighbour pilot density estimate xijc. The Li norm, the summed 

magnitude difference, is used for the computation. In short, this adaptive bandwidth 

allows larger kernel windows to be used in cases of low data variations, and smaller 

kernel windows in the opposite case. The adaptability of the bandwidth means a more 

precise and less costly Mean-Shift clustering. Note that if the term ht is fixed as a static 

value h, then the adaptability is removed and the algorithm becomes the original Mean-

Shift. 

The major bottleneck to the Adaptive Mean-Shift algorithm presented up to now 

is the need to perform neighbourhood queries in order to compute the Mean-Shift term, 

eq. (4.5). The naive way of determining if point x is covered by the kernel of point xt 

is to scan the entire data space and test the hypothesis. In order to speed up the process 

Georgescu et al. [29] use a principle called locality-sensitive hashing. This process 

tessellates the dataset L times, each partition containing K inequalities. Each inequality 

is defined as follows: 

Xi,dk~
Vk i = h-'n (4.7) 
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Here x is the value of the point x( along the dk dimension which is randomly chosen 

for the k'H inequality. The random value vk defines the inequality along the dimension, 

creating the appropriate tessellation. This data grouping is done L times and allows the 

dataset to be described by a K -dimensional Boolean vector for each value of L. These 

vectors can easily be stored within a hash table for future reference. When a query is 

made for the neighbours of a point q, L Boolean vectors are computed using (7) and 

index the colliding cells throughout the tessellation. The union of these cells provides a 

subset of points that can be used to compute the region covered by the Mean-Shift kernel, 

eq. (4.5). Approximation errors can be mitigated by making the union of the tessellation 

cells bigger. Figure 4.1 depicts a visual representation of the hashing for a sample two 

dimensional data set. Each plane represents a set of K inequalities, defining a total of L 

groupings. The union of the cells containing a point q. define the neighbourhood used in 

the computation of the kernel for the Mean-Shift algorithm. 
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Figure 4.1 - Locality-Sensitive Hashing for Two Dimensional Data 

Results and performance issues using this type of clustering are given in the next 

chapter. A discussion with regards to the implementation as well as the application of the 

adaptive and locality-sensitive hashing is also provided within the context of the 

application of this thesis. 
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4.2 J-Value Segmentation 

The next process executed within the technique consists of an analysis on the 

clusters generated using the FAMS algorithm. However, in order to better understand 

why this analysis is even required the third step is presented first: /-value segmentation. 

This segmentation relies on the basic principles of JSEG [3] and involves the 

determination of homogenous colour-texture regions. 

JSEG is a novel segmentation technique that attempts to produce regions out of 

pixel labelled images. In this case the labels are generated by the FAMS process 

described earlier. The labels represent the colour classes to which each given pixel 

belongs. The first step in the segmentation is to compute a homogeneity measure on the 

colour-texture property of a pixel based on its neighbours. In other words, this 

measurement depicts the local variation in colour classification surrounding a pixel. This 

value, called the /-value, is presented here following the same notation adopted by Deng 

et al. [3]. First the mean position of classes is defined as: 

w = - r l > (4.8) 
™ zeZ 

where m is the mean, Z the set of all N data points within a local region around a pixel 

and z = (x,y),ze Z . Assuming that there are a total of C colour classes, the mean 

position of a particular class i is defined as: 

m<=TrI> (4.9) 
i V i zeZ, 

The total spatial variance of classes is given as: 
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5r=EIz"Hr (4.10) 
zeZ 

And the sum of all class variances as: 

S^h^lUlz-mf (4.11) 
1=1 1=1 jeZ, 

The 7-value of the local region is obtained based on these variances: 

J = (ST-SW)/SW (4.12) 

The original paper provides examples on how a particular local class distribution 

would affect the outcome of the /-value. For a local region where classes are distributed 

approximately uniformly, the 7-value will remain relatively small. Inversely, should the 

local region consist of densely segregated classes; the 7-value will increase. The result of 

an image wide 7-value computation is a gradient image corresponding to homogeneous 

colour-texture edges. Example results are given in Appendix C. 

The set of points which define the local region on which the 7-value is computed 

is described by a circularly symmetric kernel mask. This mask is applied to every pixel 

in an image to produce a 7-image. The kernel size varies depending at which scale 7-

images are to be created. At a larger scale smoother texture edges are detected while at 

smaller scales hard edges are detected. The scale changes the size of the kernel mask; for 

example, at a scale of 2, the mask is up-sampled along the X-axis and Y-axis by a factor 

of 2. As the kernel is up-sampled the new coordinates are not included in the J-value 

computations, this means that the algorithm does not incur an increased amount of 
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processing at larger scales. By up-sampling the kernel the local neighbourhood taken 

into consideration is increased and the resulting /-value will reflect the homogeneity 

measured of this larger neighbourhood. The segmentation begins with region 

determination using the largest scale. Once regions have been determined the process is 

repeated for each region at the next smallest scale. Regions will split if they lack 

homogeneity at the smaller scale. A seed growing algorithm is used to create regions by 

amalgamating nearby pixels having a low /-value. In order to reduce the number of 

regions and to avoid over-segmentation an initial set of seeds are created through the 

application of a /-value threshold. An iterative process then assigns individual values to 

their closest appropriate labelled region. 

The JSEG algorithm also allows for video segmentation by way of seed tracking. 

When a set of region seeds are discovered within a current frame, their overlap with 

previous seeds is computed. If an overlap is found between two seeds in two subsequent 

frames, the newer seed is assigned the same label as its predecessor. If a seed overlaps 

with multiple previous seeds, then a new label is generated and assigned to each of the 

overlapping seeds, thus changing both the current and previous frame labelling. The seed 

tracking algorithm presented by Deng et al. [3] requires that all video frames be 

segmented at once and depends on small motion between frames. This is not practical for 

very large or lengthy videos; a solution to this is presented within this chapter under the 

section 4.4. To further increase robustness with regards to false merging due to motion 

effects, the term / , is introduced. This value represents the temporal texture-colour 

homogeneity and is used to determine whether a pixel should be used in overlap 

determination. Much like its /-value counterpart, the / , -value is computed as: 
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1 \P 
m = — > t, 

" zeZ 

1 v-
mi = — / t7 

Shown above are modifications to equations (4.8) and (4.9). They have been 

modified to compute the temporal mean of all classes and of a particular class / 

respectively. Here tz represents the relative time index of a point z = (x, y). Since only 

two consecutive frames are taken into account for this computation, tz e {0,l}. Note that 

equation (4.13) will always give a value of 0.5 since each frame contains the same 

number of points within a local defined area. Finally the Jt -value is computed using the 

following procedure. 

^ = s i K _ m i r (4.i5) 
zeZ 

c c 
5 *=Z 5 ' = ZXIK- w J 2 (4-16) 

i=l i=l zeZj 

Jt=(ST-Sw)/Sw (4.17) 

The Jt -value of a pixel is shown to be large whenever its surroundings between 

frames have changed significantly and vice versa if the cluster grouping between frames 

remains fairly static. By computing this value for the seed pixels prior to overlap 

determination, regions that have undergone a lot of motion can be identified and omitted 

from the calculation. This avoids false merges for high motion scenes. Both the / -value 

(4.13) 

(4.14) 

56 



and Jt-value are computed independently, the /-value is used in seed determination 

while the / , -value is used in the seed overlap determination. 

This section has described the JSEG algorithm with little deviation from its 

original publication or proposed methodology. Despite its success in segmenting 

complex scenes, the technique has several shortcomings that must be addressed if it is to 

be successful in uncontrolled environments such as the one presented within the context 

of this thesis. One of the major shortcomings and improvements brought to this 

technique has already been described in the previous section. The use of adaptive 

clustering avoids misrepresentations in J-images by classifying colours exhibiting subtle 

colour gradients into common groups. Other improvements relating to colour, tracking 

and over-segmentation follow in the subsequent sections. 

4.3 Soft-Classification Maps 

The addition of a non-parametric clustering algorithm partially solves the problem 

of segmentation in the presence of strong colour gradients. Ultimately following a 

clustering procedure, every pixel is only given a single hard classification. In their list of 

improvements to the original JSEG algorithm, Wang et al. [28] introduced the concept of 

soft-classifications. Using the fact that a pixel can be represented as a mixture of 

clusters, the authors propose the means with which a pixel's membership to a specific 

class can be measured. 

The membership value juzi for a pixel z , characterized by the colour vector Ik, 

to a specific class / is described by the following: 
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r'z.i ~ c 

2>(w, )P( / Jw, ,0 , ) ( 4-18) 

;=i 

The cluster classes are assumed to follow Gaussian distributions represented by 

w;., i = l,...,C, for a total of C classes. In the above equation P(w() represents the 

prior probability while P(Ik \ wn0t) demonstrates the probability that pixel Ik belongs to 

the distribution MA where 0i = («,,£,) represents the mean and variance matrix. The 

term P(wi) is computed as a ratio of the pixels belonging to class / and the total number 

of pixels. The second term P(Ik | w.,#,) is computed using a standard Gaussian model. 

P(Ik\wi,0i) = 1—rexp{"i(/* - " 'WC* -»*)} i = l,...,C (4>19) 

(2^)2|Z,.|2 

The assumption that the cluster classes follow a Gaussian distribution goes 

against the initial work done by the non-parametric clustering algorithm. The classes are 

known to not have a Gaussian distribution due to the way they were created. This 

oversight on the part of Wang et al. [28] is addressed within this work by way of a non-

parametric representation of the term P{Ik\wi,0i). Swain and Ballard [38] have 

demonstrated how histograms can be used to represent colour distributions and to localize 

objects. This methodology is also used here. A three dimensional RGB colour histogram 

of every cluster is created and by back-projecting these values into the image, a pixel's 

probability can be computed. A histogram back-projection process consists of replacing 

individual pixel colour vectors with their normalized histogram bin value. In other 
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words, after constructing a histogram based on the pixels of a given cluster, all image 

pixels are replaced with the value they index into the histogram. The result of a 

histogram back-projection is a probabilistic representation of the image given by the 

distribution found in the histogram. This allows soft classification maps to be computed 

without compromising the initial assumption of non-parametric data. 

With the addition of soft-classification maps, the functions relating to class mean 

and variance for ./-value computations are adapted as follows: 

/», =-Nk i = l,...,C (4.20) 
IX, 
zeZ 

c c 

Sw^^ZH^-Wz-mf) (4.21) 
i=l i=l zeZ 

Here the value juzi represents the weighted membership the pixel z has with class i. 

This adaptation of the JSEG equations allows the procedure to take into account the 

varying degree of membership a pixel may have with the different colour cluster 

distributions. It also prevents JSEG from falsely identifying smoothly varying colour 

regions as smooth edges. 

4.4 Joint-Criteria Region Merging 

Both the original and modified JSEG approaches unfortunately suffer from an 

over-segmentation problem. Its original authors [3] have proposed a simple merging 

algorithm which iteratively attempts to bring together two regions having the closest 
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corresponding histograms. JSEG however is not the first segmentation algorithm to 

provide over-segmented results and the issue of region merging has been explored 

extensively within other contexts [18]-[23]. We choose to adopt an algorithm that uses a 

joint space merging criterion introduced by Hernandez et al. [23]. This technique not 

only relies on colour information but also on the number of edge pixels between two 

candidates. As such, it prevents the accidental merging of regions with similar colour 

attributes having a strong edge in between them. This merging process is performed on 

any two regions whose adjacency is present throughout a set of frames. 

The first step in performing the merge operation is to formulate a Region 

Adjacency Graph (RAG) [22]. The graph nodes represent regions within the image while 

edge costs are assigned according to the similarity between two adjacent regions. Once 

the RAG is constructed, regions having the highest similarity can be merged and provoke 

an update of the graph. The process is iterative until the similarity criterion achieves a set 

threshold or the desired number of regions has been obtained. 

The similarity criterion used stems from Hernandez et al. [23] and is based on 

both a colour homogeneity and edge integrity measure. The colour homogeneity 

criterion is defined as follows for two adjacent regions i and j defined in a K-

partitioned image: 

5" (R'K ,RJ
K) = f ' , ' ' H UK)" J"(RJK )]2 (4.22) 

KJrfl + P^I 
A. II || l\ \ 

Here, ju(R'K) ,JU{R}
K) and \R'K\, ^ represent the mean RGB colour values and sizes of 

the regions i and j respectively. The colour distances are weighted with a size 
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difference measure; smaller regions with a large colour distance will be characterized 

with a large value of SH (R'K ,RJ
K). 

The edge integrity criterion is based on the ratio of strong edge pixels and regular 

edge pixels found along the boundary of two adjacent regions. In order to compute this 

ratio, a gradient image is first created using Wang's [19] morphological method. A 

threshold is found based on the median value of the gradient image. Any pixels found to 

have a value higher than the threshold are considered strong boundary pixels. The 

criterion can now be summarized as follows: 

e',J cs 
Se(R'K,RJ

K) = l - l (4.23) 

The terms e'^J and e'gJ represent the number of strong and the total number of 

boundary pixels respectively. Regions having a strong boundary ratio will end up having 

a larger value of 8e(R'K,RJ
K). 

In order to produce a single similarity criterion for the merging procedure, both 

the homogeneity and edge integrity criteria must be evaluated. Since their scales are not 

known, [23] suggests using a rank based procedure where the final similarity is given by: 

W = aRH +(l-a)Re (4.24) 

Here RH and Re are the respective ranks of the criteria given above for the same two 

adjacent regions. Ranks correspond to the sorted position in which two regions' value of 

S"(R'K,RJ
K) and Se(R'K,RJ

K) are placed, a is a weight parameter used to impart 

importance on either of the former criteria. Hernandez et al. [23] suggest setting the 
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weight factor to 0 for a few cycles in order to remove false background regions having 

little to no boundary pixels. They then set this factor based on the ratio of small regions 

present in the image. Figure 4.2 depicts the process of merging regions together using a 

weight factor of 0.5. The region represented by node 2 is merged with node 1 since it has 

the lowest value of W. 

Figure 4.2 - Sample Region Merging Process 

4.5 Region Tracking 

At the start of this thesis, within the literature review a distinction was made 

between sequential and video block segmentation. That distinction is revisited here in 

order to describe the tracking algorithm developed for this framework. Sequential 

segmentation manipulates only a single frame at a time. While this manipulation can 
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utilize any amount of information previously compiled from preceding frames, the 

determination is performed only on the current frame. Video block segmentation on the 

other hand will manipulate multiple side-by-side frames at once. Region determination is 

consequently performed on all these frames simultaneously. This set of frames, 

sometimes called a video stack, has certain advantages when it comes to tracking. 

Region creation on a given frame can be influenced by its temporal neighbours and 

allows the segmentation to be adapted across the video stack. This advantage comes at a 

hefty memory and computational cost since all video stack frames must first be buffered. 

The following sections describe the hybrid strategy used in this work in order to track 

regions throughout a video using these two techniques. 

4.5.1 Intra-Video Stack Tracking 

A combination of parallel and sequential tracking is used within this work. The 

authors of JSEG have adapted their algorithm in order to allow for parallel segmentation 

through the introduction of the / , -value as described in section 4.2. Their adaptation 

however requires that the entire video be segmented at once in order to be successful and 

is often not feasible due to memory constraints and video sizes. For this reason the 

segmented video is first separated in a series of video stacks. Stack sizes are determined 

by a number factors including available memory, processing time, video complexity, 

length, etc. Since video stacks must be buffered prior to processing this approach 

precludes the use of the system without incurring some delay. 

As demonstrated in Figure 4.3 each video is split in sets of video stacks, the size 

of which can be manipulated by an operator and depends on the available memory and 
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computing power. The tracking and region determination done within a video stack is 

the same as the one proposed by in JSEG. That is to say, the / -value and Jt -value are 

used in order to produce regions and to find correspondences between frames. The 

tracking done in between stacks is described in the next section. 

First Video Stack 

Inter-video Inter-video 
Stack Tracking Stack Tracking 

Intra-Video Intra-Video Intra-Video 
Stack Tracking Stack Tracking Stack Tracking 

Figure 4.3 - Video Stack Tracking 

Last Video Stack 

4.5.2 Inter-Video Stack Tracking 

The inter-video stack tracking algorithm proposed in this thesis is strongly based 

on region overlaps between two consecutive video frames. This means that the motions 

exhibited by the objects in the video must be captured with an appropriate frame rate in 

order to allow regions to have an overlay between frames. Multiple techniques have used 

overlap in the past as strong correspondence indicator for region tracking [53]-[56]. The 

tracking correspondence indicator used within this work stems from the research 

produced by Withers et ah [56]. In their work, the authors have tried to identify regions 

64 



correspondences between frames regardless of splitting, merging and non-uniform 

changes to the regions. This tracking methodology lends itself well to the segmentation 

technique presented here because despite the relative stability of regions between frames, 

subtle changes in the scene may often cause the same type of region behaviour described 

within Withers et a/.'s research. 

The criteria used to find a correspondence between regions of two subsequent 

frames depends highly on both distance and pixel overlap. In this case pixel overlap is 

defined as the number of pixels one region has in common with another between two 

successive frames. The authors of [56] define the overlap-ratio, RUj(t), as the 

correspondence measure between region / and j . It is given by the following equation. 

w ^ (4-25) 

Here the term Dj} (t) is a distance measure between regions i and j , and will vary along 

the interval [1, oo]. The term VUj(i) is an overlap measure between regions i and j , and 

will vary along the interval [0, 1]. The result, Rjj(t), will consequently be found in the 

range of [0, 1], where 1 indicates a perfect match and values closer to 0 correspond to 

regions far apart or with little overlap. The term Di} (t) is defined as the fraction of the 

Euclidian distance between regions / and j with respects to the minimal distance 

involving these regions. Formally, the term Duj (t) is expressed as follows: 

D>-J W = : tA M A I.W (4-26) 
mm (d,j(t\dik(t))

 v ' 
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Here the function dtj (t) denotes the Euclidian distance between the centers of mass. The 

assumption is made that the frame at time t has at most m regions, while the frame at 

t + lhas at most n regions. Finally the overlap term VitJ(t), is computed similarly, and 

corresponds to the fraction between the number of overlapping pixels and the smallest 

area size of the regions taken into consideration. 

V (t) = ^ (4.27) 
,jK/ min(A,(f),Ay(f + l)) v ; 

The function BUj(i) represents the number of overlapping pixels while the 

functions A, (t) and A} (t +1) represent the area size of regions i and j respectively. The 

values from equations (4.25) and (4.26) approach 1 whenever the regions in question 

have similar spatial coordinates and overlapping areas respectively. 

Using the value provided by Rhj (t), each region of the frame t +1 can be matched 

to a certain degree with its counterpart in the frame t. Regions that may have undergone 

a splitting or merging will still have a very large overlap-ratio with their ancestors. This 

is due to the fact that little motion occurs between frames and so position and pixel 

overlap remains somewhat constant. By applying a threshold to the overlap-ratio, eq. 

(4.25), final correspondence can be achieved. 

4.6 Chapter Summary 

The technique proposed in this chapter aims to segment human targets in 

unconstrained environments. The algorithm focuses on the JSEG implementation first 

66 



introduced by Deng et al. [3] but also introduces major modifications to this algorithm. 

Specifically, a better data manipulation by way of non-parametric clustering was 

described along with its role in the creation of soft-classification maps for homogeneous 

texture-colour region identification. The over-segmentation shortcoming of the original 

JSEG technique was addressed using joint-criteria region merging and a tracking 

algorithm is proposed to extend the technique's applicability to videos. 
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Chapter 5 Experimentation 

This chapter discusses the experimental setup used in this work and offers an in-

depth overview of the results provided in several test cases. These test cases are aimed at 

determining the motion capture capabilities of the overall framework and its ability to 

function in several complex environments. Results for each step of the technique are also 

compared with Deng's JSEG algorithm [3] in order to clearly demonstrate the 

improvements brought to the original technique. 

5.1 Experimental Setup 

This section looks at the experimental setup used in the acquisition and processing 

of video for the motion capture system. A multi-camera setup is used in order to provide 

the basis with which calibration, acquisition, 3D reconstruction and motion analysis can 

later be performed. The infrastructure introduced within this chapter is beyond the scope 

of the present work and was performed by a colleague [57]. Camera specifications, video 

compression and computing facilities are also discussed within this section. 

The goal of using a multi-camera setup in an infrastructure similar to the one 

shown in Figure 5.1 is that it allows the capture of several key positions within a 

predefined workspace. Using a motion capture technique, such as the one described in 

this thesis, along with calibration and 3D reconstruction algorithms a comprehensive 

analysis and replay of motions can be performed. The infrastructure is composed of 8 

Flea2™ Firewire 1394b cameras mounted on a structure covering a workspace of 
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approximately 2.5m x 2.5m x 2.5m. The cameras are fixed to the structure in stereo pairs 

covering the left, right, back and top views of a target. Figure 5.2 shows a diagram of the 

camera positions. 

Figure 5.1 - Infrastructure Design 

Camera 1 

Camera 4 Camera 5 
H H 

Camera 2 Camera 6 

Camera 0 
Camera 3 # 

Camera 7 

Figure 5.2 - Infrastructure Camera Setup 
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Acquiring 8 camera video feeds along with other meta-data such as registration 

information requires an excessive amount of computing power and bandwidth. A total of 

three computers hosting Pentium IV 3.0 GHz processors and running Windows XP were 

used in the acquisition process. In order to alleviate the hefty bandwidth requirements, 

the videos are captured with a frame size of 320x240 at 30 frames per second and 

compressed using the XviD codec. These same computers also host the motion capture 

software developed within this thesis. 

5.1.1 Software Design 

The goal in the design of the software was twofold: to allow the segmentation of 

videos into semantic regions and to provide the means with which an operator may select, 

track and capture motion from various regions. The segmentation process is kept 

separate from the interactions made by the human operators attempting to identify and 

interpret captured data. This section looks at the design of these two components and the 

working of the overall software. 

The segmentation process requires considerable computing resources and in order 

not to interfere with user interactions it is kept in a separate process altogether. The 

process is implemented in C++ and compiled within a Visual Studio 2005 environment. 

The OpenCV vision library provides the underlining support for image manipulations. 

Communication with the process is done using command line arguments; its output is a 

set of segmented images stored on disk using a lossless compression. All parameters are 

provided to the process through a configuration file specified at runtime. 
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The motion capture interface, seen at Figure 5.3, is also implemented in the 

Visual Studio 2005 environment using Windows MFC components and the OpenCV 

library for image manipulations. The GUI provides the means with which operators may 

monitor the segmentation process and allows them to select groups of regions for further 

analysis. The selection is performed by clicking on segmented region from the initial 

frame. When multiple regions are selected they can be combined together by the 

operator in order to form separate groups of interest. The groups can be made to 

represent various semantic components of an image. As seen in Figure 5.3, three groups 

are identified in red, green and blue representing the pianist's head, torso and arm 

respectively. The groups can either viewed independently or as a complete ensemble. 

This allows operators to view the evolution of motion as the system processes the 

information provided by the segmentation process. The motion capture can also be 

stored to disk using a variety of options provided by the software. Corrections or 

reconfiguration of groups can be made on the fly as the information is processed. The 

application also provides an interface that allows the user to configure the various 

segmentation parameters; this interface is displayed in Figure 5.4. 
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Figure 5.3 - Motion Capture Interface 
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Figure 5.4 - Motion Capture Configuration Interface 

5.1.2 Test Environments 

One of the objectives in this thesis is to allow humans to perform in their usual 

day-to-day environments. These environments are numerous and can vary widely in 

complexity. This section looks at the videos captured in a subset of these environments 

and describes some of the segmentation and motion capture challenges. These videos are 

used to test the functionality and limitations of the technique proposed in this thesis. 
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The first environment examined in this section consists of the Vision, Imaging, 

Video and Autonomous Systems (VIVA) Research Laboratory found at the University of 

Ottawa. This research laboratory is by no means considered a day-to-day environment 

for human performers or musicians. The characteristics of this environment allow the 

algorithms to be tested in a simpler and more controlled setting. The room in question 

generally has simpler backgrounds and fewer textures. The lighting conditions in this 

environment can also be adjusted, background motion can be avoided and the 

performers' movements can be controlled. As seen in Figure 5.5, despite the simpler 

setting some lighting effects are still visible. Shadows still play an important role and 

colour contrast issues can also be observed. 

Figure 5.5 - Laboratory Environment Examples 
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The second environment is more common for human performers. The home 

environment consists of video sequences taken by musicians in a more familiar practice 

setting. As can be seen in Figure 5.6 the complexity of the scenes is significantly greater 

than the laboratory environment. The background has richer textures, the foreground has 

a changing text overlay and the lighting conditions are less than ideal. Shadows play a 

significant role in the segmentation process and lighting reflections, particularly along the 

piano, provide an interesting challenge. Despite the added complexity, the scenes have a 

decent colour contrast for the more prominent image features. These videos are a good 

example of a day-to-day environments used by pianists. The motions exhibited by the 

performers are not controlled and are generally more pronounced than those within the 

laboratory setting. 

Figure 5.6 - Home Environment Examples 

The last environment used to test the algorithm proposed in this thesis has the 

highest level of complexity. The studio environment is taken from the University of 

Ottawa at the Music Faculty's Piano Pedagogy Laboratory. This laboratory is used for 

recitals, practice, recordings and the research of piano pedagogy. This studio is also 
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considered to be a common environment for a performer or musician. Figure 5.7 depicts 

several scenes taken from the studio. The number of colours, textures and lighting effects 

make this environment by far the most challenging in terms of segmentation and motion 

capture. The goal behind using this type of environment for testing is to identify the 

limitations of the technique proposed within this work. In these videos a complex 

combination of indoor and outdoor lighting introduces a significant number of shadows 

and contributes to a weaker colour contrast. Background motion and specular lighting 

effects are also very common. The performers' movements are left uncontrolled and 

adjustments on the lighting are very limited. 

Figure 5.7 - Studio Environment Examples 
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5.2 Algorithm Analysis 

This section provides an analysis on the intermediary results achieved by the 

technique suggested in this thesis. There are a total of five important steps used to 

achieve motion capture; these steps have already been introduced in Chapter 4. The 

results presented here offer an insight on how each of these steps contributes to the 

overall approach. A subjective and qualitative comparison will also be provided between 

the results from the individual steps introduced within this work and their counterparts 

within Deng's JSEG algorithm [3]. 

5.2.1 Clustering Results 

The Fast Adaptive Mean-Shift (FAMS) algorithm previously covered in section 

4.1 is the algorithm selected within this work to cluster the image L*u*v* colour data 

prior to the application of the segmentation technique. As explained earlier, the FAMS 

algorithm is an improvement over its predecessor, the Mean-Shift algorithm, through the 

use of adaptive bandwidths and Locality-Sensitive Hashing. This section looks at the 

impact these two improvements have on the overall clustering of unconstrained images 

and also compares the results with the original JSEG K-means clustering algorithm. 

5.2.1.1 Impact of Locality-Sensitive Hashing Parameters 

In the description of the clustering algorithm an optimization technique called 

Locality-Sensitive Hashing was explained. This optimization aims to expedite 

computations relating to neighbourhood queries performed during the Mean-Shift 
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computation. A more precise description of the algorithm is given in section 4.1. The 

parameters used in this technique change the granularity of the groups created to speed

up the neighbourhood queries. Since the groups are created based on a set of random 

inequalities, they do not always contain the necessary data points required for the precise 

computation of neighbourhood queries. This error is well documented in Georgescu's 

work [29]. However, the impact of these parameters should still be investigated in the 

context of the segmentation and motion capture framework presented here. 

The parameters in question are the values of K and L, representing the number 

of inequalities per group and the total number of groups respectively. In the worst case 

scenario, both these parameters would be set to 0, meaning that all data points would 

have to be queried for each computation of the Mean-Shift. The processing requirements 

would far exceed any practical application. According to Georgescu et al. [29], as the 

value of K increases, the average size of cells will decrease thus reducing the likeliness 

that all the data required in an appropriate neighbourhood query will be present. This in 

turn would mean that more labels will be incorrectly assigned, thus introducing error into 

the clustering process. Similarly if the value of L increases then the intersection of cells 

will decrease and their union will increase. A larger union will require more queries thus 

a longer computation time. These phenomena are illustrated in Figure 5.8. 
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Figure 5.8 - Impact of K and L Parameters in Locality-Sensitive Hashing 

In the left column the reduced cell size is noticeable with a large value of K. In 

the right column large intersections are observed due to the value of L. The relationship 

between the values of K, L, the error and the computation time has been analyzed and is 

demonstrated in [29]. Georgescu et al. concluded that the error was quickly mitigated 

with increasing values of L and that the relationship between K and L in order to 

maintain a minimal error followed a nonlinear polynomial curve. By enforcing this curve 

and estimating computation time for various (K, L) pairs an optimal tessellation can be 

obtained. Table 5.1 shows a sample frame from several videos, their clustered 

counterparts, their respective optimal (AT, L) pairs as well as their total computation time. 

Note that in the following tables the cost associated to computing adaptive bandwidths is 
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not included; the impact of bandwidth selection is discussed in the next section. The 

clusters are drawn in greyscale where each cluster is represented by its own colour. 

Table 5.1 - Clustering Results Using Optimal (K, L) Pair 

Sequence 
Name 

Laboratory 

Home 

Studio 

Initial Frame 

ea^^^^^^iv>fe -A JJjJ^MBmBrwHE'k' 

^ ^ ^ ^ ^ ^ B ^ ^ H f ^ ^ H 

Clustered Frame Optimal 
{K,L) 
Pair 

(24, 16) 

(24, 10) 

(20, 8) 

Computation 
Time 
(seconds) 

972 

884 

999 

The computation time is quite long; most of it is attributed to the cost of finding 

the optimal (K, L) pair. Even though the computation should not necessarily be redone 

for each frame since the data does not drastically change, it can perhaps be avoided 

altogether by providing a (K, L) pair that is suboptimal but sufficient for the purpose of 

this work. Table 5.2 demonstrates several results of (K,L) pairs for the various 

sequences. The total processing time is significantly reduced while the overall quality of 
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the segmentation remains very similar. This shorter processing time can be an advantage 

to the proposed clustering technique. 

Table 5.2 - Clustering Results Using Suboptimal (K, L) Pair 

Sequence 
Name 

Laboratory 

Home 

Studio 

Clustered Frame with 
Optimal Pair 

Clustered Frame with 
Suboptimal Pair 

Sub-
optimal 
(K,L) 
Pair 

(22,13) 

(25,15) 

(15, 5) 

Computation 
Time 
(seconds) 

58 

87 

71 

Table 5.2 clearly shows that the impact of {K,L) pairs on the formation of 

clusters is negligible at best. The values used in Table 5.2 were arbitrarily selected with 

an L value that is larger than K. If a sub-optimal pair is used then no guarantee can be 

provided on the level of clustering error. However, should the value of L be sufficiently 

elevated with respects to K any error should not severely impact the final segmentation. 

Also, since a sub-optimal pair is used time fluctuations in the clustering can be expected, 
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these fluctuations however pale in comparison to time required to compute the optimal 

pair. The range of values deemed appropriate vary from sequence to sequence and 

depend on the manner in which bandwidth selection is computed, in general values 

ranging from 5 to 30 provide adequate results. In this work we propose using sub-

optimal pairs as a mean of speeding-up the clustering process at the cost of processing 

time fluctuations and possible minor errors in the clustering. 

5.2.1.2 Impact of Adaptive Bandwidths 

The other improvement introduced by Georgescu et al. [29] in the FAMS 

algorithm consisted of adaptive bandwidths. By estimating the pilot density of a given 

point using a k-nearest neighbour algorithm, Georgescu et al. [29] were able to compute 

the kernel bandwidth that would yield the optimal Mean-Shift convergence. Bandwidth 

selection can impact results significantly. A bandwidth that is too small will fail to 

converge to a mode and result in multiple tiny groups of labelled data points. A 

bandwidth that is too large may diverge away from the appropriate mode due to nearby 

distributions thus resulting in misclassifications. Table 5.3 gives an overview of the 

computation time involved in determining the bandwidth for each data point; the results 

from the application of adaptive bandwidths are seen in Table 5.4. The table was created 

using the optimal (K, L) pair and a k-nearest neighbour algorithm where k = 250. 
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Table 5.3 - Adaptive Bandwidth Computation Times 

Sequence Name 

Laboratory 
Home 
Studio 

Computation Time 
(seconds) 

349 
357 
282 

After inspecting the bandwidth sizes for the various sequences, they were found 

to vary between 2 and 25 data points. Larger bandwidths were applied in locations with 

little variance while smaller bandwidths were applied in locations having larger variance. 

In order to circumvent the long processing time of adaptive bandwidths this research 

proposes that fixed bandwidth sizes be used. However the problem of non-convergence 

and incorrect convergence arises with bandwidths that are too small and too big 

respectively. The process of converting incorrect convergence would require an in-depth 

analysis on every point and thus negate any improvement. Merging points that have 

failed to converge to a mode can be done effectively using simple colour analysis. Table 

5.4 demonstrates results of the clustering process using a smaller fixed bandwidth and 

then correcting for tiny groups of non-converged data points. The correction developed 

within this work is done by a simple iterative colour merging processing. The results are 

created using a fixed bandwidth size of 3 with the same suboptimal (K, L) pair depicted 

in Table 5.2. The shorter computation time associated with the fixed bandwidths 

depicted in Table 5.4 gives merit to the proposed technique and its corrective cluster 

merging process. Based on the results and the computation time, it is safe to conclude 

that utilizing non-optimal parameters for the clustering technique does not severely 

impact the quality of the clustering. In fact the clustering process is sped up greatly by 

removing the processes associated to the discovery of optimal parameters. 
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Table 5.4 - Clustering Results Using Fixed Bandwidths 

Sequence 
Name 

Laboratory 

Home 

Studio 

Clustered Frame with 
Adaptive Bandwidths 

Clustered Frame with 
Fixed Bandwidth 

^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ > l < | 

H^^vi &. F^^^H^^^^^^^^^^^H 

Computation 
Time (seconds) 

11 

27 

46 

5.2.1.3 Comparing FAMS with K-Means Clustering 

Within this section the FAMS algorithm is compared with the original K-means 

clustering technique proposed by Deng et al. [3] in their implementation of JSEG. The 

parameters used in this comparison are suboptimal but allow FAMS to execute within a 

reasonable amount of time. The comparisons will look at scenes of different complexity 

and will provide insights to the qualitative results. Figure 5.9 demonstrates the results for 

several sequences in the laboratory environment. 

84 



Original Frame FAMS Clustered 
Frame 

K-Means Clustered 
Frame 

Figure 5.9 - FAMS and K-Means Clustering Comparison in Laboratory Environment 

In many cases we find that the K-means clustering algorithm does not succeed in 

properly capturing some of the more subtle colour features in an image. Since K-means 

imposes Gaussian-like statistics on colour distributions, many data points end up being 

classified to a cluster they don't belong to. This phenomenon is observed in the first 

frame where background shadows along the infrastructure have been added to a 

distribution different than the wall's distribution. It is also observed on the second frame 

where the majority of the pianist's head has been merged with surrounding features. 

Another shortcoming of the K-means algorithm is the fact that it relies on thresholds in 

order to obtain an appropriate number of clusters, when this threshold is not precisely 
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tweaked to the frame in question, clusters may end up merged together thus removing 

many of the image details. The third image shows this observation clearly; FAMS 

succeeds in producing multiple clusters despite their relative colour distances while K-

means only produces two clusters. Since the FAMS algorithm does not rely on spatial 

data or thresholds to cluster, sets of points may converge to a mode that is different from 

their neighbours. This observation is seen on the pianist's arms, legs and face in the first 

and second images. While this type of convergence may add complexity and make 

interpretation of the results more difficult, it can be dealt with using soft-classification 

maps as explained in the next section. 

As a scene increases in complexity, FAMS' advantage over the K-means 

algorithm becomes more apparent. Nearby pixels which may seem similar in an image 

may in fact converge to different modes allowing for a more precise clustering to occur. 

Figure 5.10 demonstrates how the Gaussian clusters of the K-means algorithm tend to 

agglomerate all points having similar colour while the FAMS is better able to distinguish 

colours belonging to different objects. Figure 5.10 distinctly shows a better clustering 

with FAMS along the pianist's face and hands in the first image, and succeeds in properly 

distinguishing between the musician's hair, face, left arm, right arm and torso within the 

second image. 
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Original Frame 

Figure 5.10 - FAMS and K-Means Clustering Comparison in Home Environment 

In the more complex studio setting, in Figure 5.11, the same observations can be 

made. Distinction among colour groups is better achieved with the FAMS algorithm. 

The improvements in Figure 5.11 are more subtle due the high complexity in the scenes. 

However, FAMS achieves a less noisy clustering, were smaller and irrelevant 

background colour distributions do not degrade the overall clustering. In the third image 

a better distinction of the pianist's arms and head can be observed. 

FAMS Clustered K-Means Clustered 
Frame Frame 
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Original Frame 
FAMS Clustered 

Frame 
K-Means Clustered 

Frame 

Figure 5.11 - FAMS and K-Means Clustering in Studio Environment 

5.2.2 Soft-Classification Results 

With the addition of soft-classification maps, membership values can be 

associated to each label. This association allows a probabilistic representation of the 

labelled images and consequently a more precise /-value computation. This section 

demonstrates some results using this type of representation and compares their effects 

within the J -value segmentation algorithm. 

Figure 5.12 depicts the initial clustered image of a Laboratory scene using 

suboptimal FAMS parameters. Beneath the labelled image the probabilistic 

representation for a subset of the clusters is given. These clusters represent the majority 
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of the colours found within the image; the grayscale value of a pixel depicts its 

membership to the corresponding cluster. A bright pixel represents a strong membership 

to the cluster, while a dark pixel will only have a weak membership. These 

representations were created by back-projecting the histogram of a given label into the 

image. That is to say, the normalized bin value of a given pixel replaces its colour vector, 

thus giving the probability that the pixel belongs to the label's colour distribution. 

Suboptimal 
Clustering 

Result 

64x64x64 32x32x32 16x16x16 8x8x8 
Histograms Histograms Histograms Histograms 

Figure 5.12 - Effect of Histogram Sub-sampling on the Probabilistic Representation of Clusters 
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Histogram sub-sampling is an important factor in the creation of the soft-

classification maps. If the histograms maintain a high number of bins then the non-

parametric distributions of the individual clusters will exhibit a minimum of overlap. It is 

only by generalizing the distributions via histogram sub-sampling that the soft-

classification maps can impart membership values on the clusters. As the histograms 

become coarser, the overlap between distributions is increased yielding classification 

maps that exhibit a more varied range of values. If the histograms become too coarse 

however the non-parametric distributions are forced to conform to a set of bins that may 

misrepresent the distribution. In this case 3D histograms of RGB colours of size 

16x16x16 were found to be sufficient in order to provide soft-classification maps without 

overly misconstruing the cluster distributions. 

The application of soft-classification maps to the computation of / -value images 

improves results. Figure 5.13 shows an example of how these new classification maps 

impact the J -value images. The goal of computing J -values is to identify homogenous 

colour-texture regions. Image portions having low degree homogeneity are coloured in 

white, while dark portions indicated a high degree of homogeneity. 
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Orignal Frame 

J-Values with Soft-Classification J-Values with Soft-Classification 
using Gaussian Distributions using Histogram Backprojection 

Figure 5.13 - Impact of Soft-Classification Maps on J- Value Computations 

In the left column the image has several small non-homogeneous portions which 

in fact can be considered noise. Due to the highly textured scene many of the small 

subtle colour variances are included in the J -value computations. Lighting changes, 

colour gradients, small insignificant edges have a large impact in the way the 

homogenous regions are found and subsequently segmented. Soft-classifications help in 

removing the noise introduced by these components by allowing labels to have 

membership values. Even if a pixel is given a certain label, if its membership value is 

spread out among multiple classes it will likely result in a low J -value. In other words, 

the soft-classification of the clusters allows for a softening of gradient edges between two 

very similar clusters. The middle column shows the impact the technique proposed by 

Wang et al. [28] has on J -value computations. The right column shows the results of 

the improved soft-classification proposed in this work. While both these techniques 

succeed in their goal of removing non-homogeneous noise, the original soft-classification 
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by Wang et al. [28] has a tendency of over attenuating the values. This attenuation is 

observed along the musician's shoulders, where the J -value edges have been completely 

removed. The flexibility of being able to choose the amount of histogram sub-sampling 

in the proposed technique allows the algorithm to more accurately represent clusters and 

thus makes it less likely to attenuate key J -value elements. 

5.2.3 J-Value Segmentation Results 

The core JSEG algorithm has not been significantly modified in this work; / -

values are computed and regions are produced in the same manner Deng et al. [3] have 

proposed. The FAMS and soft-classification additions described earlier are introduced in 

order to improve the results of the JSEG algorithm which are now observed in this 

section. Once again a comparison between the improved technique and the original 

segmentation algorithm will be provided. 

For the results demonstrated here, the kernel and scaling values are the same as 

suggested by Deng et al. [3]. These parameters are reviewed in detail in Appendix C. 

The only remaining parameter that is left to be tweaked is at which scales the 

segmentation should occur. A larger scale will result in the discovery of larger and less 

pronounced homogenous colour-texture regions while at a smaller scale, more defined 

edges are found. The scales used will modify the size of the kernel and consequently the 

number of neighbourhood pixels considered in J -value computations. The final /-value 

will reflect the homogeneity of the neighbourhood pixels taken into consideration. 

Regions are iteratively split by re-computing 7-values within the defined area at a 

smaller scale and determining if a new set of seeds are present within the region. The 
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number of scales used will determine how coarse the segmentation will be. Deng et al. 

[3] define an upper bound on the largest scale based on image size. Beyond the upper 

bound, JSEG is said to no longer provide relevant segmentation information. For the 

sequences used in this work, that bound is set at scale 3. This means that the /-value 

segmentation will perform an initial region determination with a kernel up-sampled by a 

factor of 3. These initial regions will be refined by applying a second kernel of scale 2 

and repeating the region determination process. Results between the application of 2 and 

3 scales are also compared. 

The differences in the segmentation results from the improved algorithm and the 

original segmentation algorithm can sometimes be quite subtle. The improvements are 

aimed at incorporating sections of an image that exhibit some kind of smooth colour 

gradient. In Figure 5.14 the segmentation results for a controlled laboratory environment 

are given. In the first sequence the improved algorithm can clearly be seen from the 

manner in which the musician's legs and arms have been identified. The background is 

also better segmented. Since shadows are better incorporated within the clustering 

process the number of regions is kept small. In the second sequence the major 

improvement can be seen in the segmentation of the pianist's face. The segmentation of 

the pianist's right arm is slightly more complex, this is in part due to the manner in which 

the clustering has occurred. The third sequence shows the most improvement. This 

sequence was only given 2 clusters when done using a K-means algorithm. The added 

clusters from the FAMS algorithm vastly improve the segmentation. The musician's 

head is clearly identified and his body is better segmented from the other surrounding 

sections. By adding another scale to the segmentation process, regions created at larger 
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scales are iteratively split based on the /-values computed within them. Little 

improvement was achieved by adding another scale to the segmentation. The majority of 

the image details were captured by refining the regions using a kernel of scale 2. At scale 

1, regions were split due to small variations in colour-textures and contributed to over-

segmenting the image. While JSEG demonstrates the ability to clearly segment semantic 

image components, the overall results show clear signs of over-segmentation. 

Original Segmentation Improved Segmentation Original Segmentation Improved Segmentation 
Algorithm using Scales 3 to 2 Algorithm using Scales 3 to 2 Algorithm using Scales 3 to 1 Algorithm using Scales 3 to 1 

Figure 5.14 - Segmentation Results in Laboratory Environment 

In the home environment, Figure 5.15, scene complexity is increased 

significantly. However, the improvements still succeed in producing a better 

segmentation. In the first sequence, the musician's hand and legs are segmented 

successfully, while in the original algorithm they are missed altogether. In the second 

sequence, the musician's torso is clearly defined as are her legs and a distinction between 
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her left and right arm. The added complexity does contribute to some error in the 

segmentation. In particular some bleeding effect can be observed. Sections having very 

similar colour properties to their surroundings tend to bleed into another portion of the 

image. This can be seen along the pianist's arms and legs in the second image, where 

regions are slightly misconstrued and include nearby image sections. 

Original Segmentation Improved Segmentation Original Segmentation Improved Segmentation 
Algorithm using Scales 3 to 2 Algorithm using Scales 3 to 2 Algorithm using Scales 3 to 1 Algorithm using Scales 3 to 1 

Figure 5.15 - Segmentation Results in Home Environment 

In the studio environment, seen in Figure 5.16, the improvements become even 

more subtle. The increasing complexity of the scene reaches the limit of JSEG's ability 

to properly create seeds of semantic regions. Some improvements can still be observed, 

in particular the musician's head and the background floor within the first sequence. The 

musician's head and arms are also clearly segmented in the third sequence; a significant 

advantage over the original algorithm. However, due to the high number of textures and 

edges in the second sequence, it is difficult to come to any type of conclusion. 
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Original Segmentation Improved Segmentation Original Segmentation Improved Segmentation 
Algorithm using Scales 3 to 2 Algorithm using Scales 3 to 2 Algorithm using Scales 3 to 1 Algorithm using Scales 3 to 1 

Figure 5.16 - Segmentation Results in Studio Environment 

These results demonstrate a definite advantage provided by the FAMS and soft-

classification improvements introduced in this work. Only in highly complex scenes 

does the advantage become less obvious. As mentioned before the lack of improvement 

can be explained by the fact that JSEG's ability in clearly distinguishing regions in very 

complex scenes such as the Studio environment remains limited. By extending the 

segmentation to a smaller scale the refinement allows regions to be split in such a way 

that semantic image regions are better identified. Regardless of the scale however, a 

region merging process must be done in order to properly finalize the segmentation. 
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5.2.4 Merging Results 

From the results in the previous section the need for merging similar regions 

together is apparent. In the original segmentation algorithm a histogram comparison 

technique was used. Proposed by Hernandez et al. [23] and adopted in this work is an 

iterative joint-criterion merging technique involving both colour and edge information. 

This section examines how a weight parameter establishing the criteria was chosen as 

well as a how the new algorithm compares to the original. 

The algorithm used in this work must rely on a weight parameter, a, shown in 

equation (4.24), in order to determine how much importance should be attributed to either 

the edge or color criteria computed between regions. The other important factor that 

must be accounted for is the number of regions that should be merged. The impact the 

weight selection has on the entire merging process is demonstrated in Figure 5.17. In 

these cases the same total number of regions was merged, thus allowing a more objective 

view of exactly how the weight parameter changes the final result. The initial 

segmentation of the frame as well as the number of regions merged is purposefully 

exaggerated in order to provide better insight as to the effects of the merging. When the 

weight parameter, a, is low and favours edge data, only regions having a weak boundary 

are merged together. In the frame where a = 0.0 the segmentation quickly merges 

together regions having larger colour differences but where their boundaries produce a 

more subtle colour gradient. This is observed along the musician's face and arms. Other 

regions having stronger boundaries but very similar colour properties are simply left 

alone; this lack of merging is clearly seen in many aspects of the background. In the 

frame where only colour data is considered (a = 1.0) regions having a distinct border 
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such as the legs quickly merge to the background due to their surrounding colour 

properties. When observing the mixture of weights that consider both edge and colour 

information, a more elevated weight tends to produce better results. In the case seen in 

Figure 5.17, a = 0.75 is clearly the ideal weight. 

a-I .O 

Figure 5.17 - Impact of Weight Selection on Merging Process 
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Without exaggerating both the segmentation and the merging processes, results 

presented in Figure 5.18 attempts to compare the algorithm by Hernandez et al. [23] to 

the original merging technique used by Deng et al. [3]. The original technique only 

manages to merge together regions having similar colour properties. The merging 

process is stopped when the difference in colour surpasses a threshold. In the attempts 

done below, the threshold had to be set at a very low level or the result would be under-

segmented. In most cases, no merging at all gave the best results with the original JSEG. 

The improved merging process provides a clear advantage for reducing the number of 

regions. The results demonstrated here were created by manually selecting a weight and 

number of merging iterations that would provide the best segmentation. This process 

also allows for a greater flexibility by reducing parameter tweaking in the various 

segmentation stages prior to the merging. 
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JSEG Segmentation with 
Original Merging Process 

JSEG Segmentation 
with no Merging 

Improved Segmentation 
with New Merging Process 

\ 

Figure 5.18 - Merging Result Comparison 

In the first frame there is a significant reduction in background regions with the 

improved approach. Not all of these regions have similar colour properties but they do 

no have strong boundaries between them. In the second frame the original merging 

process removes any region of significance with the exception of the pianist's arms and 

head. Finally, in the third sequence the pianist's arms and head are maintained as a 

separate region. 
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5.2.5 Tracking Results 

The last remaining process to be analyzed is the tracking algorithm that permits 

the motion capture of specific body segments in the image. As explained before, the 

tracking is done using frame blocks and the merge of two separate algorithms to track the 

regions contained within a block and those contained between blocks. This block-based 

representation is a new concept proposed in this thesis. The intra-video stack tracking 

algorithm is the same as the original technique proposed by Deng et al. [3]. The inter-

video stack algorithm is based on the research done by Withers et al. [56] and allows for 

tracking sequences that cannot be completely stored in memory or analyzed as one large 

video stack. The algorithm proposed by Withers et al. [56] was originally intended for 

the tracking of cell merging and splitting but is applied here in the context of tracking 

segmented image regions between video stacks. The results of both these algorithms are 

observed in this section. 

Figure 5.19 and Figure 5.20 show the results of the intra-video stack tracking 

technique. In these cases blocks were kept at a moderate size with 5 and 4 frames 

respectively. Since the clustering, soft classification, segmentation and merging 

techniques all treat the frames as one single large volume the results do not change 

significantly from one frame to the next. In order for a region to be considered when 

segmentation occurs, it must be found within each frame of the video stack. The 

correspondence between regions is hence done implicitly. 
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Sequence 1 

Sequence 1 Region 
Tracking 

Sequence 2 

Sequence 2 Region 
Tracking 

Figure 5.19 - Intra-Block Tracking Results 

Sequence Segmented 
Using Improved Algorithm 

Sequence Segmented Using 
Deng at afs Algorithm 

Figure 5.20 - Intra-Block Tracking Result Comparison 

As can be seen, the regions found within a block are very consistent from one 

frame to the next, allowing for easy video stack tracking. When the tracking process 

operates on images segmented using Deng et a/.'s original technique [3], a number of 

superfluous regions are created. The original technique also fails to map regions with the 

same level of accuracy provided by the improved technique. Both Figure 5.21 and Figure 

5.22 show example results of the inter-video stack tracking algorithm. These results were 
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generated using a smaller block size of 4 and a correspondence factor, RtJ from equation 

(4.25), of 0.6. Since the videos depicted in Figure 5.21 and Figure 5.22 have less motion, 

a smaller block size of 4 frames was selected in order to shorten the processing time. The 

overall quality of the segmentation does not drastically change between blocks, allowing 

a high degree of correspondence between regions of different video blocks. The 

correspondence factor must be tweaked based on the total number of regions. When the 

number of regions increases, so does the number of potential correspondences between 

blocks. In order to avoid false correspondences, the factor must be increased in order to 

provide a more discriminating tracking. 
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Block 1 

Block 2 

Block 3 

Segmented 
Block 1 

Segmented 
Block 2 

Segmented 
Block 4 

Figure 5.21 - Inter-Video Stack Tracking in Low Motion Scene 

Also conveyed in these figures is the algorithm's ability to not only segment a 

musician but to also allow for the identification of various image sections. In Figure 5.21 

both the pianist's head and torso are identified, while in Figure 5.22 the head, right arm 

and torso are captured. There are also some visible region deformations, in particular 

around the musician's torso and head in Figure 5.21 and Figure 5.22 respectively. These 

deformations are due to the algorithm's inability to correctly separate surrounding 

colours from those on the pianist. 

104 



Block 1 

Block 2 */ 

Block 3 

Segmented 
Block 1 

Segmented 
Block 2 

Segmented 
Block 4 

Figure 5.22 - Inter-Video Stack Tracking in Medium Motion Scene 

5.3 Experimental Results 

The following section of this chapter gives complete results for several videos of 

different scenes. These videos exhibit different harsh conditions against which the 

algorithm can be tested with. The laboratory environment provides a scene in which 

lighting and complexity are controlled while the home and studio environments provide 

scenes with more varied lighting and a larger number of textures respectively. A look at 
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both the segmentation and motion capture aspects for the technique will be given. The 

block sizes used to produce each result is reflected by the number of images per row. 

5.3.1 Laboratory Environment Results 

The laboratory environment is characterized by a more uniform lighting scheme 

and a background that is composed of a simpler set of textures. The musician has a clear 

contrast between himself and the background and no moving components other than the 

pianist can be observed. The first sequence is used in the segmentation process while the 

second sequence demonstrates the motion capture abilities of the technique. 

Figure 5.23 depicts several frames of the segmented musician in the laboratory 

environment. The sequence covers several seconds of activity, but in the interest of 

brevity only sets of frames covering the first couple of seconds are given. The initial set 

of groups to be segmented throughout the video includes the pianist's head, torso and left 

arm. The groups are created by a human operator selecting the appropriate segmented 

regions out of the first frame. From the outset the pianist's general form is clearly 

segmented. Only the hand exhibits some segmentation fault by incorporating nearby 

background regions. The cause of this fault, seen in frames 60 to 83, is due to the false 

merging of the region represented by the musician's watch and the background. There is 

no pronounced edge between these two regions and the colours are strikingly similar. As 

the musician lowers his hand, the watch no longer intersects with the troublesome 

background section and immediately yields better segmentation results. Alternatively, 

less merging could have been used, thus increasing the total number of regions and 

processing required, yet improving the results. 
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Frames 
20 to 23 

Frames 
40 to 43 

Frames 
60 to 63 

Frames 
80 to 83 

Frames 
100 to 103 

Frames 
120 to 123 

Figure 5.23 - Final Laboratory Segmentation Results 

In Figure 5.24, motion capture results in the laboratory environment can be 

observed. The motion capture attempts to provide insight on the movement of the 

individual region sets of the segmented sequence. In the sequence the musician's head, 
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torso and arm are individually tracked. Once again these groups were selected by a 

human operator after the segmentation of the first frame. In this laboratory sequence 

lighting is slightly less uniform and creates some amount of confusion with the pianist's 

clothing. The end result of this confusion is small un-segmented portion of the 

musician's back. This error however is considered to be small and assumed not to 

significantly impact any future analysis on the pianist's motions. In fact, despite colour 

changes to the pianist's shirt due to shadow, and the colour blending between the wall 

and the shirt, the system succeeds in maintaining a proper segmentation of the musician's 

torso. 

First 
Frame 

Figure 5.24 - Final Laboratory Motion Capture Results 
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Both the segmentation and motion capture results are very good within the 

laboratory environment. With the exception of small inconsistencies the system performs 

very well. As mentioned before however, the environment is simplistic and the motions 

of the pianist are small and easy to track. The results presented here clearly indicate that 

within these types of well lit and controlled environments the system succeeds admirably. 

5.3.2 Home Environment Results 

The home environment videos were provided by piano students and taken with 

little regard to the quality and complexity of the overall scene. The sequences are rich in 

texture and complex lighting effects. The movements exhibited by the musicians are also 

far more pronounced than the ones performed by the musicians in the laboratory 

environment. Once again the results of segmentation and motion capture will be given. 

The home environment seen in Figure 5.25 is clearly more complex that any of 

the laboratory sequence. The number of textures and lighting effects is considerably 

higher; complex colour behaviours including light refractions from the piano and wall 

can be observed. The goal of the segmentation was to incorporate as much of the 

musician's body as possible. The head, arm, torso and leg regions were all selected as 

the segmentation targets. In the initial results the musician's hand cannot clearly be 

defined with respects to the background music sheet, this creates some error in the final 

representation. This error is also present when the hand approaches the off-white keys of 

the piano. It is only when the musician's hand departs from the music sheet and piano 

keys that it can clearly be segmented. This fault in segmentation is attributed to the 

clustering algorithm's inability to properly identify the hand pixels as being apart from 
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the colour distributions of the piano keys and music sheet. One of the reasons why this 

may have occurred is due to the small number of pixels representing the hand. The lack 

in pixels translates into a lack of colour components that would have otherwise formed a 

more distinct colour distribution. This problem could potentially be remedied using very 

large block sizes in the tracking algorithm, thus increasing the number of pixels 

belonging to the hand. This solution however would have required considerable 

resources in order to buffer and process such a large number of data points. Hand 

segmentation can also be improved by zooming cameras onto regions of interest, 

expanding the coverage and number of pixels, of specific parts of the body. 
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Frames 
20 to 24 

Frames 
100 to 104 

Frames 
120 to 124 

Figure 5.25 - Final Home Segmentation Results 

In the home motion capture sequence, the regions selected for capture exhibit 

rougher segmented edges and less stability. In Figure 5.26, the pianist's head, torso, arms 

and legs were selected by a human operator out of the initial frame as the motion capture 

targets. In the sequence the head and torso are fairly well segmented and tracked. With 

the exception of small irregularities due to the lack of contrast in the background, these 

targets represent the pianist's body posture very well. The arms and legs on the other 

hand pose a more serious challenge. These targets have a more complex colour 

representation and are positioned closed to other similarly complex components such as 
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the piano. While J -value segmentation typically succeeds well in situation of high 

texture complexity, in this case it fails to adequately provide well rounded regions for the 

targets. The arms and legs are still identified and tracked without any significant issues, 

but their regions remain somewhat misconstrued due to the overall local scene 

complexity surrounding them. 

Frames 
20 to 23 

Frames 
40 to 43 

Frames 
60 to 63 

Frames 
80 to 83 

Figure 5.26 - Final Home Motion Capture Results 

This section has provided both segmentation and motion capture results for the 

home environment. As can be observed the overall system scales very well with the 

added complexity provided by this environment. While some difficulties are encountered 
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with respects to less discriminating image components the overall results still provide 

valuable insight as to the overall body posture of the pianist. 

5.3.3 Studio Environment Results 

The final environment used to the test the system presented within this thesis has 

the highest level of complexity. The number of textures, lighting effects and motions 

make for a very difficult scene to segment. The studio environment is used for doing 

both music recordings and performances; it can be subjected to several different lighting 

conditions. These complexities are used in order to test the limitations of the 

segmentation and motion capture algorithms proposed in this work. 

The first studio sequence tested for segmentation is seen in Figure 5.27. The 

sequence has several colourful and rich textures as well as non-uniform lighting, 

particularly along the background of the scene. In the segmentation attempt, the 

musician's head, torso, legs and arms were identified for segmentation. In this sequence, 

the musician's hair was found to be rather difficult to separate from the dark background 

section. For this reason, it was omitted from the segmentation altogether. Its colour 

similarities simply did not allow the clustering algorithm to differentiate among the two 

image components. Similar to the home environment the pianist's hands were difficult to 

segment apart from the piano keys. The reasons for this lack of distinction are also the 

same; the insufficient size of the features and the local scene complexity made it difficult 

to produce two separate regions. In fact throughout the segmentation the hands and arms 

exhibited unreliable detection. Other components of the target, such as the neck and legs, 

often included some background components. These misconstrued regions were the 
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result of small lighting changes and shadow effects that dampened the J -values between 

image sections. This resulted in a single region on some frames and two separate regions 

on others. Despite these shortcomings, the algorithm maintains a vast majority of the 

musician, including the torso, head and right arm throughout the sequence. In frames 120 

to 154 the algorithm's ability to handle partial occlusions can be observed. The pianist 

slowly turns her head away from the camera, obscuring some of the facial features. 

However, since the face does not completely disappear from view it is successfully 

segmented throughout the movement. 
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Frames 
30 to 34 

Frames 
60 to 64 

Frames 
90 to 94 

Frames 
120 to 124 

Frames 
150 to 154 

Frames 
180 to 184 

Figure 5.27 - Final Studio Segmentation Results 

In the second studio sequence the motion capture aspect of the technique is 

evaluated. The scene's complexity surpasses that of the original studio video. The scene 

has several darker textures, small background motions and a complex combination of 

outdoor and indoor lighting. The motion capture targets in this case were the pianist's 

head, arms, torso and legs. As can be observed in Figure 5.28, the legs and torso can 

generally be tracked without too many region inconsistencies. The arms and head 
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however, often exhibit radical deformations due to changes in local colours and scene 

complexity. Throughout the entire sequence, the musician's head is misconstrued with 

nearby image sections having either similar colours or whose texture cannot easily be 

segmented into a coherent region. In several instances the arms are under-segmented due 

to the fact that regions are lost in the tracking process. This loss is a direct result of the 

lack of stability in the region creation process from one video stack to the next. Since 

each stack must deal with a wide range of colours and motions the segmentation results 

can vary quite a bit and impede proper inter-video stack tracking. In this case the 

algorithm does not necessarily provide the best representation of the motions exhibited by 

the smaller scene components. For more exact results in such a complex environment the 

target regions should be constrained to image parts that are more prominent. 
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Frames 
15 to 18 

Frames 
20 to 23 

Frames 
25 to 28 

Frames 
30 to 33 

Figure 5.28 - Final Studio Motion Capture Results 

The studio environment provides several challenges to the technique presented 

here. Despite the richly coloured scenes, the algorithm still scales well to the added 

complexity. Smaller image components however are made very difficult to identify and 

track, especially when nearby image sections are of high complexity. In such cases the 

field of view of the cameras should be constrained and only take into consideration the 

more prominent features of a sequence. 
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5.4 Experimental Results in Other Contexts 

The following section examines the applicability of the technique described here 

in other contexts besides piano playing. The goal of this analysis is to further strengthen 

the underlining objective in order to provide a framework appropriate to unconstrained 

environments. In order to achieve this, the technique has been tested against a video that 

is outside the stated test cases and in an entirely different environment. 

The selected video sequence for this test depicts a professional hockey match and 

demonstrates the framework's adaptability and scalability towards environments that 

exhibit a much higher level of motion. This context also poses several tracking 

challenges stemming from the frequent interactions between players. For this situation, 

background subtraction methods would outright fail due to the motion of the camera 

viewpoint and individuals in the background. Figure 5.29 depicts the final results of the 

technique. 
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Figure 5.29 - Results From Video in a Different Context 
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The results from this test clearly show just how well the technique presented 

within this thesis can be applied to various contexts. The segmentation and tracking of 

the selected hockey player is good despite the high speed at which both the individual 

and the camera is moving. Interactions with other nearby players aren't enough to deter 

the tracking of the appropriate regions. There is however some loss of detail within the 

final results; this is mostly due to the fact that the target of interest occupies a very small 

portion of the overall view. Overall, the application of this technique in a context other 

than piano playing was successful. 

5.5 Chapter Summary 

The results demonstrated in this chapter clearly show how the technique 

explained within this thesis can be used in order to segment and capture motion from 

performing musicians in different environments without markers or specific dress code. 

These results also show how the algorithm scales well in light of several added scene 

complexities. It is only when the scenes become overwhelmingly complicated that 

smaller areas of interest can no longer reliably be tracked or segmented. The 

comprehensive analysis of the algorithm has also showed how the improvements 

introduced throughout this thesis do in fact help Deng et al.'s [3] original JSEG algorithm 

surpass its initial shortcomings and make it applicable for motion capture. 
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Chapter 6 Conclusion 

The final chapter will cover three sections. The first section summarizes the 

research and infrastructure presented within this work. The second section reviews the 

contributions of the overall work. The final section discusses and provides insight on 

possible future work. 

6.1 Summary 

This thesis presented an approach for a motion capture system that uses only 

passive vision technologies. The goal of this system is to provide the means with which 

human performance evaluations can be done without the need for cumbersome and 

interfering technologies. The research was presented in the context of piano playing, 

where every year professionals succumb to serious repetitive stress injuries. The capture 

of motions in this context must be done without imposing constraints on the musician or 

his environment. Such constraints could only impede a musician's true performance and 

serve to invalidate the captured data. 

A review of the traditional motion capture systems was presented in Chapter 2. 

Many of these traditional techniques used cumbersome devices that had to be worn by 

performers in order to acquire data. Infra-red and magnetic trackers attached to 

individuals only inhibit their natural motion and are not appropriate for the context 

presented here. Passive technologies were also reviewed. The application of thresholds, 

background modelling, contour, statistical, and region-based methods were all found to 

either be inadequate for complex environments or relied on assumptions with regards to 
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the movement. As such the vast majority of existing techniques could not work well in 

the unconstrained setting required here. 

A subset of the techniques reviewed was tested in the typical environments in 

which musicians performed with increasing complexity. While some of the techniques 

showed promise, such as the mixture of Gaussians and Continuous Adaptive Mean-Shift 

(CAMSHib'l), their application to more complicated environments or to a more varied 

set of motions was limited. Even with several improvements to the CAMSHIFT 

algorithm, the technique would not be able to handle the type of scenes used in this work 

without requiring a serious reworking of its founding principles. 

The region-based algorithm, JSEG, developed by Deng et al. [3] used a novel 

colour-texture homogeneity measure with which semantic image regions could be 

identified. This technique became the starting point for much of the research presented 

here. Applied to their original algorithm were the improvements suggested by Wang et 

al. [28]. In addition to these improvements a non-parametric description of colour 

clusters, a merging technique based on watershed segmentation and a block-based 

tracking algorithm were also introduced. 

These improvements, described in Chapter 4, were found to give a significant 

advantage over the original JSEG algorithm. They extended the applicability of the 

original algorithm from simple textured environments to the complex scenes surrounding 

musicians during repetitions. The improvements also allowed for individual components 

of a scene to be tracked, thus allowing individual motions from a musician to be 

observed. The final study on of several different scenes demonstrates the flexibility of 

the proposed algorithm as well as its scalability in light of additional scene complexities. 
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6.2 Contributions 

This thesis introduces a new method for capturing and tracking key performance 

motions within complex environments using a purely non-invasive technique. The 

algorithm utilizes a region-based segmentation algorithm in order to identify semantic 

image components. This segmentation makes use of a local homogeneity criterion in 

order to produce these semantic regions. The algorithm also allows tracking by finding 

correspondences between image frames using a temporal homogeneity criterion. 

The original algorithm [3] was improved using a non-parametric clustering 

technique as well as an equivalent non-parametric representation of the clusters in order 

to provide the underlining data set for the segmentation. The use of these techniques 

allows for more dynamic image data. A flaw in the original algorithm that produced an 

over-segmentation of the images was corrected using a joint edge and colour criterion for 

merging similar regions. Likewise, since the original algorithm did not allow for online 

region tracking, a block-based algorithm is applied in order to modify the existing 

methodology. This inter-video stack tracking algorithm finds region correspondences 

between blocks by taking into account various region transformations that may have 

occurred. 

Many of the additions to the original algorithm stem from previous works in 

various domains of computer vision. The combination of these techniques provides a 

new and innovative way of performing segmentation and motion capture. In the case of 

the FAMS algorithm, some modifications were done in the manner in which optimization 

parameters were applied. A new way of using soft-classification maps based on 

histograms was proposed by this work and shown to be successful. The use of multiple 
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video tracking algorithms in a block-based configuration was also presented within this 

thesis and proven to perform well. 

These additions were found to improve the overall segmentation of complex 

images as seen in Chapter 5. A better overall identification and tracking of human targets 

was achieved as demonstrated by experimental comparison with state-of-the-art 

segmentation and tracking techniques. Individual region sets were tracked throughout a 

sequence in order to allow motion capture of human performance. 

6.3 Future Work 

The algorithm proposed in this work is successful in providing the means with 

which a performer's motions can be captured. The system however, is dedicated to 

capturing human performances. The fact that humans will always be the targets of 

interest can be an advantage. Skeletal and kinematic models could be used to assist the 

segmentation and tracking process. By fitting a model to the visual data, a refinement on 

the image regions can be performed in order to improve the overall results. The 

restrictions imposed by these models would also help the tracking process by limiting its 

search area when finding region correspondences in subsequent frames. The system is 

also limited to the two-dimensional case. In a performance a full three-dimensional view 

of the movement would provide a better and more informed analysis. Already the 

physical infrastructure for a multi-view acquisition of human performance has been built. 

The segmentation algorithm could benefit from the additional information provided by 

the 3D coordinates of points across multiple cameras. This of course would require the 

construction of dense depth maps for each point of view. Both the clustering and 
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segmentation algorithms could be expanded in order to take advantage of the 3D colour 

distributions in order to provide a far more discriminative segmentation among the 

components in a scene. This would also eliminate misconstrued regions due to colour-

texture similarity with other background regions. 
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Appendix A K-Means Clustering 

The K-means algorithm is a process that attempts to group data based on its 

attributes into k partitions. The algorithm has a wide range of applications; it can, for 

example, be applied to reduce the number of colours in an image. In this case, the data 

would be the various colour pixels whose attributes can be represented as an RGB or 

other colour space vector. Ultimately the algorithm attempts to minimize the total 

variance found within each partition. This concept is represented in equation (A.l). 

v=Y,UxJ-^ (A.i) 
(=1 XjEP, 

Here V represents the total variance found among all partitions. It can also be seen as a 

measure of how well each data point Xj fits into its own partition Pt. Each partition is 

described by its mean vector pit. 

The K-Means algorithm does suffer from two major shortcomings; the value of k 

is not necessarily known for a data set and even if the number of partitions was known 

their centers still need to be determined. To resolve the latter of the two problems, an 

iterative refinement process known as Lloyd's algorithm can be used. This refinement 

works by first assuming the number of k partitions required. The partition centers are 

randomized and each data point is associated to the partition whose center is the closest. 

Once each data point has been associated to a center, each partition center is re-computed 

as the mean of the points associated to it. With the new means computed, the process is 
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repeated until a minimum in the total variance has been reached. This refinement process 

can be quite slow for large data sets. 

In Deng et al.'s Peer Group Filtering [26] technique, the problem of selecting a 

parameter k is resolved by applying Lloyd's algorithm multiple times for different values 

of k. As the number of partitions increases the total variance to which Lloyd's algorithm 

converges towards should diminish. The number of partitions stops increasing when the 

total variance hits a threshold set by an operator. This threshold is highly dependent on 

image content. The K-means algorithm also does not fair very well in scenes where 

colours do not cluster circularly around the partition centers. 

136 



Appendix B Kernel Density Estimation 

Kernel density estimators are a means with which data distributions can be 

estimated without requiring that they fit into pre-defined parametric representations. The 

motivation behind kernel density estimators comes from the use of histograms and their 

shortcomings. This appendix looks at how histograms can be used in order to estimate 

distributions and how kernel density estimators are in fact a generalization and 

improvement of histograms. 

Histograms are an easy and efficient way of representing data. Their 

representation however depends on the size as well as the start and end points of the bins. 

As Figure B.l demonstrates, by simply changing the bin size of a histogram its 

representation can significantly change. In the top portion of the figure the random data 

seems to follow a single mode distribution, however by changing the sampling of the 

histogram, the distribution does not seem to follow the same kind of parameterization. 
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Figure B.l - Histogram Representation of Data Distributions 

In order to alleviate some of the problems with the histogram representation, 

kernel density estimators can be used. These estimators center a kernel function on each 

data point, the response at these points is added in order to have a more appropriate 

representation. Figure B.2 shows the result of using a block kernel estimation whose 

width and height are equivalent to the bin size used in the first histogram of Figure B.l. 

The representation remains discontinuous because the kernel function is discontinuous as 

well. By selecting a continuous kernel function a smooth distribution curve can be 

obtained. While the kernel density estimators solve the problem of histogram end points, 

they do not necessarily provide any insight on how large their bandwidth should be. 

138 



There are plenty of techniques available for determining the appropriate bandwidth for a 

kernel density estimator, for reasons of brevity they are not discussed here. 
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Figure B.2 - Data Representation Using a Discontinuous Kernel Estimator 

From a mathematical stand point a kernel density estimator can be described 

using the equation (B.l). 

n M \ h 
(B.l) 

Here the density f(x) is estimated for n points. The kernel function is represented by 

K and is considered to have a bandwidth of h. If the kernel function is found to 

integrate to 1, then the same conclusion can be applied to the density estimate. A 

Gaussian curve is typically the most common type of kernel function. 
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Appendix C Examples of Homogenous Colour-Texture 

Maps 

The technique used in this thesis relies on colour-texture maps in order to identify 

regions of an image that are homogenous. These regions are identified by computing 

every pixel's J -value. A large value indicates a pixel of low homogeneity, while a low 

value indicates a pixel of high homogeneity with its local neighbourhood. This section 

will demonstrate how these values are computed for different scales as well as give 

simple examples. 

The formulas used in the computation of a /-value are covered in section 4.1 

with equations (4.8) to (4.12). Figure C.l shows an example of several class distributions 

and their resulting J -value computation. Each example is formed from a set of 3 classes 

with different types of spatial distribution. In example 1 each class is clearly divided; in 

example 2 all the classes are uniformly distributed; in example 3 only 2 of the 3 classes 

are distributed. A distribution of multiple classes over an area is typical of the colour 

behaviour exhibited by textures. From the results shown below, it is clear that class maps 

having several yet uniformly distributed labels still exhibit a low J -value. This property 

is what makes the algorithm able to identify both colour and texture homogenous regions. 
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Figure C.1 - Example of J- Value Computations for Various Class Maps 

In order to have a mapping of the J -values over an entire image, each pixel on 

which the computation is to occur needs to define a neighbourhood area. This area is 

represented by a circular kernel mask. The size of the mask will determine the scale at 

which colour-texture edges will be found. The base kernel is a 9x9 mask, as seen in 

Figure C.2; it is up-sampled in order to take into consideration larger edges. As the 

kernel becomes larger it also takes into consideration a larger neighbourhood of pixels. 

The homogeneity of this larger neighbourhood will be reflected in the final /-value. 

Regions are determined at the largest kernel scale and then refined by applying a smaller 

kernel scale within these regions. The smaller neighbourhood of pixels being considered 

within a region will dictate if the region will be split into smaller ones. Figure C.3 shows 

an example of the J -value computation for a simple image having both subtle and more 

gradient edges. At a smaller scale the sharper edges are clearly distinguished, while at a 

larger scale, the colour gradient is better observed. The shape of the kernel, its up-

sampling behaviour, and the /-value thresholds applied in the region determination 

process are given by the original authors Deng et al. [3]. 
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Figure C.3 - J- Value Representation of a Simplified Image 
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