Skip to main content

A GPU-Based Algorithm for Building Stochastic Clustered-Dot Screens

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4841))

Abstract

In industrial pattern reproduction, clustered-dot screens are usually created to transform continuous tone image into halftone image for batch printing. But the algorithms generating clustered-dot screens are usually difficult to process large image because they are very slowly and need lot of memory. In addition, the generated halftone image often have periodic patterns, leading to poor tone reproduction. In this paper, a GPU-based algorithm for building stochastic clustered-dot screens is proposed. In the algorithm, after stochastically laying screen dot centers within a large dither matrix, Voronoi diagram is constructed to obtain the region of each screen dot, which is implemented with GPU. Then, each screen dot’s region is filled to get the stochastic clustered-dot screens, where a better gray density filling method that can be implemented easily on GPU is used. Experiments show the method can generate screens faster and with less memory than traditional algorithms. Moreover, in a halftone image generated by our method, the details and highlight part can be better expressed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Floyd, R.W., Steinberg, L.: An Adaptive Algorithm for SpatialGrey Scale. In: Proc. SID, vol. 17(2), pp. 75–77 (1976)

    Google Scholar 

  2. Ostromoukhov, V.: A Simple and Efficient Error-Diffusion Algorithm. In: Fiume, E. (ed.) Proceedings of SIGGRAPH 2001. Computer Graphics Proceedings, Annual Conference Series, pp. 567–572. ACM Press / ACM, SIGGRAPH, New York (2001)

    Chapter  Google Scholar 

  3. Zhou, B., Fang, X.: Improving Mid-tone Quality of Variable-Coefficient Error Diffusion Using Threshold Modulation ACM SIGGRAPH 2003, Knuth, D.E.: Digital Halftones by Dot Diffusion. ACM Trans. on Graphics 6(4), 245-273 (1987)

    Google Scholar 

  4. Kopf, J., Cohen-Or, D., Deussen, O.: Dani Lischinski Recursive Wang tiles for real-time blue noise (siggraph 2006). ACM Trans. Graph. 25(3), 509–518 (2006)

    Article  Google Scholar 

  5. Ostromoukhov, V., Hersch, R.D.: Stochastic Clustered-Dot Dithering. Color Imaging: Device-Independent Color, Color Hardeopy, and Graphic Arts IV 3648, 496–505 (1999)

    Google Scholar 

  6. Changhe, T., Rongjiang, P., Xiangxu, M.: An Algorithm for Building Stochastic Clustered-dot Screens. Journal of Computers 23(9), 938–942 (2000)

    Google Scholar 

  7. Rong, G., Tan, T.-S.: Jump Flooding in GPU with Applications to Voronoi Diagram and Distance Transform. In: Proceedings of the 2006 symposium on Interactive 3D graphics and games, Redwood City, California,USA, March 14-17, 2006 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

George Bebis Richard Boyle Bahram Parvin Darko Koracin Nikos Paragios Syeda-Mahmood Tanveer Tao Ju Zicheng Liu Sabine Coquillart Carolina Cruz-Neira Torsten Müller Tom Malzbender

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Qi, M., Yang, C., Tu, C., Meng, X., Sun, Y. (2007). A GPU-Based Algorithm for Building Stochastic Clustered-Dot Screens. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2007. Lecture Notes in Computer Science, vol 4841. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76858-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76858-6_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76857-9

  • Online ISBN: 978-3-540-76858-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics