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Abstract. We introduce a framework for object detection and tracking
in video of natural outdoor scenes based on fast per-frame segmentations
using Felzenszwalb’s graph-based algorithm. Region boundaries obtained
at multiple scales are first temporally filtered to detect stable structures
to be considered as object hypotheses. Depending on object type, these
are then classified using a priori appearance characteristics such as color
and texture and geometric attributes derived from the Hough transform.
We describe preliminary results on image sequences taken from low-flying
aircraft in which object categories are relevant to UAVs, consisting of
sky, ground, and navigationally-useful ground features such as roads and
pipelines.

1 Introduction

The problem of segmenting an image into semantically meaningful units is a
fundamental one in image processing. Watersheds [1], mean-shift clustering [2],
and graph theoretic [3–6] techniques which group pixels based on proximity,
color, texture, and other Gestalt characteristics are powerful tools, but none
are silver bullets. Besides practical issues of running time or the necessity of
some user interaction [4], the key issue is what objects, if any, correspond to the
segmented regions (aka superpixels). Given the frequency of oversegmentation,
in which objects are broken in multiple superpixels, or the opposite phenomenon,
a realistic hope of resolving this issue is only possible in constrained scenarios
in which much is known a priori about the objects in the scene. A sample of
recent work tackling superpixel grouping and classification includes the domains
of human body pose recognition [7], categorizing scene surface layout [8], and
finding trees, vehicles, and buildings in aerial images [9].

In this paper we take inspiration from such work in proposing a multi-stage
framework for object detection and tracking that is based on the output of the
graph-based image segmentation algorithm of Felzenszwalb and Huttenlocher [6]
(aka the FH segmenter). One major advantage of the FH segmenter is its speed:
on an Intel Core2 Extreme X6800, it segments 360 × 240 color images at over
30 Hz, compared to several minutes per image using spectral graph cut methods
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[3, 5]. This makes it practical to use for real-time video. Thus, a chief novelty
of our approach is that we can analyze superpixels over time for consistency
according to the intuition that temporally transient borders are likely spurious.
Candidate superpixels that pass this restrictive test are further examined using
region characteristics such as color, texture, and shape to see if they match any
of the objects we are searching for.

The task area we apply the framework to here is navigation and control
for unmanned aerial vehicles (UAVs) flying at very low altitudes (under 500
m). There are many possible image processing tasks for UAVs; we focus on
horizon detection for attitude determination and recognizing ground features
for navigation. At such low altitudes, terrain relief means that the horizon may
be quite jagged (see Fig. 1) rather than straight as most work assumes [10–
12]. Raw segmentations of mountainous images are shown in the classification
approach of [13], but there is no discussion of explicit recovery of the boundary
curve in a single image or tracking it over time.

Other object categories of interest besides sky and ground are navigationally-
useful linear features along the ground, which we term trails. These include
engineered artifacts such as dirt and paved roads and above-ground pipelines,
but also natural phenomena like rivers and streams. While vision-based road
segmentation is a well-studied topic for unmanned ground vehicles [14–16], the
relatively large size and stable centroid of the road region in their camera view
allows a robust approach to shape estimation from edges and easy sampling of
on-road pixels that is not possible from a low-altitude UAV perspective. From
the air, trail pixels do not dominate the image, making mere detection of the
trail among many other features a difficult aspect of the problem. Also, the
camera platform is often anything but stable due to wind gusts and pitching
and rolling as the UAV maneuvers, causing the horizon and trail to go in and
out of view. Unfortunately, because of the wide range of shapes and appearance
characteristics possible, aerial trail finding is not amenable to traditional machine
learning-based object detection methods such as the face- and person-finders of
[17, 18].

Image processing techniques for road or pipeline tracing in high-
er altitude imagery [19–21] also do not carry over directly. The low-altitude
UAV perspective is unlikely to be straight down, leading to perspective effects
like non-parallel road edges. On the positive side, though, enough pixels can typ-
ically be resolved within the trail region to gather detailed appearance statistics.
Examples of existing techniques that are more tracing-oriented than region-based
include [22], which demonstrates tracking of a short, straight runway with rela-
tively high contrast from a UAV, and [23] from the same authors, which tracks
video of a slightly curving canal. The tracker in the latter paper initializes au-
tomatically under the assumption that the ground feature is homogeneous, only
gently curved, and occupies a fairly large fraction of the image. [13] has some
results on finding straight roads in low-altitude aerial images using a Hough
transform on static images only, with no tracking.
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The organization of the paper is as follows. First, we detail our methods for
discriminating between the sky and ground objects reliably and tracking the
border between them. Second, we discuss preliminary results on extending our
superpixel analysis method to trail detection for several trail types. Finally, we
present a separate section of results processed offline on three diverse sequences:
a winding canyon road in the desert, a flyover of a section of the Alaska pipeline,
and a helicopter flight along a mountain stream.

2 Sky/Ground Discrimination

The FH segmenter works by greedily splitting regions when the intensity differ-
ence along the candidate child regions’ border exceeds their internal intensity
variations by a certain threshold (color image segmentations result from merging
the segmentations of their channels). Two key parameters govern the operation
of the segmenter: k, which sets the threshold for splitting, with larger k lead-
ing to a preference for the retention of larger regions; and min, which sets an
absolute minimum on the area of any region that is output.

Applying Felzenszwalb’s code for the FH segmenter to the canyon sequence
images in the first row of Figure 1 with standard parameters k = 100 and
min = 100 (explanation below) yields the segmentations shown in the second
row of the figure. The colors of the segmentation are randomly generated to show
superpixel memberships. While the sky-ground border is clearly visible, it is but
one of many edges generated by this oversegmentation. Because the object we
are looking for, sky, is expected to be a large region, we can obtain a cleaner
segmentation with a different set of FH segmenter parameters. We bias the
segmenter to find much larger regions by changing k to 500 and setting min = 5%
of the area of the image. This results in the segmentations shown in the third
row of the figure. Over all of our data, these parameters yield 2-5 superpixels
in almost all images of the canyon sequence. The sky-ground border is generally
very stable, with only transient “extra” regions due mostly to cloud formations,
hazy distant terrain, and intermittent video transmission interference when the
capture device was not onboard the aircraft (as seen in the right column of
Figure 1).

We were able to temporally filter these superpixel borders directly to get quite
good results for the sky-ground dividing line, but because of the mountainous
terrain in the canyon sequence and the steep banking of the UAV, it is not
always clear from geometry alone which side of the line is sky and which is
ground. It is thus desirable to differentiate the two based on region characteristics
such as color. There are many options here, but we chose to use the surface
layout classifier of [8, 24]. This method divides images into geometric classes
corresponding to three kinds of surfaces: support (aka ground), vertical, or sky.
Within the vertical class are several subclasses corresponding to different normal
directions if the surface is planar and the designations solid or porous if it is
not. A particular pixel is labeled by a learned classifier using features such as
as image location, color, texture, and any association with vanishing points.
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Raw images

FH segmentation (k = 100, min = 100, same as [8])

FH segmentation (k = 500, min = 5% of image area)

Surface layout classification of [8] using smaller superpixels

Surface layout classification of [8] using larger superpixels

Our filtered sky segmentation (after dilation)

Fig. 1. Sky-ground object detection steps for two images. The horizontal bar in the
right image is a wireless video transmission artifact
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An important aspect of the classification process is that pixels are not labeled
independently, but rather in groups by superpixel. They use the FH segmenter
with the parameters k = 100 and min = 100 for all of their results, which is why
we show what is obtained with these parameters in the second row of Figure 1).

Feeding these to the author-provided implementation of the scene layout
algorithm (the later version from [24]) with the outdoor-trained version of their
classifier yields the classifications shown in the third row of the figure. The scene
layout labels are indicated by tinting: blue for sky, red for vertical, and green
for support. Subclasses within vertical are indicated by overlaid icons: “O” for
porous, “X” for solid, or an arrow for the normal direction of planar surfaces. One
can see that the support and vertical class labels, as well as vertical’s subclass
labels, are mostly non-informative. The sky label is only reasonably accurate,
with a sample from the entire sequence indicating that nontrivial fractions of
the sky are mislabeled in over 50% of the frames.

We were able to significantly improve the accuracy of the scene layout sky
labels by rerunning the segmenter with the parameters that yield larger regions.
The new scene layout labels with these parameters are shown in row four of
the figure. The erroneous results shown are not representative: the scene layout
classifier actually does quite well overall. A manual tally of the entire canyon
sequence (2500 frames) shows that a majority of sky pixels are mislabeled in
only 9% of the images—most commonly as vertical—with a non-zero minority
of the sky mislabeled in about 2%. Practically none of the ground pixels are
mislabeled as sky. These numbers agree quite well with the confusion matrix in
[24].

Our point in showing error examples is to motivate our use of temporal
filtering: simply trusting a single-image classifier, however good, will occasionally
result in nonsensical output. We know more: the sky region does not disappear
and reappear from frame to frame—it has continuity of appearance and shape.

Before describing our tracking framework, we should mention that we also
modified how the scene layout classifier’s output is interpreted. We found that
misclassifications of the sky as vertical most often resulted from random fluctu-
ations in the two class likelihoods when they were nearly the same magnitude.
We observed that the sky likelihood distribution was quite bimodal, and that
instead of choosing the class with the highest likelihood for a superpixel, setting
a low threshold on the sky likelihood for classification as simply sky or not sky
eliminated almost all such errors.

2.1 Temporal filtering

Going beyond performing segmentations and scene layout classifications de novo
on each frame is fairly straightforward. Let Bt be the sky-ground boundary ob-
tained after the steps of the previous subsection for frame t. Bt is simply repre-
sented as a set of points along the border of the sky region (after some smoothing
and cropping to eliminate image edge effects and capture artifacts). There are
no restrictions on connectivity or indeed any attempt made to parametrize the
curve.
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We want to mitigate the effects of transient classification errors and seg-
mentation artifacts by temporal smoothing. We choose a majority filter: given
n successively segmented borders Bt−n+1, . . . ,Bt registered with one another
(i.e., motion stabilized), an aberrant border segment or even an entire missing
border can be detected by treating each Bt as voting for a particular hypothesis
and only accepting those that achieve consensus. We do this by spreading each
border out with a linear falloff, summing, and thresholding.

In order to register each sky-ground boundary Bt with its predecessor Bt−1,
we assume that a 2-D rigid transformation is a good approximation of horizon
movement over a short time scale (in fact, we found that translation alone is
good enough). RANSAC [25] does quite well at registering successive curves in
the face of possible large outliers. Over the long term, nonlinear deformation
occurs as new mountains come into view; this is handled implicitly with the
finite “memory” of the border voter buffer, with n = 5.

Example filtered sky-ground regions are shown in the last row of Figure 1).
Some small misregistrations remain because of the implicit lag of the majority
filter.

3 Trail Detection

Besides the control benefits of horizon orientation information for a UAV, finding
the sky region is also critical for successful trail detection. First, since we know
the trail is on the ground, sky pixels can be masked out, reducing the image area
to search and helping efficiency. Second, accuracy is also improved: since the
horizon line is often the highest-strength edge in the image, removing it makes
voting techniques for identifying trail edges less susceptible to distraction.

We make several simplifying assumptions. First we assume that there is a trail
visible over nearly all of the image sequence—we are not trying to decide whether
there is a trail or not, only to find and parametrize it in a way that could be
passed to a flight control system. This does allow for the trail to briefly disappear
from view as the aircraft maneuvers. A second assumption is that there is only
one trail visible over the sequence. Parallel roads, forks, and intersections are not
accounted for, as they introduce ambiguity about which trail is to be followed.
Finally, we assume that the off-trail terrain is natural rather than urban, as
our primary means of recognizing trails is through the rarity of the structural
regularity associated with them.

Our approach to trail detection is similar to that for sky segmentation: first
the image is segmented into superpixels, of which we expect trail edges to be
relatively stable. Applying a region classifier along the lines of the scene layout
method described above is problematic because trails have much more appear-
ance variation than sky and we do not know a priori which kind of trail we are
tracking. Rather, we narrow the candidates using a geometric test based on the
intuition that trails often have linear or smoothly curving borders, unlike the
natural background that occupies the rest of the image. Surprisingly, even the



Title Suppressed Due to Excessive Length 7

river trail shown in Figure 4, which has somewhat a stochastic boundary shape,
fits this profile for much of its length.

This test currently consists of a Hough transform applied to the superpixel
borders (using a different set of segmentation parameters k = 200, min = 1000).
The top line candidates associated with the trail should cluster by vanishing
point, which is trackable with filtering. Using the superpixel borders rather than
low-level edge features such as Canny or gradient magnitude allows more sophis-
ticated grouping information such as color and texture to play a role, if at some
cost of smoothness.

4 Results

Our results are summarized with sample object detections on all three sequences
in Figure 4. Each sequence exhibits artifacts of some kind: the canyon sequence
has a fair degree of video transmitter interference, and the pipeline and river
sequences have significant compression artifacts. Nonetheless, the algorithm pre-
sented here performs extremely well on all three at sky-ground border tracking.
Trail detection results are somewhat preliminary, as further filtering could be
done to counter noise in the segmentation, but still quite promising, especially
for the pipeline sequence. Counter to one of our assumptions above, there is
ambiguity in the pipeline sequence about what the trail is: the pipe itself, the
road, or both? This is reflected in the trail object finder shifting around a bit
between these alternative interpretations.

We note that the sky-ground tracker’s ability to handle the disappearance
and reappearance of the horizon is shown in the pipeline images. Also seen in
the river sequence is the phenomenon of flipping back and forth between sky and
ground classifications for distant mountains, which through haze have a similar
color to the sky. The filtering mechanism smooths these transitions.

5 Conclusion

We have demonstrated a promising approach to object detection and tracking in
video that is based on appearance and geometric analysis of quickly-segmented
superpixels. The competence of the technique was shown through application to
several realistic UAV tasks and over diverse image sequences.

Our current work focuses on the trail detection component. While the lin-
ear Hough transform is a reasonable start, further refinement to estimate trail
curvature and smoothness is necessary. Rather than approximating the trail
boundaries with parametric curves as we currently do, we are investigating how
to extract irregular boundaries directly from the segmentation.
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Fig. 2. Sample object detections. The envelopes of trail detections are demarcated in
green; dark spots in the ground regions are compression artifacts
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