Skip to main content

Nonuniform Segment-Based Compression of Motion Capture Data

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4841))

Abstract

This paper presents a lossy compression method for motion capture data. Each degree of freedom of a motion clip is smoothed by an anisotropic diffusion process and then divided into segments at feature discontinuities. Feature discontinuities are identified by the zero crossings of the second derivative in the smoothed data. Finally, each segment of each degree of freedom is approximated by a cubic Bézier curve. The anisotropic diffusion process retains perceptually important high-frequency parts of the data, including the exact location of discontinuities, while smoothing low-frequency parts of the data. We propose a hierarchical coding method to further compress the cubic control points. We compare our method with wavelet compression methods, which have the best compression rates to date. Experiments show that our method, relative to this work, can achieve about a 65% higher compression rate at the same approximation level.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beaudoin, P., Poulin, P., van de Panne, M.: Adapting wavelet compression to human motion capture clips. In: Proceedings of Graphics Interface 2007 (2007)

    Google Scholar 

  2. Arikan, O.: Compression of motion capture databases. In: Proceedings of ACM SIGGRAPH 2002, pp. 890–897. ACM Press, New York (2006)

    Chapter  Google Scholar 

  3. Guskov, I., Khodakovsky, A.: Wavelet compression of parametrically coherent mesh sequences. In: Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 183–192. ACM Press, New York (2004)

    Chapter  Google Scholar 

  4. Liu, G., McMillan, L.: Segment-based human motion compression. In: Proceedings of the 2006 ACM SIGGRAPH/Eurographics Symposium on Computer animation, pp. 127–135. ACM Press, New York (2006)

    Google Scholar 

  5. Assa, J., Caspi, Y., Cohen-Or, D.: Action synopsis: Pose selection and illustration. In: Proceedings of ACM SIGGRAPH 2005, pp. 667–676. ACM Press, New York (2005)

    Chapter  Google Scholar 

  6. Kondo, K., Matsuda, K.: Keyframes extraction method for motion capture data. Journal for Geometry and Graphics 8, 81–90 (2004)

    MATH  Google Scholar 

  7. Liu, Z., Gortler, S., Cohen, M.: Hierarchical spacetime control. In: Proceedings of ACM SIGGRAPH 1994, pp. 35–42. ACM Press, New York (1994)

    Chapter  Google Scholar 

  8. Lee, J., Shin, S.: Multiresolution motion analysis with applications. In: International Workshop on Human Modeling and Animation, pp. 131–143 (2000)

    Google Scholar 

  9. Lee, J., Shin, S.: A hierarchical approach to interactive motion editing for human-like figures. In: Proceedings of ACM SIGGRAPH 1999, pp. 39–48. ACM Press, New York (1999)

    Google Scholar 

  10. Ibarria, L., Rossignac, J.: Dynapack: space-time compression of the 3d animations of triangle meshes with fixed connectivity. In: Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 126–135. ACM Press, New York (2003)

    Google Scholar 

  11. Safonova, A., Hodgins, J., Pollard, N.: Synthesizing physically realistic human motion in low-dimensional, behavior-specific spaces. In: Proceedings of ACM SIGGRAPH 2004, pp. 514–521. ACM Press, New York (2004)

    Chapter  Google Scholar 

  12. Forbes, K., Fiume, E.: An efficient search algorithm for motion data using weighted PCA. In: Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 67–76. ACM Press, New York (2005)

    Chapter  Google Scholar 

  13. Barbi\"{c}, J., Safonova, A., Pan, J., Faloutsos, C., Hodgins, J., Pollard, N.: Segmenting motion capture data into distinct behaviors. In: Proceedings of Graphics Interface 2004, pp. 185–194 (2004)

    Google Scholar 

  14. Grochow, K., Martin, S., Hertzmann, A., Popović, Z.: Style-based inverse kinematics. In: Proceedings of ACM SIGGRAPH 2004, pp. 522–531. ACM Press, New York (2004)

    Chapter  Google Scholar 

  15. Chai, J., Hodgins, J.: Performance animation from lowdimensional control signals. In: Proceedings of ACM SIGGRAPH 2005, pp. 686–696. ACM Press, New York (2005)

    Chapter  Google Scholar 

  16. Glardon, P., Boulic, R., Thalmann, D.: A coherent locomotion engine extrapolating beyond experimental data. Computer Animation and Social Agents, 73–84 (2004)

    Google Scholar 

  17. Pullen, K., Bregler, C.: Motion capture assisted animation: Texturing and synthesis. In: Proceedings of ACM SIGGRAPH 2002, pp. 501–508. ACM Press, New York (2002)

    Google Scholar 

  18. Rose, C., Cohen, M., Bodenheimer, B.: Verbs and adverbs: Multidimensional motion interpolation. IEEE Computer Graphics and Applications 18, 32–41 (1998)

    Article  Google Scholar 

  19. Lengyel, J.E.: Compression of time-dependent geometry. In: Proceedings of the Symposium on Interactive 3D Graphics, pp. 89–95 (1999)

    Google Scholar 

  20. Kondo, K., Matsuda, K.: Compression of dynamic 3D geometry data using iterative closest point algorithm. Computer Vision and Image Understanding 87, 116–130 (1987)

    Google Scholar 

  21. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence 12, 629–639 (1990)

    Article  Google Scholar 

  22. Canny, J.: A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 8, 679–698 (1986)

    Article  Google Scholar 

  23. Graphics Lab, Carnegie-Mellon University (Carnegie-Mellon Motion Capture Database), http://mocap.cs.cmu.edu

  24. Kovar, L., Gleicher, M., Schreiner, J.: Footstake cleanup for motion capture editing. In: Proceedings of the 2002 ACM SIGGRAPH Symposium on Computer Animation, pp. 97–104. ACM Press, New York (2002)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

George Bebis Richard Boyle Bahram Parvin Darko Koracin Nikos Paragios Syeda-Mahmood Tanveer Tao Ju Zicheng Liu Sabine Coquillart Carolina Cruz-Neira Torsten Müller Tom Malzbender

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lin, Y., McCool, M.D. (2007). Nonuniform Segment-Based Compression of Motion Capture Data. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2007. Lecture Notes in Computer Science, vol 4841. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76858-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76858-6_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76857-9

  • Online ISBN: 978-3-540-76858-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics