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1 Introduction

1.1 Previous Work

1.2 Overview

2 Basic Idea

For simplicity, we use I(X) to represent the interpo-
lation surface of mesh X, S(X) to represent the limit
surface of X and L(X) to represent all the limit points
of X. For a given control mesh M , we need to find a
smooth surface I(M) that interpolates M . Suppose
S(M) is the limit surface of M by using some subdi-
vision scheme, say Catmull-Clark subdivision scheme.
If we can find a surface T1 or K1, such that

T1 + S(M) = I(M)

or
K1 ∗ S(M) = I(M)

then the interpolation problem is solved. Here T1

(or K1) can be regarded as an offset (scaling) surface
which moves (scales) S(M) to I(M) evrywhere. We
believe T1 and K1 are silimar to construct, hence it is
sufficient to present one of them.

The difference of I(M) and S(M) at the vertices of
M can be calculated as follows.

M1 = M − L(M).

Therefore T1 = I(M1), i.e., I(M1) interpolates all the
difference between I(M) and S(M). M1 has the same

topology as M , hence I(M1) and I(M) are equally
difficult to construct. However, the above process can
be repeated to find a series of meshes Mi (1 ≤ i ≤ ∞)
such that

I(Mi+1) + S(Mi) = I(Mi),

and
Mi+1 = Mi − L(Mi) (1)

Let M = M0, from the above series we have

I(M) =
n∑

i=0

S(Mi) + I(Mn+1). (2)

From eq. (1), we can get Mi easily as follows.

Mi = (E −A)iM0, (3)

where E is the identity matrix and A is the matrix that
calculates all the limit points of the given mesh M . It
is easy to see (the proof is shown in the appendix) that

lim
n→∞

I(Mn+1) = 0.

Because A is invertable (see the appendix), it also is
easy to get

n∑

i=0

S(Mi) = S(
n∑

i=0

Mi) = S(A−1(E−(E−A)n+1)M0)

Combining the above two equations, we have

I(M) = S(
∞∑

i=0

Mi) = S(A−1M0). (4)

If we define ∞∑

i=0

Mi = M̂,

then M̂ = A−1M0 holds as well. Hence I(M) is also
a subdivision surface and M̂ is the mesh whose limit
surface interpolates the given M . Traditionally, people
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try to directly find A−1M0 by solving an linear system
[5, 12]. Hence it is difficult to deal with meshes of large
number of vertices. However, with Eq. (4), M̂ can be
obtained by interatively applying eq. (1) until some
given tolerance. Hence there is no problem to deal
with large meshes. More importantly, just like Fourier
transformation, any subdivision surface now can be
represented by a summation of an infinite series of
subdivision surfaces. For example, for any given mesh
M , S(M) can be represented with an infinite series of
subdivision surfaces as follows.

S(M) = I(L(M)) = S(
∞∑

i=0

L(Mi)).

Similar to Fourier transformation, we believe this good
property can be used for a lot of applications in com-
puter graphics and modelling, like fairing, smoothing,
sharpening, lowpass or high pass filtering etc.

3 Test Results

The proposed techniques have been implemented in
C++ using OpenGL as the supporting graphics system
on the Windows platform. Quite a few examples have
been tested with the techniques described here. All
the examples have extra-ordinary vertices. Some of
the tested results are shown in Figures ??, ?? and ??.
From these examples we can see smooth and visually
pleasant interpolation shapes can be obtained.

4 Summary

Here is the Summary

5 Appendix

5.1 Proof of convergence of (E − A)i

To prove this, we just need to show all the eigen values
λi of A are 0 < λi ≤ 1. Here we present the proof us-
ing Catmull-Clark subdivision scheme. Other shcemes
can be proven similarily. For Catmull-Clark subdivi-
sion scheme, the limit point of a vertex of degree n is
calculated as follows.

V∞ =
1

n(n + 5)
(n2V +

n∑

i=1

Ei +
n∑

i=1

Fi),

where Ei and Fi are the edge points and face points
of vertex V , respectively. A is a matrix satisfies:
1. Aij ≥ 0 and summation of each row is one, hence

λi ≤ 1;
2. A common coefficient 1/ni/(ni + 5) can be fac-
tored out for each row of A, where ni is the valance
of vertex i in the given mesh M . As a result, A can
be represented with the multiplicaiton of a diagonal
matrix diag(1/ni/(ni + 5)) and a symetric matrix B.
Hence λi are always real numbers.

To finish the proof, we just need to show the eigen
values of B are bigger than 0, which is equavilant to
prove B is positive definite. This can be achieved by
proving XT BX > 0 for any vector X 6= 0. It is easy
to see this if we expand XT BX as follows.

XT BX =
∑

allfaces(xi + xj + xk + xr)2+
2 ∗∑

alledges(xi + xj)2+∑
(n2

i − 3ni)x2
i

Because ni ≥ 3, hence XT BX > 0 is always satisfied.
In addition, we can see that A is invertable because
all its eigen values are bigger than 0.
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