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Abstract. Grounding an ontology upon geographical data has been pro-
posed as a method of handling the vagueness in the domain more effec-
tively. In order to do this, we require methods of reasoning about the
spatial relations between the regions within the data. This stage can be
computationally expensive, as we require information on the location of
points in relation to each other. This paper illustrates how using knowl-
edge about regions allows us to reduce the computation required in an
efficient and easy to understand manner. Further, we show how this sys-
tem can be implemented in co-ordination with segmented data to reason
about features within the data.
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1 Introduction

Geographic Information Systems are becoming increasingly popular methods of
representing and reasoning with geographical data. In order to do this, we require
methods of reasoning logically about geographical features and the relations that
hold between them, including spatially. Ontologies have been cited as a method
to perform this reasoning [1–3], but existing methodologies do not handle the
inherent vagueness adequately. Features are often dependant on the context in
which they are made, with local knowledge affecting definitions. Geographical
objects are often not a clearly demarcated entity but part of another object
[1, 4]. The individuation of entities is therefore more important to geographical
domains than to others.

One approach proposed to improve the handling of vagueness is to ground the
ontology upon the data [5, 6],making an explicit link between the ontology and
the data, thus allowing reasoning to be made within the context of the particular
data. So we require approaches that will allow spatial reasoning such as Region
Connection Calculus (RCC) [7] to be used. RCC is a powerful representation
of the principal relations between regions, but it can also be computationally
expensive.

In this paper we examine developing the system introduced in [6], which
takes topographical data as input and segments into polygons with attached



attributes. The data to be looked at is of the Hull Estuary1 , with the aim being
to obtain a method of reasoning about the hydrological features implicit in the
data. We examine how this segmented data can be stored effectively, and what
is required in order to reason about the RCC relations between given polygons.
Finally, we look at how these can be expanded to allow first order logic definitions
of inland water features to be entered, with the appropriate regions returned.
We do this by applying an example definition to see what results are returned.

2 Motivation

Vagueness is inherent to the geographical domain, with many features being
context dependant, as well as lacking precise definitions and boundaries. Vague-
ness is not a defect of our language but rather a useful and integral part. It is
a key research area of the Ordnance Survey2, where it has been noted that GIS
does not handle multiple possible interpretations well. Rather than attempting
to remove vagueness, we should allow the user to make decisions about vague
features. So rather than segmenting or labelling the image in advance, we require
a mechanism for entering logical queries that may incorporate vagueness and can
segment accordingly.

With GIS, we need to deal with several layers. We have our initial data
level, which represents the points and polygons that make up a topographical
map for example. An additional layer is the ontology level, whereby we define
features and relations between the data. The ontology level is usually seen as
separate to the data level; we reason within the ontology, and return the data
that matches our queries. Thus the ontology is devoid of the data context. This
has a clear impact upon handling vagueness, where context is important. A
proposed improvement to this is to ground the ontology upon the data [5]. By
grounding the ontology, we make an explicit link between the ontology and the
data, thus allowing reasoning to be made within the context of the particular
data.

The symbol grounding problem as proposed in [8] suggests that computers do
not actually understand knowledge they are provided, as meanings are merely
symbols we attach to objects. There have been no adequate solutions to this
problem as yet and it remains an open problem [9] . Ontology grounding does not
solve the problem. Rather, it allows the user to decide the meaning of concepts
to some extent.

Grounding the ontology upon the data allows reasoning with the data in par-
ticular context, thus achieving our previously mentioned requirement of allowing
the user control over the features generated. To ground the ontology upon the
1 Landsat ETM+ imagery. Downloaded from the Global Landcover Facility (GLCF).

Image segmented into water and land then vectorised.
http://glcfapp.umiacs.umd.ed:8080/esdi/index.jsp

2 Ordnance Survey Research Labs: Modelling fuzzy and uncertain features
http://www.ordnancesurvey.co.uk/oswebsite/
partnerships/research/research/data fuzzy.html



data, we need to work at both the data level and the ontology level. In [6] lin-
earity was shown as an example of such an attribute, and it was shown the work
required on both levels to use such an attribute. To expand the system, we are
required to implement approaches to generate polygons based upon the spatial
relations between regions, such as if they are connected or disconnected.

Spatial reasoning can be computationally expensive, as we require informa-
tion on the location of all points in relation to a given region. Previous work has
looked at the problem at an abstract level [10]. By looking at how the relations
are calculated, we can determine methods of reducing the calculations required
based upon simpler observations. So instead of explicitly requiring every point
location be determined, we could use other information to infer what relations
are possible and reduce down our scope until we have our solution.

By implementing an RCC based system, we allow quantitative data to be
reasoned with qualitatively. This significantly improves the expressiveness of
GIS. This also allows for the individuation of features.

3 The Region Connection Calculus

The Region Connection Calculus (RCC) was introduced in [7]. RCC assumes
an initial primitive relation C(x,y), which is true if x and y share a common
point). From this initial connected relation, we can derive other relations that
hold between two regions. A list of the basic key relations as listed in [11] follows:

DC(x, y) ≡df ¬C(x, y) (1)
P (x, y) ≡df ∀z[C(z, x) → C(z, y)] (2)

PP (x, y) ≡df [P (x, y) ∧ ¬P (y, x)] (3)
EQ(x, y) ≡df [P (x, y) ∧ P (y, x)] (4)

O(x, y) ≡df ∃z[P (z, x) ∧ P (z, y)] (5)
DR(x, y) ≡df ¬O(x, y) (6)
PO(x, y) ≡df [O(x, y) ∧ ¬P (x, y) ∧ ¬P (y, x)] (7)
EC(x, y) ≡df [C(x, y) ∧ ¬O(x, y)] (8)

TPP (x, y) ≡df PP (x, y) ∧ ∃z[EC(x, z) ∧ EC(y, z)] (9)
NTPP (x, y) ≡df PP (x, y) ∧ ¬∃z[EC(x, z) ∧ EC(y, z)] (10)

RCC-8 consists of eight of these relations: DC, EQ, PO, EC, TPP, TPPi,
NTPP, NTPPi, where TPPi and NTPPi are the inverses of TPP and NTPP
respectively. Fig. 1 shows graphically the RCC-8 set. This set is both jointly
exhaustive and a pairwise disjoint set of base relations, such that only one can
ever hold between two given regions [7]. RCC has previously been proposed as
a method of spatial reasoning that could be applicable to GIS, for example in
[12] where it was noted that the same set of relations have independently been
identified as significant for GIS [13, 14].



Fig. 1. The RCC-8 relations.

An additional property that we would like to express is the notion of self-
connected regions, such that a region is self-connected if it is not divided into a
number of DC parts. This is important, as in our system we will start with an
initial set of segmented polygons, and wish to connect them to form larger regions
that satisfy given properties. To do this, we first define a formula sum(x,y) which
represents the spatial sum or union of two regions. From this we can define self-
connectedness to be equal to the sum of a set of connected regions [11]:

∀xyz[C(z, sum(x, y)) ↔ [C(z, x) ∨ C(z, y)]] (11)
CON(x) ≡df ∀yz[EQ(x, sum(y, z)) → C(y, z)] (12)

So equation 11 states that z represents the spatial sum of regions x and y f all
parts of z are either connected to either x or y. This spatial sum is then used
in 12 to define self-connectedness (CON); if x is self-connected, any two regions
whose spatial sum is equal to x must be connected to each other. Thus x is
a single connected region; if we imagine standing in any part of x it would be
possible to travel to any other part of x without actually leaving the region.

4 Vagueness in Geography

Vagueness is ubiquitous in geographical concepts [15]. Both the boundaries and
definitions of geographical concepts are usually vague, as well as resistant to
attempts to give more precise definitions. For example, the definition of a river
as given by the Oxford English Dictionary [16] is:

A large natural flow of water travelling along a channel to the sea, a
lake, or another river.

The most obvious example of vagueness is ’large’, though other aspects may
also be vague such as the boundary between respective channels. But this isn’t
the only definition for a river; some may differ entirely, others may be more
or less restrictive. In comparison, OpenCyc3 is the open source version of Cyc,
which is intended to be the largest and most complete general knowledge base
in the world. The definitions of river and stream in OpenCyc are:
3 OpenCyc http://www.opencyc.org/



A River is a specialisation of Stream. Each instance of River is a natural
stream of water, normally of a large volume.
A Stream is a specialisation of BodyOfWater, InanimateObject-Natural,
and FlowPath. Each instance of Stream is a natural body of water that
flows when it is not frozen.

Again, these are vague and also do not include the restrictions of the water
flowing into a particular feature. Yet at the same time, both definitions are
perfectly valid within a given context to describe rivers.

The sorites paradox can be easily adapted to illustrate vagueness in geog-
raphy [3, 17], showing that an explicit boundary may not always exist between
definitions, such as between rivers and streams. Geographical definitions are also
dependant on the context in which they are made. For example, whilst UK rivers
are defined usually as permanent flows, in Australia this is not necessarily the
case, and thus temporal aspects enter the definition [18]. The application of UK
based definitions in Australia could therefore fail to classify some rivers due to
their temporal nature, whilst Australian based definitions may overly classify
things as rivers when applied in the UK.

The principal approaches for handling vagueness at present are fuzzy logic
and supervaluation theory. It is usually the case that the two are presented as
opposing theories. However, this in part assumes that vagueness can only take
one form, which as discussed in [19] is not true. Rather, there are instances where
it is more appropriate to use fuzzy logic and instances where supervaluation
theory is better.

The suitability of the two approaches to the proposed system were discussed
in [6], where it was noted that supervaluation theory was more applicable as crisp
boundaries were produced. This means that we use precisifications to represent
user decisions and to set contexts.

5 Data Segmentation

In [6], an initial polygon representing the inland water network extending from
the Hull estuary was segmented based upon linearity thresholds. This was done
by first finding the medial axis of the polygon using a voronoi diagram based
approach VRONI [20]. The medial axis of a polygon as first proposed in [21]
is defined as the locus of the centre of all the maximal inscribed circles of the
polygon. Here, a maximal inscribed circle is a circle that cannot be completely
contained within any other inscribed circle in the polygon [22].

However, the medial axis is extremely sensitive to noise and variation along
the edge of the input polygon. We want to be able to prune off arcs such that
the remaining arcs still represent the topology of the polygon effectively, with-
out disconnecting parts or removing arcs we wish to keep. The approach used to
prune the medial axis skeleton here was contour portioning [23, 24], which sat-
isfies these requirements. The contours used here are manually defined; whilst
an automatic approach is desirable (and work has been done in this area), it is
beyond the scope of this project.



The results of using contour partitioning are shown in Fig. 2, where we see
the remaining skeleton retains the topology whilst removing unnecessary arcs.
This skeleton easily translates into a graph.

Fig. 2. The results of contour partitioning to reduce the medial axis of the Hull Estu-
rary to a simplified skeleton whilst retaining topology of the shape.

The next stage was to use this skeleton to determine linearity. In [6] this was
done using a scale invariant approach looking at the variation in widths across
stretches of the skeleton. From this we can determine linear lines in the skeleton

To generate a polygon from this, we determine a left and right side for the
skeleton, and combine this with the end points to create a simple polygon. For
each side, we use the two boundary points closest to both end nodes, which we
already know as these are the points that the maximal inscribed circle at each
point touches the boundary.

Once these two points are selected, we find the shortest path between the two
along the boundary. This is done by representing the boundary as a graph, and
thus a path between is easy to calculate. If no path exists or the length of the
path is too great in relation to the distance between the points, then we simply
use a single edge with the points as end nodes. An example of this is shown in
Fig. 3. This approach guarantees a unique polygon for each line that is simple.
We can also use the technique on sets of lines to generate larger polygons.

The initial results of this segmentation stage is a series of segmented polygons,
with a label attached representing whether the polygon is linear or non-linear.
Further attributes could be used to generate further polygons and labels, such
as different linearity measures or size and distance measurements. Some may
require further segmentation of the data, whilst others can be performed without
segmenting.

The initial results of marking all linear polygons is shown in Fig. 4. Although
most parts we would like marked as linear are marked as such, there are some
cases that are not. These may be rectified with alternative or refined definitions
of linearity. For example, the mouth of the river does not seem linear, because
although the width is not varying, the difference in the two banks is significant.
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Fig. 3. An example of how a line is translated into a corresponding polygon. For this
shape, we have taken the line N1-N2. For N1 we just use both tangent points. For
N2 we choose B1 as it is closer to N1. We then trace along the boundary using the
shortest path, with the dotted line representing the resultant polygon. Had the line
been N1-N2-N3, depending on the length around the boundary between B1 and B2
we may replace the path with edge B1-B2 instead.

Therefore a refined linearity definition may be that a polygon is required to also
be linear in relation to its edges, in that the length of the edges should not vary
too great from the length of the stretch.

Fig. 4. The results of marking linear stretches, with the original skeleton once again
shown. Black sections represent polygons marked as linear with respect to the width.

However, there are always likely to be discrepancies in our data, because
of variations in actual data in comparison to our abstract notion of a river as
a constant line. So we would like a mechanism that can flag up such small
discrepancies so that they can be filled in. A method for this was discussed in
[6], where the discrepancies were referred to as gaps. To avoid confusion we have
introduced the term interstretch to represent these features. So using a closeness
threshold we can determine which polygons could be ’filled in’ at a higher level
to generate connected stretches.



6 Data storage and Querying

Our initial system allows us to segment our data into a series of linear or non-
linear polygons, as well as identify interstretches. However, we would like to
reduce the amount of pre-computed features used, as the aim is to allow a user
to generate their own definitions. For example, rather than explicitly calculating
interstretch, we would like to be able to identify these parts based upon first
order logic. So example definitions of stretch and interstretch are:

stretch[l](x) ↔ CON(x) ∧ P (x,WATER) ∧ linear[l](x) (13)
∧ ∀y(P (y,WATER) ∧ linear[l](y)
∧ P (x, y) → EQ(x, y))

interstretch[c, l](x, y, z) ↔ stretch[l](x) ∧ stretch[l](y) (14)
∧ P (z, WATER) ∧ EC(x, z) ∧ EC(y, z)
∧ CON(z) ∧ ∀w(PP (w, z)
→ (close− to[c](w, x) ∧ close− to[c](w, y)))

Here, we use the form p[v](x), where the predicate p is true for a given variable
or precisification v for a given variable x, So, our previous definition of something
being linear if the variation in widths is low translates to linear[l ](x ), or x is
linear for a given precisification l. Equation 13 defines stretch as a maximal self-
connected region that is water and linear for a given precisification. Equation
14 defines an interstretch as a self-connected region of water that is connected
to two stretches, such that all parts of the interstretch are close to the two
stretches.

Now, instead of having interstretch as a primitive, we have a primitive close-
to, representing the notion that they are close if the distance between is insignif-
icant. As with linearity, this can be treated as a precisification. From these def-
initions, we wish to define water-channels to be maximal self-connected regions
that are made up of stretches or interstretches. An initial attempt at representing
this logically is:

waterchannel[c, l](x) ↔ CON(x) ∧ P (x,WATER) ∧ ∀w(PP (w, x)(15)
→ ∃s(stretch[l](s) ∧ P (w, s) ∧ TPP (s, x)) ∨

∃d, e, f (interstretch[c, l](d, e, f) ∧ P (w, f)
∧ TPP (d, x) ∧ TPP (e, x) ∧ TPP (f, x)))

So a water-channel is a self-connected region of water such that all proper
parts of the region are either part of a stretch or an interstretch, that is also
proper parts of the channel.

This is not the only way such a query could be formed, and there may be
further refinements required in order to capture exactly our intended definition.
In order to represent a query such as water-channel, we require several stages of
work. First, we need a data representation that allows more effective querying.



We then need to consider how we can test for RCC relations. Finally, we then
need a method of producing the union of resultant polygon sets to produce the
final water-channel result.

Our aim at each stage is to find a balance between simplicity and compu-
tational complexity. The system is intended to use logic definitions that may
not be known at this stage. So to accommodate for this, our design should be
reasonably easy to understand and adapt, whilst remaining reasonably efficient.

6.1 Data storage

The winged edge structure [25] and variations such as the half-edge winged
structure [26] offer a more effective representation of polygons as opposed to
simply storing the corner points. Our initial polygon data can be easily translated
into such a structure. We can easily gain a list of all polygons, edges and points
in Prolog.

6.2 Calculating the RCC relations

We now move on to encoding RCC relations such that we can query the system
to find the relations between polygons, thus allowing qualitative and quantitative
queries. However, this move from an abstract level to the data level is computa-
tionally expensive. We therefore wish to reduce the calculations required at each
stage in order to speed up the reasoning process. Previous work on an abstract
level was done in [10], which illustrated the process could be broken down into
a hierarchical tree, reducing the calculations required.

We first reduce down the potential relations that can occur between two poly-
gons. A first approximation is to compare the bounding boxes of each polygon,
hereby defined as the smallest rectangle that can entirely contain its polygon.
This significantly reduces the initial calculations, and allows us to eliminate re-
lations that are not possible. We do this using an approach similar to Allen’s
interval Algebra [27]. The algebra represents 13 different relations (hereby re-
ferred to as Allen relations) that can occur between two time intervals, as shown
in Fig. 5.

If we treat the X-Axis and Y-Axis as separate dimensions, we can determine
the Allen relations between two polygons in each axis. We then compare the
resulting pair of Allen relations and determine what possible RCC relations these
allow. Determining the Allen relations is straightforward; for a given axis we find
the minimum and maximum values of the two polygons and represent as two
lines. We can then sort these numbers and determine what Allen relation they
correspond to. We repeat for the other axis, so each operation is only working
in a single dimension.

This results in a pair of Allen relations, which in turn represent a set of
possible RCC relations, as shown in 6. In these examples, we have quickly deter-
mined that the first example shows two disconnected polygons, thus no further
computation is required. With the other two examples we are left with a set of
possible relations. However, we can use these reduced sets to determine the most



Before/After

Meets/Met−by

Overlaps/Overlapped−by

Starts/Started−By

Ends/Ended−By

Contains/During

Equal

Fig. 5. A graphical representation of the 13 different Allen relations. With the excep-
tion of the final relation Equals, the other 12 are in fact 6 pairs of duals. So the first
relation represents both white before black and black after white.

effective approaches to take next, thus tailoring our deductions to each pair of
polygons.

Fig. 6. Examples of how the bounding boxes of two polygons a and b may be related
spatially, and what possible RCC relations these represent. We obtained the Allen
relations for the X- and Y-axis’, then compared these to see what the set of possible
RCC relations are for the polygons.

Theoretically there are 169 different combinations, but in fact there are only
14 different possible combinations, listed in table 1. So we now have a method
of reducing the possible RCC relations quickly; we can for example quickly de-
termine polygons which are definitely disconnected.

Our calculations for RCC relations are based upon the locations of the cor-
ners of the polygons to be compared, and whether they are inside, outside or
on the boundary of the other polygon in question. In addition, we add to our
set all points of intersection between the two polygons that are not already a
corner point of a polygon. Table 2 shows the RCC-8 relations defined in terms
of the tests that are required in order to make decisions as to the RCC relation



Table 1. The possible relations as a result of comparing the Allen relations between
the X- and Y-axis. Starred relations also have versions replacing TPP/NTPP with
TPPi/NTTPi

Possible RCC combinations from previous stage

DC
DC, EC
DC, EC, PO
DC, EC, PO, TPP *
EC, PO
EC, PO, TPP, NTPP *
EC, PO, TPP, TPPi, EQ
PO
PO, TPP *
PO, TPP, NTPP *

between two regions. This is similar to [28], where the spatial domain was also
restricted to polygons as opposed to arbitrary points due to the existence of
efficient algorithms to handle polygons.

Table 2. The definitions of the RCC-8 relations used in the system. Only 6 are shown
here, as TPPi and NTPPi are merely the inverses of TPP and NTPP respectively.

RCC Definition in system

DC(X,Y) There is no intersection between X and Y,
and no point of X is inside or on the boundary of Y (and vice versa)

EC(X,Y) There exists a point that is on the boundary of both X and Y,
but there are no points of X inside Y (or vice versa)

PO(X,Y) There exists either at least one intersection between X and Y,
and there are points that are inside one polygon but outside the other

TPP(X,Y) All points of X are either inside or on the boundary of Y
NTPP(X,Y) All points of X are inside Y
EQ(X,Y) All points of X and Y lie on the boundary of each other

6.3 Intersections

The intersections of two polygons has been studied extensively, in an attempt to
improve upon the brute force approach of comparing all lines against all others.
More efficient methods are based upon the sweepline approach [29]. The aim of
such algorithms is to reduce the comparisons between lines. For our approach,
we use our Allen relations based approach to reduce the number of intersection
tests.

Using the brute force algorithm as our basis, we order the polygons into
two sets of lines. We then take a line in our first set and compare against the



bounding box second set, since if an intersection exists the line must touch,
intersect or be inside this bounding box. So using our Allen relations approach
we can quickly test if the line falls inside the box, and thus eliminate lines that
could not intersect the second polygon. For a line that satisfies this criteria, we
wish to improve upon simply then comparing the line against all others. We once
again use Allen relations, as lines can’t intersect if they occur before/after each
other in either axis. This once again eliminates many lines, leaving only a small
set to be tested.

One final consideration is which of the polygons to use as our first set, as
this choice can further speed up the process. Looking at the possible relations,
we first see if the relation PP is possible. If so, we use the outer polygon, as our
bounding box test would remove no lines if the inner polygon was used. If the
relation PP is not possible, we use whichever polygon has fewer lines, as this will
remove more intersections in the first part of the test.

So our intersection algorithm uses information previously calculated to speed
up the calculation of all intersects whilst remaining simple to understand. Al-
though further work is required to determine the actual efficiency of this ap-
proach in comparison to others, it has so far been successfully implemented
within Prolog, where it has proven fast enough for the requirements of the
project. The result of this stage is a set of points of intersection, which may
include existing corner points of a polygon. These can be separated into existing
and new points using set operations.

6.4 Points inside

As with our intersection tests, we wish to reduce down the number of points
we test to keep computation time down. Using the bounding boxes generated
previously, we can again reduce down the possible points to be all those that are
inside or touching the bounding box. This subset is then tested to find which
points are inside using a standard test of extending a line horizontally from the
point and then counting the number of intersections with the polygon; if the
number of intersections is odd the point is inside and if it is even the point is
outside. We can reduce the number of intersection tests by using Allen relations
to eliminate lines that could not intersect the projected line. How to handle
points that lie on the boundary is often an issue for such algorithms. However,
we have previously found this set of boundary points in our intersection tests
and so can use this set to remove points on the boundary, leaving only points
explicitly inside.

6.5 Using the results with RCC

The results of the previous stages give us a series of sets of points. We can
therefore test for RCC relations using set operations on these points, as our
previous definitions easily translate into set operations.

First, we find all the potential RCC relations using the Allen relations based
approach mentioned earlier. From this stage we can make decisions based on



which tests to do; for example if the results of this stage is the set [DC,EC],
we know we only need to test for at least one intersection to determine if the
answer is DC or EC. So for each of these sets of possible relations we can order
the queries to be asked so that they are optimal. We can also find other relations
that are implied; if DC is not a member of the list then we know that the two
regions are connected, whereas if DC and EC have both been removed we know
that at least some part of one region is part of the other.

By using Prolog, we are able to allow for variations of the query. So instead
of simply being able to return the relation between two polygons, we can also
ask such queries as ”find all polygons that are connected to X” and ”find all
pairs of polygons that are externally connected”.

6.6 Building new regions based on queries

The aim of our system is to return regions that match particular queries from
an ontology, so we require the system to be able to return sums of regions.
For our water-channel example, we need to find all linear polygons, as well as
all interstretch polygons that connect linear polygons together, and return the
results as single connected regions.

We have previously defined self-connected as being the sum of connected
regions. This is also applicable to our skeleton and the associated graph, whereby
any subset of this graph can be considered self-connected if there is a path
between all nodes in the subgraph generated from the subset. As illustrated in
Fig. 3, the polygon generated for any given line is simple and self-connected.
Thus using this technique on sets of lines is the equivalent of taking the union
of all the polygons generated from all connected subsets of the set of lines. We
can thus infer that the resulting polygon is self-connected if the skeleton used
to generate it is a connected graph. To produce all linear polygons, we simply
find the set of all linear lines and convert into a graph, then generate polygons
for each maximal self-connected component, where maximal means that there
does not exist an edge that is connected to our component that is not part of
the component. For interstretch, we find the set of lines used to produce the
polygons that satisfy our definition and repeat the process above (thus some
non-linear polygons may have more than one interstretch proper part).

To generate our maximal self-connected polygons, we an approach similiar
to a breadth-first search, marking neighbours of polygons as we find them. An
example of this process is shown in Fig. 7.

So for our water-channel example, our criteria is that all polygons are either
linear or an interstretch between linear polygons. We find this set, then using
our breadth-first search type approach, travel through all connections until all
have been visited. The result is sets of maximal self-connected regions.

We now wish to generate the sum of these polygons, to create our new poly-
gon representing a water-channel. For this, we can use our winged edge structure
coupled with our polygon generation approach. Firstly, if we have a set of poly-
gons that are only ever EC, we can find the union by removing all edges that
are incident to two or more polygons and traveling along the remaining edges,
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Fig. 7. An example of how self-connected regions are marked. Starting at a our
breadth-first search returns the set a,b,c,d, and then finds polygons remain, so repeats
to get e,f,g,h. These sets can then be spatially summed to return maximal self-connected
regions.

returning a polygon when we reach our start point (if further edges remain,
these are holes and we simply repeat the process until there remains no un-
visited edges). If we have overlapping polygons, then we can use our polygon
generation approach to create a union by combining the sets of lines that make
up our polygons and generating a new polygon that represents their union. We
could simply use this approach for the union of all polygons, but this is slower
than the union of existing polygons.

So our sum operation combines the previous operations; we find our set
of candidate polygons, find maximal self-connected sets via our breadth-first
search and then form the union either through union or additional polygon
generation. Further operations such as spatial difference or intersection could also
be developed, but are beyond the scope of this work. The results of running our
water-channel query are shown in Fig. 8, where we see stretches have successfully
been joined to form larger regions.

Fig. 8. The results of running the water-channel query. The linear stretches were seg-
mented first, then a query representing interstretch was run. Finally, a water-channel
was defined to be the self-connected sum of these two features, such that we find the set
of polygons that are either linear or an interstretch, then used our traveling algorithm
to find maximal self-connected sets.



7 Future Work

The next key stage of the research is into further logical definitions that can
be used to represent inland water features, and thus construct an ontology that
represents such features. This may require further primitive functions to be im-
plemented in addition to the linearity and closeness tests present in the system.
However, the aim is to keep such primitives to a minimum, as the system is
intended to be as general as possible. Thus new features should be defined in
logical definitions at the ontology level.

The system has been developed in Prolog and at present is designed to use
first order logic based queries. However, a possible extension would be to inte-
grate more closely with a language such as OWL, which can be inputted into
Prolog [30, 31]. By creating the ontology in OWL, we allow interaction with the
semantic web, whilst retaining the segmentation level in Prolog allows us to rea-
son with vague features and ground the ontology upon the data effectively. This
is also proposed in [32], where it is shown that OWL cannot effectively han-
dle RCC without modifying the rules of the language. However, such revisions
may remove other favourable features of OWL, hence a hybrid system is more
appropriate.

8 Related Work

The problem of combining qualitative and quantitative data has previously been
discussed in [33]. Here, the combination of different levels of information are
discussed, such that the intention is to bridge the gap between the primitive
level of points, lines and polygons, and the object level describing the spatial
relations and definitions of features.

Like the Allen relation based approach used in this paper, transitivity tables
are formed representing the possible relations between different primitives. Thus,
spatial relations can be calculated by deductive processes as opposed to compu-
tational geometric algorithms (or at least a reduced usage of such algorithms).
In this paper, we have expanded this to show how intersection and point loca-
tions can be determined using similar approaches to reduce the computational
geometry requirements.

As previously mentioned, [10] discussed a hierachical approach to determining
RCC relations. Moreover, the calculations were converted to boolean terms, such
that the problem becomes one of the closure of half-planes. On the other hand,
in this paper decisions are made based on both the intersection and location of
points with respect to the regions. Thus a richer level of detail is deductible.

Another approach to deducing the spatial relationships is to use constraint
logic programming [34], as discussed particularly in [35]. Such an approach offers
an interesting alternative, but is reliant on the efficiency of the constraint logic
solver used, and as discussed in [35] further work is required to improve such an
approach for effective implementation.



9 Conclusion

In this paper we have demonstrated a method of calculating and using RCC
relations on segmented topographical data, thus allowing integration with an on-
tology grounded upon the data. This improves the handling of vagueness within
geographical features, as we can make decisions on features based upon the con-
text in which they are made, as opposed to using predefined regions.

We have shown that although the calculation of RCC relations is computa-
tionally expensive, we can still implement the relations effectively by using other
knowledge representation approaches such as Allen’s interval algebra. Further,
Allen’s relations were adapted to provide simple but effective methods of calcu-
lating the intersections and locations of points of polygons in relation to each
other, although more efficient algorithms may exist. Further work is therefore
required to determine the efficiency of the approaches discussed here, or whether
a hybrid approach using deductive methods in conjunction with other compu-
tational geometric algorithms, thus providing the most efficient environment
overall.

We have shown how previous queries used in the system could be written
in first order logic instead of being specified in the code. Although these may
require further clarification, this does highlight the possibility of defining features
in first order logic. We have also shown how maximal self-connected regions
satisfying such queries can be generated. Finally, we have shown where the work
is intended to progress and how this will improve the handling of vagueness
within geographical features.
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