A Role and Attribute Based Access Control
System Using Semantic Web Technologies*

Lorenzo Cirio!, Isabel F. Cruz', and Roberto Tamassia?
! University of Illinois at Chicago
{lcirio|ifc}@cs.uic.edu
2 Brown University
rtQcs.brown.edu

Abstract. We show how Semantic Web technologies can be used to
build an access control system. We follow the role-based access con-
trol approach (RBAC) and extend it with contextual attributes. Our
approach provides for the dynamic association of roles with users. A De-
scription Logic (DL) reasoner is used to classify both users and resources,
and verify the consistency of the access control policies. We mitigate the
limited expressive power of the DL formalism by refining the output of
the DL reasoner with SPARQL queries. Finally, we provide a proof-of-
concept implementation of the system written in Java.T™

1 Introduction

In this paper, we present an access control system for context-aware environ-
ments designed and built using Semantic Web technologies. We adopt the role
based access control (RBAC) model [12]. In an RBAC system, roles are assigned
to users statically using a procedure performed by the security administrators.
Although revisions are possible, they are not supposed to be frequent nor to be
done at run time [12]. This approach can be restrictive in various situations,
including in mobile situations that are common in context-aware or pervasive
computing, where the identity of the users is not known in advance. For exam-
ple, we may wish to grant a role to a visitor, or to a first time client, without
permanently registering the client’s data.

Recently, various proposals have appeared in the literature to extend RBAC
with concepts like team membership, users’ tasks, organizational hierarchy, and
contextual information (such as position and time) [16]. Each of these approaches
captures an interesting (yet partial) aspect to be directly integrated in the access
control system.

To introduce flexibility into the procedure of role assignment, we borrow
ideas from attribute-based access control systems (ABAC) [1,19]. In an ABAC
system, permissions are associated with a set of rules expressed on measurable
parameters and are granted to users who can prove compliance with these rules.
However, unlike ABAC, we do not directly associate the permissions with the

* Work supported in part by NSF grants 11S-0326284, 11S-0324846, 11S-0513553, TIS-
0713403, and OCI-0724806.

attributes, but instead borrow the concept of role from RBAC, which we use as
an intermediate structure between attributes and permissions.

In an RBAC system, the first interaction between the user and the system
is an identification procedure, followed by the retrieval of the roles leased to
the user from a database. We replace this phase with a handshake procedure in
which the roles that can be claimed by the user are determined on the basis of
the provided attributes. These roles are then enabled as usual in the activation
phase.

Using this approach, we can move from an authentication system based just
on identity to one that takes into account attribute values. For example, in the
case of our visitor, a credential issued by a trusted third party or GPS reading
can supply the value for an attribute that will give access to a particular role.

We summarize the contributions of our work as follows:

Access model. By combining RBAC, which supports static roles, with ABAC,
we introduce a new access control model that enables dynamic assignments of
roles to users in two different ways. First, privileges associated with resources
are dynamically assigned depending on the attribute values of the resources.
Second, attribute values associated with users determine the association of users
with privileges. This kind of approach is especially suited to context-aware or
pervasive computing.

Semantic Web technologies. We develop a framework that supports our security
model using Semantic Web technologies and in particular OWL-DL. To this end,
we produce a high level OWL-DL ontology that expresses the elements of a Role
Based Access Control system, and build a domain specific ontology that captures
the features of the application. Inferencing as supported by OWL-DL determines
containment among classes, for example, how policies relate to resources or how
instances are classified into their correct categories.

Ezpressiveness and design. We encountered several expressiveness problems and
design choices. In particular, one limitation of the actual OWL classifier is the
limited or missing support of concrete data types, which prevents stating con-
ditions that involve data type comparison. To address this problem, we use
SPARQL queries to express path properties. We use ontology design “best prac-
tices” [11] for developing complex structures in OWL.

Implementation. We provide a proof-of-concept implementation of the system,
integrating standard elements with our application specific code. Our code is
written in Java.™ The RDF data are processed using the Jena™ framework,
which also provides a SPARQL query engine. In addition, our system does not
depend on a specific DL-reasoner. Therefore, by leveraging existing technologies
such as secure network infrastructures, RDF data processors, and DL-reasoners,
our implementation can quickly adapt to new standards and new implementa-
tions as they become available.

This paper is organized as follows. In Section 2 we describe an OWL-DL
ontology that expresses the elements of a Role Based Access Control system
to define privileges and associate them with roles and resources in a domain
ontology. In Section 3 we describe briefly the OWL design patterns we use to

build the ontologies and the software architecture of our implementation. We
discuss related work in Section 4 and show how our work advances the state of
the art when compared to that work. Finally, we draw conclusions and point to
future work in Section 5.

2 RBAC Modeling

In this section, we describe our method for creating an OWL-DL ontology that
expresses the modeling abstractions of RBAC. We then show how we attach this
ontology to a domain ontology and explain the tasks that are performed by the
security administrator and by the DL classifier. We also discuss the limitations
in expressiveness of OWL-DL, the use of SPARQL queries, and how we integrate
SPARQL with OWL-DL.

In the development of the RBAC ontology, we have followed these principles:
(1) the access control ontology should limit itself to expressing the modeling
abstractions of RBAC; (2) no hypothesis is made about the domain knowledge,
neither semantically nor syntactically—the resulting role ontology shall not de-
pend on external factors like the type of organization or type of procedures nor
on the structure of the domain ontology (which could be either monolithic or
a layered system composed of different ontologies); and (3) we do not capture
any workflow procedure inside the model so as to preserve both simplicity and
generality.

In agreement with these hypotheses, we provide a tool that can express RBAC
constructs, which are intended to be imported and used by the domain ontol-
ogy, such as the library ontology of Figure 1. In this figure, we represent three
ontologies: the RBAC ontology and two domain ontologies: general and custom.
The former is an “off-the-shelf” (reused) ontology and the latter an ontology
specifically developed for the access control system. Higher level abstractions or
extensions can be implemented outside of the role ontology, either directly in
the domain ontology or in additional, intermediate layers.

RBAC
ontologﬂ /j Role ‘ ‘ Resource ‘ ‘ Privilege ‘y\ ‘ Action)
/!
1
|

= /“
—— Il
/ “ -~ - - \use\sRisozrce \ \
| ‘ Journal }—»Noncirculatingltem usesResource” ~ Read
\
[N \
\ N hasPrivilege \ performsAction
— \
Library ! . hasPrivilege \ 3
ontology LibraryCardHolder Student — — — = — — ~—] ConsultinLibrary
(general) — /4
l disjoint. ¥~ "
\ ibrary
. hasPrivilege / ontology
Person Visitor (custom)
—— asserted — —» inferred X inconsistent

Fig. 1. Relationships between the domain ontologies and the RBAC ontology.

In providing an RBAC classification for all the classes of the domain on-
tologies, there are two actors at play: the security administrator and the DL
classifier. We assume that the security administrator explicitly defines: (1) privi-
leges (e.g., ConsultInLibrary = (NonCirculatingltem, Read)); (2) the association
of privileges with classes in the domain ontology (e.g., ConsultInLibrary with Li-
braryCardHolder). The DL classifier propagates the RBAC elements according
to the axioms that were originally stated in the domain ontologies using any
valid inference, for instance, inheritance (e.g., every subclass of role Student will
be classified as Role and will enjoy the privileges of Student).

The RBAC ontology has the following four classes:

Action. This is a partial, or self-standing, class that represents an action that
can be performed by a user on a resource. It is intended to be the super class of
the actual actions that can be performed in the system (e.g., Read).

Resource. This is a defined class, representing the authorization objects. The DL
classifier will place under Resource all the classes that match the condition

subject _to. Privilege M —{ Action, Role, Privilege}

that is, every instance that has relationship subject_to with an entity of type
Privilege and that is not an Action, a Role, or a Privilege. Using the classifier,
we can identify all the objects that have been treated like a Resource in the
domain ontology. In our example of Figure 1, this is the case for Journal and
NonClirculatingltem.

Privilege. This is a partial (self standing) class representing a pair (a,r) with
a € Action, r € Resource. The one-to-one association is imposed by a cardinal-
ity constraint. In our example, privilege ConsultInLibrary, represents the pair
(NonCirculatingltem, Read). By using inheritance between Journal and Non-
CirculatingItem, the DL classifier will also infer the privilege (Journal, Read).

Role. This is a defined class. The DL classifier will place under Role all the classes
that match the condition JhasPrivilege. Privilege. We then expect that any class
that is declared to have a privilege in the domain ontology to be classified as
Role, as is the case with Student and LibraryCardHolder.

The RBAC ontology has the following properties:

hasPrivilege C Role x Privilege. It is a many-to-many association of roles and
privileges. Figure 1 shows how the property is imported into a domain ontology.
It is used to indicate that a specific class in the domain (e.g., Student) has some
privileges (e.g., ConsultInLibrary) and therefore should be considered as a Role,
as already mentioned. We are using the characteristic of Description Logic that
states that range and domain are not considered as constraints to be checked,
but as axioms conveying additional information. Therefore, by establishing that
a class (e.g., Student) is associated with some subclass of Privilege (e.g., Con-
sultInLibrary) through hasPrivilege, we are indicating that this class is actually
a subclass of Role.

This approach lets the security administrator define roles simply by attaching
property hasPrivilege to the appropriate classes in the domain of interest. The

static separation of duties is formulated in the domain ontology by declaring
those classes disjoint. For instance, our library ontology ensures that Visitor
and LibraryCardHolder are disjoint roles. Therefore, a user cannot be associated
with these two roles simultaneously and can only enjoy the privileges that go
with one of them.

notTogetherWith C Role X Role. It is a many-to-many association of roles with
roles, used to express the dynamic separation of duties. Therefore if RoleA is
active, the system will refuse to activate any instance of a subclass of Role that
is in a notTogether With relationship with RoleA. The property is declared to be
symmetric, therefore the DL classifier will compute the symmetric closure of the
relation, ensuring that two roles are dynamically separated even when just one
of them is declared incompatible with the other.

performsAction : Privilege — Action. It is a total function that associates each
privilege with the action it allows to perform. Together with usesResource, this
construct is used to ensure that each privilege is a pair (a,r) with a € Action
and r € Resource.

usesResource : Privilege — Resource. It is a total function associating to each
privilege the resource on which it operates. Together with performsAction, this
construct is used to ensure that each privilege is a pair (a,) with a € Action, r €
Resource. The inverse of usesResource is a property named subject_to. It is not
a function because one resource can be managed by different privileges.

An issue that we must address is that of limitations of expressiveness that
arise in OWL-DL. Consider the example where we want to state that a Candidate
is a Student that prepares a Thesis and is advised by an Adviser:

Candidate = Student M Iprepare. Thesis M Jis_advised. Adviser

Likewise, we can state that an Adviser advises a Candidate and reviews a
Thesis:
Faculty_Member M Jreview. Thesis M Jadvise. Student

These statements only involve classes, therefore there is no way for us to
specify that the actual instance of thesis prepared by a specific student is the
same instance of thesis that is reviewed by the intended adviser [7]. Figure 2
shows how the model described is interpreted by the DL reasoner. The classifier
will infer that the instance of Adviser has to be linked to an instance of The-
sis, but cannot infer that this instance is the one linked to the student who is
supervised by the adviser.

A possible solution to this problem is to first apply a DL classification and
then a set of Horn clauses [17]. However, our problem of verifying path properties
between instances can be reduced to querying the ontology to verify if such
a path exists. Queries expressed in SPARQL provide us with the solution to
this problem. The language adopts a closed world assumption, following the
usual convention for database systems. This is in contrast with the open world
assumption adopted by Description Logic that does not imply that there exist
particular instances of the classes involved that satisfy a particular constraint.

Classes Instances

/ ~ advises *‘ " advises 0l
Adviser Candidate Adviser:AnAdviser Candidate:ACandidate
L\ —__isadvised - AN __isadvised -
reviews prepares reviews ! S prepares
4
Thesis Thesis: Thesis:AThesis
asserted ————» inferred — — — —»

Fig. 2. An ontology showing a path property.

In particular, we are interested in ensuring that some constraints expressed
at design time are met at run time, therefore the ASK construct fits our needs.
The query of Figure 3 is the path query that solves the example previously
discussed and illustrated in Figure 2. The WHERE section of the query is used to
specify the graph pattern that we are looking to match. Alternative paths can
be taken into account, using the keyword UNION to indicate them.

" advises ¢
ASK WHERE {
X Adviser:AnAdviser Candidate:ACandidate
ACandidate
prepares ?thesis; . isadvised
is_advised AnAdviser. reviews prepares,

AnAdviser reviews ?thesis

}

Thesis:AThesis

Fig. 3. Path property expressed in SPARQL.

In expressing queries, there is information that could be interesting to refer
to, such as the session identifier, which is known only at run time. To overcome
this limitation, we introduce the following convention: the variable ?session
can be used as a reference to the session identifier. At run time, the execution
environment will take care of replacing the symbol with its actual value, wherever
it appears.

We seamlessly integrate SPARQL queries with our OWL ontology using an-
notation properties, which carry meta-information about the ontology. For ex-
ample, the standard defines the property owl:versionInfo to trace the evolution
in time of an ontology or rdfs:label to provide a human-readable tag for a node.

We have declared two annotation properties, requires True and requiresFalse,
with domain Role and range String. They can be used in the domain ontology
to specify additional constraints that have to be checked by the runtime envi-

ronment. SPARQL queries such as those we have just introduced, which return
a Boolean value, will be the string pointed to by a property.

3 Implementation

In this section, we describe briefly our prototype implementation, focusing on
OWL design patterns and software architecture. We use three OWL design
patterns: value partition, linked list, and recursive composition, which are sum-
marized below.

Value partition. This OWL design pattern addresses the problem of assigning
values to attributes of a class and is recommended by the W3C Semantic
Web Best Practices and Deployment Working Group [11].

Linked list. Inspired by Drummon et al. [6] and leveraging the reasoning capa-
bilities of OWL, we have developed this OWL design pattern to represent a
sequence of nodes connected by links.

Recursive composition. Adapting the composite design pattern in software engi-
neering, we have developed this OWL design pattern to model a containment
tree without using the subclassing mechanism. The navigation from child to
parent is given by property containedIn, which is declared to be transitive. To
avoid unexpected inferences, we add an axiom that limits the containment
to instances of a parent class [14].

Our access control system is based on the following assumptions:

— The background knowledge used to make the access decisions is available as
Semantic Web ontologies. Several techniques exist for converting relational
databases and XML databases into ontologies (see, e.g., [4,20]).

— The organization has established a secure infrastructure to register, propa-
gate, request and verify user attributes. This functionality is offered by net-
work services that support single sign-on across domains and trusted user
directories. See, for example, PERMIS [2] and Shibboleth [13].

— We use the ontology format also for the attributes. Again, conversion tech-
niques can be applied if the native format is different.

The interaction with the system is performed through a Java API and is
based on web standards. Logically, it consists of the following phases: (1) config-
uration of the system by loading the ontologies; (2) initialization and consistency
verification of the ontologies by the DL reasoner; (3) instantiation of sessions as-
sociated with access requests. The session manager acts as a policy enforcement
point(PEP). The policy decision point (PDP) is implemented with code that
wraps the DL-reasoner.

The code is organized into classes associated with the elements of the RBAC
ontology. Additional functionality is introduced for the purpose of managing the
sessions. The library is completed by several helper classes dealing, for example,
with cryptographic operations and the management of name spaces. We leverage
the Jena™ library freely available from HP.

4 Related Work

Neumann and Strembeck have designed and implemented zoRBAC, a network
service offering role based access control [10]. They also extend this service to
take into account contextual information, which is fed into the system via soft-
ware sensors whose output can enter into the formulation of the policies [15].
Users are authenticated using digital certificates in standard X.509 format. The
RBAC information is stored in RDF-XML format, but the authors never men-
tion the use of reasoners, therefore we assume that RDF is only used as a way
to store data. The policies are written in a dedicated language that is later con-
verted into an XOTcl (eXtended Object Tcl) script and executed by the system.

Kagal et al. propose Rein, a distributed framework based on ontologies to
share and compose access control policies [8]. They reuse reference policies [9] and
adapt them to their needs. While policies may be expressed in different ontology
languages, their prototype uses the rule language N3 and the reasoner CWM.
The authors motivate the choice of a rule based language over a DL-based lan-
guage, with a higher expressive power. They note that this choice presents a
couple of difficulties as it prevents classifying the different policies and detecting
incompatibilities in their definitions.

Toninelli et al. describe a context-aware access control framework for perva-
sive computing [17]. They present a scenario where participants from different
organizations attend a meeting. In their approach, users can safely exchange
information and share resources, without knowing their identities beforehand.
This method relies on sensors that capture the contextual information. Con-
text is represented with a context ontology, which needs to be imported and
is specialized from the ontologies modeling the domain of interest. Description
Logic is used to classify the context models and discover their relationships (such
as equivalence or generalization). The context models developed at design time
need to be associated with the data from the sensors to form enforceable policies.
This instantiation procedure depends on rules expressed in logic programs. As
compared to our approach, they do not provide the decoupling capability that
is achieved by having roles.

Di et al. [5] represent RBAC entirely in Description Logic. Thus, their access
control model is entirely contained in a DL reasoner. They offer constructs to
model the role hierarchy, the static and dynamic separation of duties and some
form of cardinality constraints. They do not enrich the system with additional
languages and are therefore limited to the constraints of open world reasoning.
Our approach contrasts with this one because by adding another language, we
are not limited to the expressiveness of a DL-reasoner.

KAoS is a rich component-based framework, for expressing, administrating
and enforcing policies [18]. It is especially targeted to distributed computing
environments as grid computing and Semantic Web Services. It offers a high
level ontology that explicitly provides constructs to model processes and trans-
actions. To offer this expressive power, the system integrates OWL-DL with the
SWRL rule language. While our approach leverages existing technologies and

can quickly adapt to new standards and new implementations as they become
available, KAoS relies on the construction of many of the system components.
Damiani et al. propose GEO-RBAC, a formal framework for “spatially-aware”
RBAC for location-based applications, where roles are activated based on the
position of the user [3]. The framework uses spatial entities to model objects, user
positions, and geographically bounded roles and further consider hierarchies to
model permission, user, and activation inheritance. Properties concerning satis-
fiability, implications, and evaluation of their proposed classes of constraints are
proved. While role-based, GEO-RBAC does not use Semantic Web technologies.

5 Conclusions and Future Work

We have shown how available Semantic Web technologies, namely OWL and
Description Logic, can be used to build an access control system. To this end,
we have developed a high level OWL-DL ontology that expresses the elements of
a role based access control system and we have built a domain-specific ontology
that captures the features of a sample scenario. Finally, we have joined these
two artifacts to take into account attributes in the definition of the policies and
in the access control decision. The use of attributes is twofold: to classify users
into access control roles and to classify resources as access control objects.

We have used Description Logic to express inferences, for example, to detect
the containment among classes that show how policies relate to resources. The
limited expressive power of Description Logic has been mitigated by introduc-
ing SPARQL queries that can check additional constraints against an available
knowledge base. Thanks to the annotation properties offered by OWL, we have
embedded the SPARQL queries into the ontologies, integrating the policies in
one entity. Our system prototype uses Java™and can be easily extended and
integrated in a networked architecture to be offered as a service.

The forthcoming OWL 1.1 standard will allow us to simplify and add ex-
pressive power to our system. In the area of security, the effectiveness of rules
to express policies is demonstrated by the many existing access control systems
based on this mechanism. However, while rule-based languages are widely de-
bated in the Semantic Web community, their integration with Description Logic
is still an open issue. Therefore, it is interesting to investigate how support-
ing a rule language will change our framework, especially considering that rule
languages have complementary strengths and weaknesses with respect to De-
scription Logic. Finally, the task of the ontology developer will be made easier
by improvements to the ontology debugger. In particular, it would be interesting
to increase the precision in identifying the axioms that cause an inconsistency.

References

1. M. A. Al-Kahtani and R. S. Sandhu. Induced role hierarchies with attribute-
based RBAC. In 8th ACM Symposium on Access Control Models and Technologies
(SACMAT), pages 142-148. ACM, 2003.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

. D. W. Chadwick and A. Otenko. The PERMIS X.509 role based privilege manage-

ment infrastructure. Future Generation Computer Systems, 19(2):277-289, 2003.
M. L. Damiani, E. Bertino, B. Catania, and P. Perlasca. GEO-RBAC: A spatially
aware RBAC. ACM Trans. on Information and System Security, 10(1):2, 2007.
C. P. de Laborda and S. Conrad. Bringing relational data into the Semantic Web
using SPARQL and Relational. OWL. In 3rd Int. Workshop on Semantic Web and
Databases (SWDB). IEEE, 2006.

W. Di, L. Jian, D. Yabo, and Z. Miaoliang. Using semantic web technologies
to specify constraints of RBAC. 1In 6th Int. Conf. on Parallel and Distributed
Computing Applications and Technologies (PDCAT), pages 543-545. IEEE, 2005.
N. Drummond, A. Rector, R. Stevens, G. Moulton, M. Horridge, H. H. Wang, and
J. Seidenberg. Putting OWL in order: Patterns for sequences in OWL. In OWL:
Ezxperiences and Directions (OWLED) ISWC Workshop, 2006.

I. Horrocks, O. Kutz, and U. Sattler. The even more irresistible SROIQ. In 10th In-
ternational Conference on Principles of Knowledge Representation and Reasoning
(KR), pages 57—67, 2006.

L. Kagal, T. Berners-Lee, D. Connolly, and D. Weitzner. Self-describing delegation
networks for the Web. In 7th IEEE Int. Workshop on Policies for Distributed
Systems and Networks (POLICY), pages 205-214. IEEE, 2006.

L. Kagal, T. Berners-Lee, D. Connolly, and D. J. Weitzner. Using Semantic Web
technologies for policy management on the Web. In 21st National Conference on
Artificial Intelligence (AAAI). AAAI Press, 2006.

G. Neumann and M. Strembeck. Design and implementation of a flexible RBAC-
service in an object-oriented scripting language. In 8th ACM Conference on Com-
puter and Communications Security (CCS), pages 58—67, 2001.

A. Rector. Representing specified values in OWL: “value partitions” and “value
sets”. Note NOTE-swbp-specified-values-20050517, W3C, May 2005.

R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based access
control models. Computer, 29(2):38-47, 1996.

T. Scavo and S. Cantor. Shibboleth Architecture, Technical Overview, Working
Draft 02. Technical report, Internet2 Consortium, June 2005.

J. Seidenberg and A. L. Rector. Representing transitive propagation in OWL. In
25th International Conference on Conceptual Modeling (ER), pages 255-266, 2006.
M. Strembeck and G. Neumann. An integrated approach to engineer and enforce
context constraints in RBAC environments. ACM Trans. on Information and
System Security, 7(3):392-427, 2004.

W. Tolone, G.-J. Ahn, T. Pai, and S.-P. Hong. Access control in collaborative
systems. ACM Computing Surveys, 37(1):29-41, 2005.

A. Toninelli, R. Montanari, L. Kagal, and O. Lassila. A semantic context-aware
access control framework for secure collaborations in pervasive computing environ-
ments. In 5th International Semantic Web Conference, pages 473-486, 2006.

A. Uszok, J. M. Bradshaw, M. Johnson, R. Jeffers, A. Tate, J. Dalton, and
S. Aitken. KAoS policy management for semantic web services. IEFEE Intelli-
gent Systems, 19(4):32-41, 2004.

L. Wang, D. Wijesekera, and S. Jajodia. A logic-based framework for attribute
based access control. In ACM Workshop on Formal Methods in Security Engineer-
ing (FMSE), pages 45-55. ACM Press, 2004.

H. Xiao and I. F. Cruz. Integrating and Exchanging XML Data Using Ontologies.
In Journal on Data Semantics VI, volume 4090 of Lecture Notes in Computer
Science, pages 67-89. Springer, 2006.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

