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Abstract. Tweakable blockciphers, first formalized by Liskov, Rivest,
and Wagner [12], are blockciphers with an additional input, the tweak,
which allows for variability. An open problem proposed by Liskov et al.
is how to construct tweakable blockciphers without using a pre-existing
blockcipher. There are many natural questions in this area: is it signif-
icantly more efficient to incorporate a tweak directly? How do direct
constructions compare to existing techniques? Are these direct construc-
tions optimal and for what levels of security? How large of a tweak can
be securely added? In this work, we explore these questions for Luby-
Rackoff blockciphers. We show that tweakable blockciphers can be cre-
ated directly from Luby-Rackoff ciphers, and in some cases show that
direct constructions of tweakable blockciphers are more efficient than
previously known constructions.

1 Introduction

A blockcipher, also known as a pseudorandom permutation, is a pair of algorithms
E and D. The encryption algorithm E takes two inputs – a key K and a message
block M , and produces a ciphertext block C of the same length as M , while the
decryption algorithm D reverses this process. A blockcipher is considered secure
if, for a random secret key K, the cipher is indistinguishable from a random
permutation.

A tweakable blockcipher takes an extra input, the tweak, (T ), that is used only
to provide variation and is not kept secret. Unlike changing the key, changing the
tweak should involve minimal extra cost. A tweakable blockcipher is considered
secure if it is indistinguishable from a family of random permutations indexed
by the tweak. The Hasty Pudding Cipher by Schroeppel [21] was the first to
introduce an auxiliary blockcipher input called a “spice” and Liskov, Rivest,
and Wagner [12] later formalized the notion of tweakable blockciphers. Liskov et
al. describe two levels of security: a secure (CPA) tweakable blockcipher is one
that is indistinguishable from a random permutation family to any adversary
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that may make chosen plaintext queries, while a strongly secure (CCA) tweakable
blockcipher is pseudorandom even to an adversary that may also make chosen
ciphertext queries.

Tweakable blockciphers have many practical applications. Liskov et al. de-
scribe how they can be used to implement secure symmetric encryption and
authenticated encryption. Halevi and Rogaway [9,10] suggest an immediate ap-
plication to private storage where the tweak is set to be the memory address
of an enciphered block; and thus, the encryptions of two blocks with the same
plaintext are not likely to look the same and yet decryption remains straight-
forward. Tweakable blockciphers have also been studied in a variety of other
contexts [1,11,20,2].

Feistel Blockciphers. Feistel blockciphers [6] have been an actively studied class
of constructions since Horst Feistel invented them in 1973. In particular, Luby
and Rackoff showed how to construct a pseudorandom permutation from a
pseudorandom function by composing three (or four in the case of CCA se-
curity) Feistel permutations [13]. We call this construction the Luby-Rackoff
blockcipher. In 1996, Lucks [14] described an optimization for the secure 3-
round version by replacing the first round with a universal hash function.
Shortly afterwards, Naor and Reingold [15] provided the analogous optimiza-
tion for the strongly secure 4-round cipher, replacing both the first and last
rounds with a more general type of function. In 2001, Ramzan [18] formally
studied many variations on the Luby-Rackoff cipher. Patarin gave proofs of se-
curity for certain constructions against unbounded adversaries with access to
exponentially many queries, albeit assuming the individual round functions are
random functions rather than pseudorandom. Specifically, Patarin proved se-
curity for 7 rounds against q � 2k queries, where the blockcipher input is of
size 2k [16], and later improved this to show that 5 rounds is sufficient, both
for chosen-plaintext and chosen-ciphertext attacks [17], which remains the best
proven security level for Feistel ciphers. Dodis and Puniya recently provided a
combinatorial understanding of Feistel networks when the round functions are
unpredictable rather than pseudorandom [5].

Our Work. Liskov, Rivest, and Wagner [12] give two constructions for tweak-
able blockciphers, each one constructed from an underlying blockcipher. Sub-
sequent work has also taken this approach; Halevi and Rogaway’s EMD and
EME modes [9,10] and Rogaway’s XEX mode [20] were all blockcipher modes of
operation. The only examples of specific tweakable blockciphers are the Hasty
Pudding [21] and the Mercy [4] ciphers.

One open problem proposed by Liskov et al. was to study how to incorporate
tweaks into existing blockciphers, or design tweakable blockciphers directly. In
this work, we perform a systematic study of issues relating to directly tweak-
ing Luby-Rackoff blockciphers. We analyze the approach of including a tweak
by XOR-ing the tweak value into one or more places in the dataflow. This natural
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model for adding a tweak changes the cipher minimally. Also, approaches involv-
ing more direct cryptographic processing of the tweak (e.g. hashing the tweak)
have a significant additional cost associated with changing the tweak.

Our Contributions. We present tweakable Luby-Rackoff blockciphers, for both
CPA and CCA security, and against both polynomial-time adversaries, and
against unbounded adversaries with q � 2k queries1, where k is half the size of
the input (matching the best result for ordinary blockciphers [17]). Specifically,
we construct tweakable blockciphers:

– CPA-secure against polynomial adversaries in 4 rounds (Theorem 3)
– CCA-secure against polynomial adversaries in 6 rounds (Theorem 8)
– CPA-secure against q � 2k queries in 7 rounds (Theorem 4)
– CCA-secure against q � 2k queries in 10 rounds (Theorem 9)

Recall that for polynomial adversaries CPA-security requires 3 rounds whereas
CCA-security requires 4. It is thus natural to wonder if our constructions are
optimal. We prove our constructions against polynomial adversaries are indeed
round-optimal in our model (Theorems 1 and 7). Furthermore, we show that any
construction of 6 or fewer rounds in our model can be attacked with O(2k/2)
queries (Table 1), so our construction of Theorem 4 is also round-optimal. In
addition, the attacks used to prove the round-optimality of our constructions,
as well as our extension of the proof methods of Naor and Reingold, help to
form the theoretical foundation necessary for the secure design of tweakable
blockciphers regardless of construction, as well as shedding light on the diffi-
culties in adding a tweak to Feistel-based blockciphers such as RC6 [19] and
MARS [3].

We also explicitly address the problem of incorporating tweaks of arbitrary
length, an important issue not addressed in the literature.2 We show that our
CPA-secure constructions can incorporate additional blocks of tweak at the cost
of 1 round per block (Theorems 11 and 14), and that our CCA-secure con-
structions may be similarly extended at the cost of 2 rounds per block of tweak
(Theorems 12 and 15).

2 Definitions

A tweakable blockcipher is a triple of algorithms ( ˜G, ˜E, ˜D) for key generation,
encryption, and decryption, respectively. We restrict our attention to tweakable
blockciphers where ˜G(·), ˜EK(·, ·), and ˜DK(·, ·) are all efficiently computable al-
gorithms; and where the correctness property holds; that is, for all M, T, and
1 That is, any non-negative q < 2k such that q2−k is negligible.
2 Using tweaks of arbitrary length has been considered for tweakable symmetric en-

cryption [8], but not for one-block constructions. Certain applications require differ-
ent, specific tweak sizes, and one may want to allow longer tweaks to include more
information. Indeed, this was the motivation for Schroeppel to allow spice values of
512 bits in the Hasty Pudding Cipher [21].
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for all keys K ∈ ˜G(1k), ˜DK( ˜EK(M, T ), T ) = M . We also generally assume that
˜G(1k) draws keys uniformly at random from {0, 1}p(k) for some polynomial p.

We have two notions of security: (1) chosen-plaintext secure (CPA) and (2)
chosen-ciphertext secure (CCA). Security is defined in terms of both a poly-
nomial and an exponential adversary; polynomial adversaries are limited to a
number of queries and computations polynomial in the message size, whereas an
exponential adversary is allowed unlimited computation, but is bounded by an
exponential number of queries relative to the message size.

Definition 1. Over all adversaries with access to an encryption oracle, the max-
imum advantage is defined as:

ADV-TBCK( ˜E, ˜D, q, t) = max
A

: |Pr[A ˜EK (·,·)(1k) = 1] − Pr[AΠ (1k) = 1]|

where (1) for all k, K is generated by ˜G(1k), (2) Π is a random permutation
family parameterized by its second input, and (3) A is allowed to run for t steps
and make at most q oracle queries.

Definition 2. Over all adversaries with access to an encryption and decryption
oracle, the maximum advantage is defined as:

ADV-STBCK( ˜E, ˜D, q, t) = max
A

: |Pr[A ˜EK(·,·), ˜DK(·,·)(1k) = 1] − Pr[AΠ,Π−1
(1k) = 1]|

where (1) for all k, K is generated by ˜G(1k), (2) Π, Π−1 are a pseudorandom
permutation family and its inverse, and (3) A is allowed to run for t steps and
make at most q oracle queries.

A tweakable blockcipher is CPA secure if for all k, for q queries and time t,
ADV-TBCK( ˜E, ˜D, q, t) is negligible in k. A tweakable cipher is said to be
polynomially-secure if q and t are polynomial in k. If t is unspecified, then it
may be unbounded. We define CCA security in the same manner.

3 The Feistel Blockcipher

Recall the formula for the Feistel blockcipher [6] on input M = (L0, R0):

Li+1 = Ri

Ri+1 = fi+1(Ri) ⊕ Li

where the output after n rounds is (Ln, Rn), and each fi is a pseudorandom
function specified by the key. Further recall that the 3-round Feistel construction
is secure against chosen plaintext attacks, and the 4-round construction is secure
against chosen ciphertext attack [13].

3.1 Notation

In order to talk about where to add a tweak, we must first establish some nota-
tion. Unless otherwise specified, the tweaks we refer to are a half-block in length;
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Fig. 1. An illustration of Λ3;
the locations at which to XOR
a tweak of length |M |/2 for
3-round LR

that is, on input M of size 2k, the tweak is of size
k. As we will later see, a blockcipher may allow
for longer tweaks; we think of these as “multiple
tweaks,” as conceptually, the longer tweak can be
thought of as being composed of multiple tweaks,
each of the same size.

For an n-round Luby-Rackoff construction,
a single half-block of tweak can conceiv-
ably be XOR-ed in at any of the following
unique locations: L0, L1, . . ., Ln, R0, R0.5,
R1, . . . , Rn−0.5, Rn. Let this set be denoted by
Λn. We illustrate the Λ3 (3-round) locations in
Figure 1.

Let T λ be the XOR of all the tweaks used at
location λ ∈ Λn. The formula for our construc-
tion is:

Li+1 = Ri ⊕ TRi

Ri+1 = fi+1(Ri ⊕ TRi ⊕ TRi+0.5) ⊕ Li ⊕ TLi

We use “BC(n, λ)” to refer to the tweakable
blockcipher construction where the number of
Luby-Rackoff rounds is n and a tweak T λ is XOR-
ed in at some location λ ∈ Λn. To denote adding
multiple tweaks, we write “BC(n, λ1, . . . , λt)”,
where T λi = Ti is the tweak for location λi and
different locations each have their own indepen-
dent tweak. Thus, in such a construction, the
tweak size is tk.

We might also want to denote adding the same tweak value at two or more
locations. We write this as “BC(n, λ1 + λ2)”, where the implication of using the
compound location λ1 +λ2 is that T λ1 = T λ2 . Of course, we may also consider a
construction with multiple tweaks, each of which may be a compound location;
we use the obvious notation for this. We use the symbol Γ to denote a (possibly)
compound tweak location.

In Λn, we have listed all tweaks at “.5” locations, i.e., Rl+0.5 for some l.
However, we do not have to consider these locations.

Lemma 1. For all m, Rm+0.5 is equivalent to Rm + Lm+1.

Lemma 2. For all 0 ≤ m < n, Lm is equivalent to Rm+1.

Since Lm and Rm+1 are equivalent, we will use them interchangeably. This starts
us off with a reduced set of tweakable constructions to study including tweaks
at locations Ln, R0, . . ., Rn and all combinations thereof.
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4 Tweakable Blockciphers with CPA Security

In this section, we focus on achieving CPA security. In the next section, we will
discuss the stronger CCA notion of security.

We begin by presenting some general results that hold for an arbitrary number
of rounds. These results will help us to narrow down the possibilities for secure
constructions and to prove the optimality of our final construction. As stated
in Section 3, the set of possibly secure constructions includes those with tweaks
at locations Ln, R0, . . ., Rn and all combinations thereof. However, we remark
in Lemma 3 that we do not need to consider all possible locations, and that
some locations can be simulated without directly tweaking the blockcipher; this
important observation is used frequently throughout the paper.

Lemma 3. For all n, without loss of generality, we can consider only construc-
tions that never use the tweak locations Ln Rn, R0, or R1, even in compound
locations, and even when considering CCA security.

Proof. We can simulate oracle queries with or without the tweaks in Ln Rn,
R0, or R1. To simulate a query (L0, R0, T1, . . . , Tt) to a construction with these
tweaks, we make a query (L0 ⊕ TR1 , R0 ⊕ TR0 , T1, . . . , Tt) to the construction
without these tweaks to obtain (Ln, Rn), and we return (Ln ⊕ TLn , Rn ⊕ TRn).
Decryption queries can be simulated similarly. �

The set of tweak locations we need to consider is thus reduced to {R2 . . . , Rn−1}.
From here on, we consider Λn to be {R2, . . . , Rn−1}.

Lemma 4. For all n, BC(n, Rn−1) is not CPA-secure.

Proof. We use a 2-query attack. If we query (L, R, T ) to get (Ln
1 , Rn

1 ), and then
query (L, R, T ′) to get (Ln

2 , Rn
2 ), then Ln

1 ⊕ Ln
2 = T ⊕ T ′. �

Thus, we arrive at our first round-specific conclusion.

Theorem 1 (No Tweakable 3-Round Constructions). For all n < 4 and
all compound locations Γ of elements in Λn, BC(n, Γ ) is not CPA-secure.

Proof. This follows from Lemmas 3 and 4, and the set {R2, . . . , Rn−2} being
empty for n = 3. �

4.1 Secure Locations

We have reduced the set of possible secure single tweak locations to {R2, . . . ,
Rn−2}. We now show that each of these locations are secure for n ≥ 4. However,
first we must define ε−ARCU2 hash functions and introduce some related work.

Definition 3. An ε − ARCU2 (“Almost Right-Collision-avoiding Universal”)
hash function family is a hash function family given a range of {0, 1}2k with
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the property that for all x �= y, the probability that hR(x) = hR(y) is at most
2−k + ε, over the choice of h, where hR denotes the right half of the output of h.

Naor and Reingold [15] create a secure blockcipher using two Luby-Rackoff
rounds in combination with a potentially less expensive function.

Theorem 2 (Naor-Reingold). If E denotes two Luby-Rackoff rounds with
truly random round functions, and h is drawn from an ε−ARCU2 hash function
family, then E◦h is indistinguishable (in a CPA attack) from a random function.

Using Definition 3 and Theorem 2, we are able construct CPA-secure tweakable
blockciphers.

Theorem 3 (Several Tweakable n-Round Constructions (for n ≥ 4)).
For all n ≥ 4 and m ∈ {2, . . . , n − 2}, BC(n, Rm) is CPA-secure against polyno-
mially bounded adversaries.

Proof. We can capitalize on Theorem 2 as follows. We will prove that when we
let h(L, R, T ) = (L ⊕ fm−1(R)||R ⊕ T ⊕ fm(L ⊕ fm−1(R))) over random choice
of fm−1 and fm, these conditions hold. Here, h is comprised of the last two
rounds of the construction before the tweak, including the tweak. Once we prove
this, the result will follow: the first m − 2 rounds are a permutation, so if h′ is
comprised of the first m rounds, it will be ε − ARCU2 if h is. Furthermore, since
m ≤ n − 2, there are at least 2 more rounds to follow; any further rounds are
another permutation and pseudorandomness will be maintained.

Lemma 5. The family h(L, R, T ) = (L ⊕ f1(R)||R ⊕T ⊕ f2(L ⊕ f1(R))), where
f1 and f2 are randomly chosen over the domain of all functions from k bits to
k bits, is ε − ARCU2, for ε = 2−k + 2−2k.

Proof. Let x = (L, R, T ) and y = (L′, R′, T ′), where x �= y. Note that if R �=
R′ then the probability that L ⊕ f1(R) = L′ ⊕ f1(R′) is the probability that
f1(R) = L ⊕ L′ ⊕ f1(R′) which is 2−k. Similarly, if R = R′ but L �= L′ then
L ⊕ f1(R) �= L′ ⊕ f1(R′). In either case, the probability that L ⊕ f1(R) =
L′ ⊕ f1(R′) is at most 2−k. Finally, if R = R′ and L = L′ then T �= T ′ so
hR(L, R, T ) = hR(L, R, T ′) ⊕ T ⊕ T ′ �= hR(L, R, T ′).

The probability that hR(L, R, T ) = hR(L′, R′, T ′) given that L ⊕ f1(R) �=
L′ ⊕ f1(R′) is the probability that f2(L ⊕ f1(R)) = R ⊕ R′ ⊕ f2(L′ ⊕ f1(R′),
which is 2−k, so the probability we hit a collision is at most (1−2−k)(2−k)+2−k =
2−k + 2−2k + 2−k = 2−k + ε. �

From the Lemma, if all the round functions are random, then the h we are
interested in is ε − ARCU2. By Theorem 2, BC(n, Rm) is indistinguishable from
a random function if all round functions are random. Therefore, BC(n, Rm) must
be CPA secure if its round functions are pseudorandom (since random functions
are indistinguishable from random permutation families). This completes the
proof of Theorem 3. �
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Corollary 1 (CPA Security In 4 Rounds). BC(4, R2) is CPA-secure and
round-optimal.

Proof. This follows directly from Theorems 1 and 3. �

4.2 Exponential Attacks

In this section, we investigate the security of tweakable blockcipher construc-
tions against an adversary who is capable of making an exponential number of
queries. We provide general attacks against several types of tweakable construc-
tions built from Luby-Rackoff permutations. In this section, we assume all round
functions are ideal, in other words, that they are uniform random functions.3 We
consider a construction secure against exponentially many queries if the prob-
ability of any computationally unbounded adversary allowed q � 2k queries to
distinguish the construction from a random permutation family is negligible in k.
These attacks appertain to constructions with both single and compound tweak
locations (where the same tweak value is XOR-ed in multiple locations) and are
used to prove that all constructions of less than 7 rounds can be distinguished
from a random permutation family in O(2

k
2 ) queries.

Lemma 6. For any 0 ≤ r < n, BC(n, Rr+0.5) is insecure against O(2
k
2 ) queries.

Proof. The attack is as follows: fix the message and query with 2
k
2 different

tweaks. The probability that two different queries lead to the same output is
negligible for a random permutation family. However, the probability that two
queries lead to a collision in this construction is not negligible. On each query,
the internal values stay constant until the input to fr+1. Since we have made 2

k
2

queries to an ideal round function, we can expect with non-negligible probability
to get a collision on the output of fr+1 for two distinct queries. If we get such a
collision, notice the entire output ciphertext will collide. �
Corollary 2. For any 0 ≤ r < n, BC(n, Rr+0.5 + Rr+1) is insecure against
O(2

k
2 ) queries.

Proof. The attack is identical to that used in Lemma 6, except that instead of
expecting a collision of the type fr+1(Rr ⊕ T ) = fr+1(Rr ⊕ T ′), we expect a
collision of the type fr+1(Rr ⊕ T ) ⊕ T = fr+1(Rr ⊕ T ′) ⊕ T ′. �

Lemma 7. For any 0 ≤ r < n, BC(n, Rr+0.5+Rn−1) is insecure against O(2
k
2 )

queries.

Proof. For this proof we will first need a result from probability.

Lemma 8 (Strong Birthday Lemma). For all k > 1, there exists an m <

1.2×2
k
2 such that if p is the probability of picking an element twice when selecting

m elements from a 2k-element set with replacement uniformly at random, then
p and 1 − p are both non-negligible in k.
3 This is the standard assumption when we want to prove security in a setting where

the adversary has beyond-polynomial capabilities [16,17].
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Proof. For proof of the Strong Birthday Lemma, see full version [7]. �

The attack is as follows: Compute the m described in Lemma 8. Keep the message
constant and query with m different tweaks. The probability that two ciphertexts
are such that Ln ⊕T = L′n⊕T ′ is significantly higher for the actual construction
than for a random permutation family. Since m ≤ 1.2 × 2

k
2 , this attack can be

performed by an exponential adversary.
Notice that the internal values of any pair of queries are the same up to the

input of fr+1. For every query, fr+1 receives a different input (as the input is a
fixed value XOR-ed by the tweak). Since the round functions are ideal, the event
of getting a collision on two outputs of fr+1 with m different queries reduces to
the event of picking the same element twice as described in Lemma 8; say that
probability is p. Notice that if such a collision happens, we always get a collision
of the type, Ln ⊕ T = L′n ⊕ T ′.

Assume that the outputs of fr+1 are distinct for each of the m queries. Notice
that in order to have a collision of two Rn−2 values, it must be true that the
Ln−2 values differ for both queries, because the intervening rounds act as a
permutation. Therefore, we will get a collision on Rn−2 if and only if we have a
collision of the type:

fn−2(Ln−2) ⊕ Ln−3 = fn−2(L′n−2) ⊕ L′n−3.

Since the probability of such a collision for any two queries is either 2−k or
0 (in the case that the Ln−2 values coincide), we can bound the probability of
having such a collision above by (1.2)22k

2×2k = .72 since m ≤ 1.2× 2
k
2 . Therefore, in

this case, with probability greater equal to .28, we can assume all Rn−2 values
are distinct. Notice:

Ln ⊕ T = L′n ⊕ T ′ ⇔ fn−1(Rn−2) ⊕ Ln−2 ⊕ T = fn−1(R′n−2) ⊕ L′n−2 ⊕ T ′.

The probability of such an event occurring over m queries with distinct
Rn−2 and ideal round functions is, again, p. Therefore, the overall probabil-
ity of getting at least two ciphertexts with the described property is at least
p + (1 − p)(.28p).

If the construction we are given is the random permutation family, the prob-
ability of getting the coincidence described is clearly p. Therefore the differ-
ence in probabilities of this event happening for the tweakable construction and
the random permutation family is at least p + .28p(1 − p) − p = .28p(1 −
p). Since p and 1 − p are non-negligible in k (by Lemma 8), this value is
also non-negligible, and therefore our attack successfully distinguishes the two
constructions. �

Corollary 3. BC(n, Rr+0.5 + Rr+1 + Rn−1) is insecure against O(2
k
2 ) queries.

Proof. The generalization of Lemma 7 to Lemma 3 is identical to the extension
of Lemma 6 to Lemma 2. �
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These four attacks can be used to attack every tweakable Luby-Rackoff blockci-
pher of 6 or fewer rounds. A rundown of which general attack applies for each
construction can be found in Table 1. We do not include L1, R1, L6 or R6 in the
possible locations, or their equivalent constructions of Table 1 since they can be
simulated away by Lemma 3.

4.3 A Tweakable Construction Secure for q � 2k Queries

Table 1. All possible 6-round tweakable blockcipher
constructions and the corresponding lemmas that
prove the constructions are insecure

Tweak Locations
Location Equivalent Attack
R2 R0.5 Lemma 6
R3 R1.5 Lemma 6
R4 R4.5 Lemma 6
R5 N/A Lemma 4
R2 + R3 R1.5 + R2 Corollary 2
R2 + R4 R2.5 Lemma 6
R2 + R5 R0.5 + R5 Lemma 7
R3 + R4 R3.5 + R4 + R5 Corollary 3
R3 + R5 R3.5 Lemma 6
R4 + R5 R4.5 + R5 Corollary 2
R2 + R3 + R4 R2.5 + R3 Corollary 2
R2 + R3 + R5 R1.5 + R2 + R5 Corollary 3
R2 + R4 + R5 R2.5 + R5 Lemma 7
R3 + R4 + R5 R3.5 + R4 Corollary 2
R2 + R3 + R4 + R5 R2.5 + R3 + R5 Corollary 3

We now show a 7-round
Luby - Rackoff construction
that is secure against an ad
versary allowed q�2kqueries.

Theorem 4. BC(7, R3+L3)
is CPA-secure for q � 2k

queries.

Proof. To prove that this
construction is a secure
tweakable blockcipher we uti-
lize the following theorem
from Patarin [16]:

Theorem 5 (Patarin). Let
F be a function from 2k bits
to 2k bits. If F has the prop-
erty that for q � 2k queries,
the probability of having l >
O(k) indices such that Ri1 =
Ri2 = Ri3 = ...Ril

is negligi-
ble, (where Rij is the right half of the j’th output of F ), and on distinct inputs F
has only a negligible probability of a full collision on its outputs, then E◦F ,(where
E is a four-round Luby-Rackoff function), is indistinguishable from random for
q � 2k input queries.

We decompose our 7-round construction into two functions, F and E, where
F is the first three rounds, including the XOR-ed tweak at both L3 and R3,4

and E is the last four rounds. It is obvious that E is a four-round Luby-Rackoff
function. To prove that F has the properties enumerated in Theorem 5, we need
to prove the following two properties about F .

Lemma 9. F is such that for any two distinct queries, the probability of the
outputs being equal is O(2−2k) and the probability of the right halves of the
outputs being equal is O(2−k).

4 Although L3 is equivalent to R4, we think of this construction as using L3, so that
we can conceptually split the function this way.

-
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Proof. For proof see full version [7]. �
So long as the queries the adversary makes do not produce a full collision on
F or a multi-collision on the right half of the output of F , the responses are
indistinguishable from random. Therefore, the queries of the adversary are inde-
pendent of the outputs of F so long as the required conditions hold. By Lemma 9,
the probability of an overall collision in q � 2k queries is O(q22−2k) which is
negligible. Similarly, the probability of an l-way multicollision on the right is
O(ql2−(l−1)k) = O(2k(q2−k)l). Since q < 2k(1−ε) for some ε, we know that
(q2−k)l < (2−kε)l = 2−klε. If l ≥ k ≥ 2/ε, which will be true for sufficiently large
k, this probability is bounded by 2−k. Thus, F satisfies the necessary properties
with all but a negligible probability, which completes our proof of Theorem 4. �

5 Tweakable Blockciphers with CCA Security

In this section, we study the problem of achieving CCA security. An important
observation to make in constructing a CCA-secure tweakable blockcipher is a
distinguishing attack we will call the four-message attack, which is a type of
Boomerang attack [22]. The attack can be performed by any adversary with
access to encryption and decryption oracles, E and D respectively. To perform
the attack, the adversary makes four queries:

1. For an arbitrary message M and tweak T , obtain C = E(M, T ).
2. For an arbitrary tweak T ′ �= T , obtain C′ = E(M, T ′).
3. Obtain M ′ = D(C′, T ).
4. Obtain C′′ = E(M ′, T ′). If C = C′′; output 1, otherwise output 0.

A wide class of tweakable blockciphers fall to the four-message attack:

Theorem 6 (Four Message Attack). Suppose that g1 : {0, 1}n → {0, 1}l is
an injective function that is invertible on its domain, that g2 : {0, 1}t → {0, 1}l

is any deterministic function, and that g3 : {0, 1}l → {0, 1}n is a function such
that for all C and T there exists a unique A such that g3(A ⊕ g2(T )) = C. Then
the construction ˜EK(M, T ) = g3(g2(T ) ⊕ g1(M)) is not CCA-secure.

Proof. Note that C = g3(g2(T ) ⊕ g1(M)), C′ = g3(g2(T ′) ⊕ g1(M)). Now if we
decrypt C′ with tweak T , we obtain M ′ = g−1

1 (g2(T ′) ⊕ g2(T ) ⊕ g1(M)). When
we encrypt M ′ under tweak T ′, we get C′′ = g3(g2(T ′)⊕g1(g−1

1 (g2(T ′)⊕g2(T )⊕
g1(M))) = g3(g2(T ′) ⊕ g2(T ′) ⊕ g2(T ) ⊕ g1(M)) = g3(g2(T ) ⊕ g1(M)) = C. �
Note in particular that if both g1 and g3 are permutations, the conditions are
satisfied. This has immediate consequences:

Corollary 4. For all n, Rm ∈ Λn, both BC(n, Rm) and BC(n, Rm + Rm+1) are
not CCA-secure.

Proof. Here, g1 is the permutation described by the m rounds of Luby-Rackoff
before the tweak, g2(T ) = 0k||T for BC(n, Rm) and g2(T ) = T ||T for BC(n, Rm+
Rm+1), and g3 is the remaining n−m rounds. Clearly g1 and g3 are permutations,
so the four message attack applies. �
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This shows that if we are to be able to add a half-block of tweak to the construc-
tion anywhere, it must be used at multiple locations, and those locations must
be separated by at least one round.5 In fact, however, a one round distance will
not suffice:

Lemma 10. For all n, Rm ∈ Λn, BC(n, Rm + Rm+2) is not CCA-secure, and
BC(n, Rm + Rm+1 + Rm+2) is also not CCA-secure.

Proof. To simplify, recall that Rm +Rm+2 is equivalent to Rm+0.5 by Lemma 1.
Noticing this makes it clear why this is unlikely to be secure, in light of the
previous two corollaries, but we still have some work to do.

Here, we use the four-message attack again, but this time, suppose g1 and
g3 are not permutations. Rather, if (L, R) is the output of the first m rounds
of the Luby-Rackoff permutations, then g1(M) is the 3k bit response (L, R, R).
Notice that g2(T ) is 02k||T , and g3(A, B, C) computes the remaining rounds,
computing Lm+1 = B and Rm+1 = fm(C)⊕A, and continuing from there. Note
that g3(g2(T )⊕ g1(M)) is the output we get from applying BC(n, Rm+0.5) to M
with tweak T . For the BC(n, Rm + Rm+1 + Rm+2) construction, this is just the
same as BC(n, Rm+0.5 +Lm), and change g2 so that it produces T ||0k||T rather
than 02k||T . Clearly g1 is injective and invertible, and g3 has unique inverses of
the proper form, which we can find by inverting the tweakable blockcipher and
noting the values in the proper place. Doing so requires the tweak T , but the
answer is unique regardless, or we wouldn’t have unique decryption. By Theorem
6, neither of these constructions are CCA-secure. �

Theorem 7. For all n < 6 and all compound locations Γ of elements in Λn,
BC(n, Γ ) is not CCA-secure.

Proof. In order to construct a CCA-secure tweakable blockcipher, we must use
the tweak at (minimally) Rm and Rm+d for some d ≥ 3. And naturally, m and
m+d must be in the range 2, . . . , n−1 since all other locations can be simulated.
For n ≤ 5 no such pair of locations exists. �

Therefore, the first construction that can be CCA-secure is BC(6, R2 +R5), and
is in fact a secure construction!

Theorem 8. BC(6, R2 + R5) is a CCA-secure tweakable blockcipher.

Proof. For proof, see full version [7]. �

5.1 CCA Security Against Exponential Attacks

Theorem 9. BC(10, L3 + R3 + L7 + R7) is CCA-secure for q � 2k queries.

Proof. In order to construct a tweakable blockcipher secure against CCA expo-
nential attacks, we use a theorem of Patarin [17]:
5 This shows, along with Lemma 10, that an adversary making a CCA attack with

XOR injection will be able to succeed, regardless of the location of the XOR.
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Theorem 10 (Patarin). Let F and F ′ be functions from 2k bits to 2k bits. If
F and F ′−1 each have the property that for q � 2k queries, the probability of
having l > O(k) indices such that Ri1 = Ri2 = Ri3 = ...Ril

is negligible, (where
Rij is the right half of the j’th output of F or F ′−1), and on distinct inputs F
(and F ′−1) has only a negligible probability of a full collision on its outputs, then
F ′ ◦E ◦ F ,(where E is a four-round Luby-Rackoff function), is indistinguishable
from random against chosen-ciphertext attack for q � 2k input queries.

In our construction, the first three rounds, including the tweaks at L3 and R3,
form F , and the last three rounds, including the tweaks at L7 and R7, form
F ′. F ′−1 is just the same as F , except with distinct round functions. Both F
and F ′−1 meet the properties of Theorem 10, as we have shown in our proof of
Lemma 9. BC(10, L3 +R3 +L7 +R7) = F ′ ◦E ◦F , and is therefore CCA-secure
against q � 2k queries. �

6 Allowing Longer Tweaks

In our previous results, all tweaks were assumed to be a half block in length. It
may be desirable however, to have tweaks of arbitrary lengths. We can always
lengthen a tweak that is less than a half block, by padding it in a deterministic
way. However, increasing the length of a tweak beyond a half block in length does
not follow easily. It may be useful to have constructions that are still secure with
longer tweaks, as one usual way of choosing a tweak is to include data with it
that makes it unique [21]. The longer the tweak, the more data can be included.

Tweakable Blockciphers with Longer Tweaks. For t half-blocks of tweak, we show
how to construct a CPA-secure tweakable blockcipher in t + 3 rounds and a
CCA-secure tweakble blockcipher in 2t + 4 rounds.

Theorem 11. For all n, one can use n − 3 half-blocks of tweak but no more.
Specifically, BC(n, R2, . . . , Rn−2) is secure, but any construction BC(n, Γ1,
. . . , Γt) for t > n − 3 is not secure.

Theorem 12. For all n, the tweakable blockcipher BC(2n, R2 + R2n−1, R3 +
R2n−2, . . . , Rn−1 + Rn+2) is a CCA-secure tweakable blockcipher.

Proof. For proof of Theorem 11 and Theorem 12 see full version [7].

Longer Tweaks with Exponential Security. Next, we focus on constructing Luby-
Rackoff based tweakable blockciphers which are secure against an unbounded
adversary with q � 2k queries. For t half-blocks of tweak, we show how to con-
struct a CPA-secure tweakable blockcipher in t+6 rounds and give a CCA-secure
tweakable blockcipher in 2t+8 that meets this security goal. These constructions
are based on a t + 2 round function F designed to meet the properties required
by Patarin.

Theorem 13. Let μi = Li+2 if i ≡ 1 or i ≡ 2 mod 4, let μi = Li+2 + L1 if
i ≡ 3 mod 4, and μi = Li+2+L2 if i ≡ 0 mod 4. Let μ′

i = μi +Ri if i �≡ 2 mod 4,
and μ′

i = μi + Ri + L1 otherwise. Then let F be BC(n + 2, μ1, . . . , μn−1, μ
′
n). F
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is a function such that for q � 2k queries, the probability of having l = O(k)
indices such that Ri1 = Ri2 = Ri3 = ...Ril

is negligible, (where Rij is the right
half of the j’th output of F ), and on q distinct inputs F has only a negligible
probability of a full collision on its outputs.

Proof. For proof, see full paper [7]. �
Theorem 14. E ◦ F is a tweakable blockcipher with t tweaks that is secure
against any unbounded adversary with at most q � 2k queries, where E is a
four-round Luby-Rackoff cipher.

Proof. This follows from Theorem 13 and Theorem 5. Note that E ◦ F requires
a total of t + 6 rounds.

Theorem 15. F ′ ◦ E ◦ F is a tweakable blockcipher with t tweaks that is
CCA-secure against any unbounded adversary with at most q � 2k queries,
where E is a four-round Luby-Rackoff cipher, F ′ is the inverse of the F de-
scribed above, with new independent round functions.

Proof. This follows from Theorem 13 and Theorem 10. Here, F ′ ◦E ◦F requires
2(t + 2) + 4 = 2t + 8 rounds.

7 Conclusion

Table 2 summarizes our constructions, compared to regular blockciphers and the
second construction of Liskov et al. [12]. This table shows that our results are
better for CPA constructions, equivalent for CCA against polynomial attacks,
and worse for CCA against exponential ones.

Table 2. Number of rounds required for each construction. The prior tweakable con-
struction we consider is ˜EK,h(M, T ) = h(T ) ⊕ EK(M ⊕ h(T )), where h is an ε−AXU2

hash function; subsequent constructions are similar. The natural way to realize the
hash function would be to simply use two random functions on the tweak, one for each
half of the data stream. Although Liskov et al. do not explicitly consider arbitrary
tweak length, their construction and proof can be easily extended to do so.

Security Level Blockciphers Prior TBCs [12] This paper
CPA with polynomial queries 3 rounds [13] 3 + 2 rounds/tweak 3 + 1 round/tweak
CPA with � 2k queries 5 rounds [17] 5 + 2 rounds/tweak 6 + 1 round/tweak
CCA with polynomial queries 4 rounds [13] 4 + 2 rounds/tweak 4 + 2 rounds/tweak
CCA with � 2k queries 5 rounds [17] 5 + 2 rounds/tweak 8 + 2 rounds/tweak

We conclude with some open problems: (1) incorporating tweaks securely into
other blockcipher structures, (2) direct, specific design of tweakable blockciphers
(Luby-Rackoff or otherwise) and (3) improving the provable level of security for
tweakable blockciphers in general.
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