A Non-interactive Shuffle with Pairing Based
Verifiability*

Jens Groth!"** and Steve Lu2-***

! University College London
j.groth@ucl.ac.uk
2 University of California, Los Angeles
stevelu@math.ucla.edu

Abstract. A shuffle is a permutation and re-encryption of a set of ciphertexts.
Shuffles are for instance used in mix-nets for anonymous broadcast and voting.
One way to make a shuffle verifiable is to give a zero-knowledge proof of
correctness. All currently known practical zero-knowledge proofs for correctness
of a shuffle rely on interaction. We give the first efficient non-interactive
zero-knowledge proof for correctness of a shuffle.

Keywords: Shuffle, mix-net, non-interactive zero-knowledge, bilinear group.

1 Introduction

A shuffle is a permutation and re-encryption of a set of ciphertexts. Shuffles are used
for instance in mix-nets [Cha8T]], which in turn are used in protocols for anonymous
broadcast and electronic voting. In a typical construction of a mix-net, the users encrypt
messages that they want to publish anonymously. They send the encrypted messages to
a set of mix-net servers that will anonymize the messages. The first server permutes
and re-encrypts the incoming set of messages, i.e., it carries out a shuffle. The next
server takes the output from the first server and shuffles these ciphertexts. The protocol
continues like this until all servers have permuted and re-encrypted the ciphertexts.
After the mixing is complete, the mix-servers may now perform a threshold decryption
operation to get out the permuted set of messages. The idea is that if just one mix-server
is honest, the messages will be randomly permuted and because of the re-encryption
step nobody will know the permutation. The messages therefore appear in random order
and cannot be traced back to the senders.

The mix-net protocol we just described is not secure if one of the mix-servers is
dishonest. A dishonest mix-server could for instance discard some of the ciphertexts and
inject new ciphertexts of its own choosing. It is therefore desirable to make the shuffle
verifiable. An obvious way to make the mix-net verifiable is to ask each mix-server to

* Work initiated while participating in Securing Cyberspace: Applications and Foundations of
Cryptography and Computer Security, Institute of Pure and Applied Mathematics, UCLA,
2006.

** Work done while at UCLA supported by NSF ITR/Cybertrust grant No. 0456717.
*** Supported by NSF Cybertrust grant No. 0430254.

K. Kurosawa (Ed.): ASIACRYPT 2007, LNCS 4833, pp. 51167]2007.
(© International Association for Cryptology Research 2007

52 J. Groth and S. Lu

provide a zero-knowledge proof of its shuffle being correct. The zero-knowledge proof
guarantees that the shuffle is correct, yet reveals nothing about the permutation or the
re-encryption and therefore preserves the privacy of the mix-net.

Much research has already been done on making shuffles verifiable by providing in-
teractive proofs of correctness
[GLO7]. The proofs in these papers are all interactive and rely
on the verifier choosing random challenges. Using the Fiat-Shamir heuristic, where the
verifier’s challenges are computed through the use of a cryptographic hash-function,
it is possible to make these proofs non-interactive. As a heuristic argument for the se-
curity of these non-interactive proofs, one can prove them secure in the random oracle
model [BR93]], where the cryptographic hash-function is viewed as a random oracle that
outputs a random string. However, Goldwasser and Kalai [GK03]] demonstrate that the
Fiat-Shamir heuristic sometimes yields insecure non-interactive proofs. Other works
casting doubt on the Fiat-Shamir heuristic are [CGHO4].

It is still an open problem to construct efficient non-interactive zero-knowledge
(NIZK) proofs or arguments for the correctness of a shuffle that do not rely on the ran-
dom oracle model in the security proof. Such NIZK arguments can be used to reduce
the round-complexity of protocols relying on verifiable shuffles. Moreover, interactive
zero-knowledge proofs are usually deniable [PasQ3]); a transcript of an interactive proof
can only convince somebody who knows that the challenges were chosen correctly.
NIZK arguments on the other hand are transferable. They consist of a single message
that can be distributed and convince anybody that the shuffle is correct.

Obviously, one can apply general NIZK proof techniques to demonstrate the cor-
rectness of a shuffle. However, reducing the shuffle proof to a general NP statement
and applying a general NIZK to it is very inefficient. Using NIZK techniques devel-
oped by Groth, Ostrovsky and Sahai [GOS06b, [GOS06a, one can get
better performance. Some existing interactive zero-knowledge arguments for correct-
ness of a shuffle naturally fit this framework. For example, it is possible to achieve
non-interactive shuffle proofs of size O(nlogn) group elements for a shuffle of n ci-
phertexts by using Abe and Hoshino’s scheme [AHOT]|. This kind of efficiency still falls
short of what can be achieved using interactive techniques and the interactive proofs
or arguments that grow linearly in the size of the shuffle do not seem easy to make
non-interactive using the techniques of Groth, Ostrovsky and Sahai.

OUR CONTRIBUTION. We offer the first (efficient) non-interactive zero-knowledge ar-
gument for correctness of a shuffle. The NIZK argument is in the common reference
string model and has perfect zero-knowledge. The security proof of our scheme does
not rely on the random oracle model. Instead we make use of recently developed tech-
niques for making non-interactive witness-indistinguishable proofs for bilinear groups
by Groth and Sahai [GSQ7], which draws on earlier work by Groth, Ostrovsky and Sahai
[Gro06].

The NIZK argument we suggest is for the correctness of a shuffle of BBS ciphertexts.
This cryptosystem, suggested by Boneh, Boyen and Shacham [BBS04]], has ciphertexts
that consist of 3 group elements for each group element that they encrypt. We consider
statements consisting of n input ciphertexts and n output ciphertexts and the claim
that the output ciphertexts are a shuffle of the input ciphertexts. Our NIZK arguments

A Non-interactive Shuffle with Pairing Based Verifiability 53

consist of 15n group elements, which is reasonable in comparison with the statement
size, which is 6n group elements.

2 Preliminaries and Notation

In this paper, we work over prime order bilinear groups. In other words, we assume
there is probabilistic polynomial time algorithm G that takes a security parameter k as
input and outputs (p, G, G, e, g), where:

1. pisaprime
2. G and G are cyclic groups of order p
3. g is arandom generator of G
4. e: G x G — Gr is a map with the following properties
— Bilinearity: (g%, ¢°) = e(g, g)® for all a,b € Z,
— Non-degeneracy: e¢(g, g) generates G
5. Group operations and the bilinear map are efficiently computable and group mem-
bership is efficiently decidable.

We will for notational simplicity assume that group membership always is checked
when appropriate without writing this explicitly.

2.1 BBS Encryption

The BBS cryptosystem was introduced by Boneh, Boyen and Shacham [BBS04]. We
work in a bilinear group (p, G, Gr, ¢, g). The public key is of the form (f = ¢g*, h =
gY). The secret key is (x,y) € (Z)?. To encrypt m € G, we choose random s, € Z,
and let the ciphertext be

(u7 7‘}7 w) = (fs7 ht’ gSthm)'
To decrypt a ciphertext (u, v, w) € G2, we compute
m=u" Yy,

The BBS cryptosystem is semantically secure under chosen plaintext attack if the Deci-
sional Linear Problem is hard in the bilinear group. We refer to Section[3.1] for a formal
definition of this assumption.

2.2 Shuffling BBS Ciphertexts

The BBS cryptosystem is homomorphic in the sense that entrywise multiplication of
two ciphertexts yields an encryption of the product of the plaintexts. We have:

(fs’ ht,gSHm) . (fS’ hT7gS+TM) _ (fs«kS’7 ht+T,gS+S+t+TmM).

It is easy to make a random shuffle of BBS ciphertexts. Given n input ciphertexts,
we permute them randomly and then re-encrypt them by multiplying them with random
encryptions of 1. Multiplication with encryptions of 1 preserves the plaintexts by the
homomorphic property, but the plaintexts now appear in permuted order. If the Deci-
sional Linear Assumption holds, the BBS cryptosystem is semantically secure and thus
the permutation is hidden. For notational purposes, we will let {x;} denote {z;}?_;.

54 J. Groth and S. Lu

Definition 1. A shuffle of n BBS ciphertexts {(u;,v;,w;)} is a list of output cipher-
texts {(U;, Vi, W;)} such that there exists some permutation © € Sy, and randomizers

{(S“Tz)} So:
(Vi) Ui=u)f% A Vi=vnh™ A Wi=wepg® T

2.3 Non-interactive Zero-Knowledge Arguments

We will construct non-interactive zero-knowledge (NIZK) arguments for correctness of
a shuffle of n BBS ciphertexts. Informally, such an argument will demonstrate that the
shuffle is correct, but will not reveal anything else, in particular the permutation will
remain secret. We will now define NIZK arguments with perfect completeness, perfect
zero-knowledge and R.,-soundness. The notion of co-soundness in NIZK arguments
for NP-languages was introduced in the full paper of [GOS06a]. Since it is
quite new we will give some further intuition after the formal definitions.

An NIZK argument for R with R.,-soundness consists of six probabilistic polyno-
mial time algorithms: a setup algorithm G, a CRS generation algorithm K, a prover
P, a verifier V and simulators (57, S2). The setup algorithm G outputs some initial
information gk. The CRS generation algorithm produces a common reference string o
corresponding to the setup. The prover takes as input (gk, o, x, w) and produces a proof
1. The verifier takes as input (gk, o, x, 1) and outputs 1 if the proof is acceptable and 0
if the proof is rejected. The simulator S; takes as input gk and outputs a simulated com-
mon reference string o as well as a simulation trapdoor 7. S5 takes as input gk, o, 7,
and simulates a proof .

Definition 2. We call (G,K,P,V,S1,52) an NIZK argument for R with Reo-
soundness if for all non-uniform adversaries A we have completeness, soundness and
zero-knowledge as described below.

Perfect completeness:
Pr[gh — G(1%) 5 0 — K(gh) ; (,w) — Algk,0);
Y — P(gk,o,z,w) : (gk,z,w) ¢ R V V(gk,o,z,v¢) = 1] =1.
Computational R.,-soundness:
Pr [gh — G(1%) 1 0 = K(gk) : (2. weo) — Algh. o)
Vigh,o,2,1) =1 A (gk,, weo) € Reo| % 0.
Perfect zero-knowledge:
Pr|gh < G(1%); 0 — K(gh); (St.z,w) — A(gh,0)
W «— P(gk,o,z,w) : (gk,z,w) € R A A(St,9) = 1}
= Pr gk G(1); (0,7) S1(gk) ; (St,2,w) — Algh,0)

W — So(gk,o,7,x) : (gk,z,w) € R N A(St,) = 1].

A Non-interactive Shuffle with Pairing Based Verifiability 55

We remark that if R ignores gk then R defines a language in NP. The definition given
here generalizes the notion of NIZK arguments by allowing R to depend on a setup.
The setup we have in mind in this paper, is to let gk be a description of a bilinear
group. Given gk describing a bilinear group, the relation R defines a group-dependent
language L. It is common in the cryptographic literature to assume an appropriate finite
group or bilinear group has already been chosen and build protocols in this setting, so
it is natural to consider NIZK arguments for setup-dependent languages as we do here.

Our definition also differs in the definition of soundness, where we let F., be a
relation that specifies what it means to break soundness. Informally, computational R,-
soundness can be interpreted as it being infeasible for the adversary to prove z € L if it
knows x € L. We remark that the standard definition of soundness is a special type of
R.o-soundness. If R ignores gk and R, ignores gk, wc, and contains all ¢ L, then
the definition given above corresponds to saying that it is infeasible to construct a valid
proof for x ¢ L.

Let us explain further, why it is worthwhile to consider R.,-soundness in the context
of non-interactive arguments with perfect zero-knowledge instead of just using the stan-
dard definition of soundness. The problem with the standard definition appears when the
adversary produces a statement x and a valid NIZK argument without knowing whether
x € Lorx ¢ L.In these cases it may not be possible to reduce the adversary’s output
to a breach of some underlying (polynomial) cryptographic hardness assumption. Abe
and Fehr give a more formal argument for this. They consider NIZK arguments
with direct black-box reductions to a cryptographic hardness assumption and show that
only languages in P /poly can have direct black-box NIZK arguments with perfect zero-
knowledge. Since all known constructions of NIZK arguments rely on direct black-box
reductions this indicates that the “natural” definition of soundness is not the right defi-
nition of soundness for perfect NIZK arguments. We note that for NIZK proofs there is
no such problem since they are not perfect zero-knowledge except for trivial languages;
and in the case of interactive arguments with perfect zero-knowledge this problem does
not appear either because the security proofs rely on rewinding techniques which make
it possible to extract a witness for the statement being proven.

The generalization to R.,-soundness makes it possible to get around the problem we
described above. The adversary only breaks R..-soundness when it knows a witness
Weo for © € Le,. By choosing R, the right way, this witness can make it possible to
reduce a successful R.,-soundness attack to a breach of a standard polynomial crypto-
graphic complexity assumption.

At this point, one may wonder whether it is natural to consider a soundness defini-
tion where we require the adversary to supply some we.. It turns out that many crypto-
graphic schemes assume a setup where such a w, is given automatically. One example
is shuffling that we consider in this paper: when setting up a mix-net using a homomor-
phic threshold cryptosystem, the threshold decryption keys can be used to decrypt the
ciphertexts and check whether indeed they do constitute a shuffle or not.

In our paper, the setup algorithm will be G that outputs a description of a bilinear
group. The relation R will consist of statements that contain a public key for the BBS
cryptosystem using the bilinear group and a shuffle of n ciphertexts. The witness will be

56 J. Groth and S. Lu

the permutation used in the shuffle as well as the randomness used for re-randomizing
the ciphertexts. In other words:

R= { ((p7 G, GTvevg)) (f7h7 {(ui7vivwi)}ﬂ{(Uia‘@vWi)})) (7T7 {(SUTZ)})) ‘

™ e Sn A Vi: Uz = Uﬂ-(i)fsi A ‘/Z = ’Uﬂ-(i)hTi A W,L = wﬂ(i)gsi+Ti }

The relation R, will consist of non-shuffles. The witness w., will be the decryption
key, which makes it easy to decrypt and check that there is no permutation matching the
input plaintexts with the output plaintexts. As we remarked above, NIZK arguments for
correctness of a shuffle are usually deployed in a context where such a decryption key
can be found. It is for instance common in mix-nets that the mix-servers have a threshold
secret sharing of the decryption key for the cryptosystem used in the shuffle. NIZK
arguments with R..-soundness for correctness of a shuffle therefore give us exactly the
guarantee we need for the shuffle being correct.

Reo = { ((0,.G, G e.9) . (fh (s, 05, w) LA Vs W) s (2.9)) |
r,y€Z, N f=9g"Nh=g" A
. —1/xy,—1/ —1/z —1/
Ve Su3i WUV oY)

2.4 Non-interactive Witness-Indistinguishable Proofs for Bilinear Groups

We will employ the non-interactive proof techniques of Groth and Sahai [GSQ7]|. They
allow a prover to give short proofs for the existence of group elements which satisfy
a list of so-called pairing product equations. With their techniques, one can prove that
there exists z1,...,z, € Gand ¢1, ..., ¢, € Z, such that they simultaneously satisfy
a set of pairing product equations, for instance [[;_ e(a;,z;) = 1 and []_ 2y =
1. One instantiation of their scheme works over bilinear groups where the Decisional
Linear Assumption holds.

Their scheme has the following properties. It has a key generation algorithm that
outputs a common reference string consisting of 8 group elements. These 8 group ele-
ments specify the public key for two commitment schemes: one for group elements in
G and one for exponents in Z,. In their proof, the prover commits to the witness by
committing to the group elements z1, ..., x, € G and the exponents ¢1,..., ¢, € Zj,.
After that the prover makes non-interactive proofs that the committed elements satisfy
all the pairing product equations.

There are two ways of setting up the commitment schemes. One can choose the
common reference string such that both commitment schemes are perfectly binding, in
which case the proof has perfect completeness and perfect soundness. With a perfect
binding key, the commitments to group elements are BBS ciphertexts, so we can decrypt
the commitments to learn x4, . .., z,.

Another way to choose the common reference string is to have perfectly hiding
commitment schemes. In this case, we can set up the commitment to the exponents

A Non-interactive Shuffle with Pairing Based Verifiability 57

¢1,...,¢n as a perfect trapdoor commitment scheme. We can create a commitment
and two different openings to respectively 0 and 1 for instance. When we have per-
fectly hiding keys in the common reference string, the non-interactive proof has
perfect completeness and perfect witness-indistinguishability. In other words, an ad-
versary that sees a proof for a statement for which two or more witnesses exist, gets
no information whatsoever as to whether one witness or the other was used in the
non-interactive proof.

We write (Obinding, Eextraction) “— Kbinding(P; G, G, €, g), when creating a per-
fectly binding common reference string with extraction key &extraction fOr the commit-
ments to group elements in G. We write (Ohiding, Ttrapdoor) “— Kniding (P, G, G, €, 9)
when creating a perfect hiding common reference string with trapdoor Ti;apdoor for
the commitments to exponents in Z,. Perfect binding common reference strings and
perfect hiding common reference strings are computationally indistinguishable if the
Decisional Linear Assumption holds for the bilinear group we are working over.

3 Cryptographic Assumptions

The security of our NIZK argument for correctness of a shuffle will be based on three as-
sumptions: the Decisional Linear Assumption, the Permutation Pairing Assumption and
the Simultaneous Pairing Assumption. The BBS cryptosystem and the non-interactive
proofs of Groth and Sahai rely on the Decisional Linear Assumption. The other two
assumptions are needed for the NIZK argument for correctness of a shuffle. We will
now formally define these assumptions and for the two new assumptions give heuristic
reasons for believing them by showing that they hold in the generic group model.

3.1 Decisional Linear Assumption

We first recap the Decisional Linear Problem introduced by Boneh, Boyen and Shacham
BBS04]: Given gk = (p,G,Gr,e,g) and f, h,g, f5,ht, g* € G, decide if 2 = s + .

Definition 3. The Decisional Linear Assumption holds for G if for all non-uniform
polynomial time adversaries A we have:

Pr |gh == (p.G.Gr.e,9) = G(1") 5 f.h & G
st &2y o Algh, foh £, 0 g7 = 1]
~Pr gk = (.G, Gr,e,9) — G(1%) 5 f.h & G

5,t72£ZP : A(gkvahafsvht7gz) - 1:|

3.2 Permutation Pairing Assumption

The Permutation Pairing Problem is: Given (p, G, Gr,¢e,g) and g1 := ¢*',..., gy :=
grroy = gmi B gmi for random z1,...,z, € Z, find elements
Q1y...,Gn,b1,. .., b, € G such that the following holds:

58 J. Groth and S. Lu
n n
Hai = Hgi
i=1 i=1
n n
Hbi = H%‘
i=1 i=1

e(a;,a;) =e(g,b;)fori=1...n

{a;} isnota permutation of {g; }

Note that if {a;} is a permutation of {g;}, then by the third equation {b;} is {v;}
permuted in the same way.

Observe that permutations trivially satisfy the first three conditions and not the
fourth, but one could imagine some particular choice of the {a; } and {b;} would satisfy
all four conditions. The Permutation Pairing Assumption holds if finding such a clever
choice is computationally infeasible.

Definition 4. The Permutation Pairing Assumption holds if for all non-uniform poly-
nomial time adversaries A we have:

Pr [gk = (p,G,Gr,e,q) — Q(lk) 2 P & Ly ;
{9:} —{g“} {vi} —{g Y (ait {bi}) < Algk, {g:} 1))

Hazgz =LA Hbl’}/z =1A (VZ) (Cli,ai) = e(gabl) A
{a;} is not a permutation of{gi}] ~0

3.3 Simultaneous Pairing Assumption

The Simultaneous Pairing Problem is: Given (p, G, Gr, e, g) and g1 := ¢**, ..., gn :=

g,y = gmi ey Y = gmi for random x4, ...,2, € Z, find a non-trivial set of
elements pi1, . . ., 4, € G such that the following holds:

n n
[Te(nig) =1 A [Te(uiv) =1
=1 =1

The intuition behind this problem is that it may be hard to find a set of non-trivial ele-
ments to simultaneously satisfy two pairing products of “independent” sets of elements.
The Simultaneous Pairing Assumption holds if this problem is hard.

Definition 5. The Simultaneous Pairing Assumption holds if for all non-uniform poly-
nomial time adversaries A we have:

Pr [gk = (PvaGT7€7g) — g(lk) I 1% £ Zp ; {gi} = {gr’} ;
(vt = g%} 5 {mi} — Algk, {g:}, {%}) :
[Te(uig) =1 A JJetuiy) =1 A 3t # 1] ~

i=1 i=1

A Non-interactive Shuffle with Pairing Based Verifiability 59

3.4 Our Assumptions in the Generic Group Model

We will provide heuristic evidence for our new assumptions by showing that they hold
in the generic group model [Sho97|). In this model the adversary is restricted to using
only generic bilinear group operations and evaluating equality of group elements.

We accomplish this restriction of the adversary by using a model of the bilinear group
where we encode the group elements (or equivalently we encode their discrete loga-
rithms) as unique random strings and letting the adversary see only this representation
of the group elements. We then provide the adversary with a bilinear group operation
oracle such that it can still perform group operations.

Let us give a few more details. We start by picking a random bilinear group
(p,G,Gr,e,9) < G(1¥), which the adversary gets as input. We also pick random
bijections [-] : Z, — G and [[-]] : Z, — Gr. We give the adversary access to an oracle
that operates as follows:

exp, a) return [a).

mult, [a], [b]) return [a + D).
mult, [[a]], [[b]]) return [[a + b]].
map, [a], [b]) return [[ad]].

On input
On input
On input
On input

A~~~

This oracle corresponds to the effect exponentiations, group operations and using the
bilinear map have on the discrete logarithms of group elements. Please note that other
operations such as inversion of a group element for instance can be easily computed
using these group operations since the group order p is known to the adversary.

Theorem 1. The Permutation Pairing Assumption holds in the generic group model.

Proof. Let us first formulate the Permutation Pairing Assumption in the generic group
model. We generate (p, G, Gr,e,g) <+ G(1¥). We pick [] : Z, — G and [[1]] : Z, —
G as random bijective functions. We pick z1,...,x, < Z,. We now give the ad-
versary A the following input: (p, G, G, e, g, {[xi]}, {[z?]}) and access to the bilinear
group operation oracle. A is computationally unbounded but can only make a polymo-
mial number of queries to the bilinear group operation oracle. The challenge for A is to

find {([a:], [b:])} so:
Zai=in A Zbi:Zx? A Vi a?zbi A Vrdi: ai;«éxﬁ(i)
i=1 i=1 i=1 i=1

In the generic group model we can without loss of generality assume the adversary
computes [a;], [b;] via repeated calls to the group operation oracle. This means we have

n n n n
2 2
a; = E Tja;; + E x50 + 75, b; = E l'jbij + E -Tjﬁij + 35
Jj=1 Jj=1 j=1 j=1

for values {a;;},{c;},{ri}, {bi;},{Bi;}, {s:} that can be deduced from the calls to
the group operation oracle.

60 J. Groth and S. Lu

Consider now the first conditions on the adversary being successful:

iai—il'i:() AN ibl—imfzo AN Vi:a?:bi.
=1 =1 =1 =1

These are polynomials over unknowns z1, ..., z, that are randomly chosen. The ad-
versary only has indirect access to them by using the bilinear group operation oracle.
The adversary can choose two strategies for satisfying the equations. It can pick the
values a;;, oij, 75, bij, Bij, s; so the polynomials are identical zero in Z, x4, . . .,] or
it can hope to be lucky that the polynomials evaluate to zero on the random choice of
Z1,...,Ty <« Z,. The Schwartz-Sippel theorem tells us that a guess according to the
latter strategy has only negligible probability of being successful. Since the adversary
can access the bilinear group operation oracle only a polynomial number of times, it
can only verify a polynomial number of guesses, so the latter strategy has negligible
success probability.

Let us now see what happens if the adversary follows the first strategy. The first
equation gives us:

n n

n n
) 2 =0
Tja;5 + T 0 +7r; | = x; = 0.
1 =1 i=1

=1 \j=

Viewed as a multivariate polynomial equation over vairables z, . . ., z,, we must have
forall j, > ja;; =1and Y1 ;o =0and > ;7 = 0.
Next, if [T} b; = >, «? then it must be the case that

n

Z Z"ijij + Z-T?/Bij +5i | — me =0.
Jj=1 j=1 i=1

i=1

When viewed as a polynomial in zi,...,x,, we see that we must have for all j,

Z;L:lblj = 0and Z:-L:Iﬂij =1land Z:‘L:lsi =0.
Finally, if (Vi) a? = b; then it must be the case that

n n n n

2,2 2
E g TjT Q45050 + E E T O Qg+ T

j=1k=1 j=1k=1

n n n n
2 2
+2 E E TjTp Q45 Ok + 2 E L5774 + 2 E TjOuiT;
j=1 j=1

j=1k=1
n n
2
= E l‘jbi]‘ + E l‘jﬂij + 85
j=1 j=1

Once again by viewing this as a polynomial equation, for all ¢ we must have that

Qi Ok = 0. Also Qi Qqf = 0 whenj 75 k, TZ-2 = S;, bij = 2aijr,», ﬁij = afj + 20[1‘]‘7"1'.
We now consider what the matrix A = (a;;) must be. Each row A has at most one

non-zero entry by the fact that a;ja;, = 0 when j # k. Also, each column must sum

A Non-interactive Shuffle with Pairing Based Verifiability 61

to 1by Y " ;a;; = 1. These two facts combined implies A to have exactly one 1 in each
column and each row, thus A is a permutation matrix. Since permutation matrices are in-
vertible, from the equations Y azjov, = > 10 =0, 1 ja;r; = 330 1bij =0,
we obtain that a;; = 0 and r; = 0. Therefore, the {a;} are a permutation of
the {acz} O

Theorem 2. The Simultaneous Pairing Assumption holds in the generic group model.

Proof. Let us first formulate the Simulatenous Pairing Assumption in the generic
group model. We generate (p, G, Gr,e,g) «— G(1%). We pick [] : Z, — G and
[[]] : Z, — Gr as random bijective functions. We pick z1,...,z, « Z,. We now
give the adversary A the following input: (p, G, Gr, e, g, {[x]}, {[#?]}) and access to
the bilinear group operation oracle. A is computationally unbounded but can only make
a polymomial number of queries to the bilinear group operation oracle. The challenge
for A is to find non-trivial {[mu;]} so >°7" | pxz; = 0and Y i, wiz? = 0. The Si-
multaneous Pairing Assumption in the generic model says that any adversary A has
negligible probability of succeeding in this game.

Without loss of generality we can think of A as being restricted to computing {[x;]}
using the bilinear group operation oracle only. This means it chooses

for known a;;, cv;; and r;.
A successful adversary chooses these values so both of these equations are satisfied:

n n

n
2 | 2 =0
Tjai; + TiQ5 + 15 | T =
1 j=1

i=1 \j=

n

n n
2 2
E E Tja;; + E T +r | xp = 0
1 J=1

i=1 \j=
We can view them as multi-variate polynomials in z1, . . ., z,, which are chosen at ran-
dom. The adversary never sees x1, . .., X, it only has indirect access to them through

the group operation oracle. There are two strategies the adversary can use: It can select
a;j, @5, 1; so the two polynomials have zero-coefficients or it can hope to be lucky that
the random choice of z1, . .., z,, actually evaluates zero. The Schwartz-Sippel theorem
tells us that a guess has negligible chance of being correct when z1, . .., z, are chosen
at random from Z,,. Since the adversary can access the bilinear group operations oracle
only a polynomial number of times, it can only verify the correctness of a polynomial
number of guesses. The latter strategy therefore has negligible success-probability.

Let us now consider the former strategy, where the adversary chooses the coefficients
of the polynomials in Z[z1, ..., x,] so they are the zero-polynomials. Looking at the
coefficients for the first polynomial we see that we must have r; = 0 and «;; = 0.
Looking at the coefficients of the second polynomial we see that a;; = 0. The adversary
can therefore only find the trivial solution yt; = ... = p, = 0. |

62 J. Groth and S. Lu

4 NIZK Argument for Correctness of a Shuffle

We will now present an NIZK argument for correctness of a shuffle of BBS ciphertexts.
The common reference string contains 2n elements {g; := g%} and {v; := g% } for
random x1,...,%, € Z,. The statement contains a public key (f,h) and a set of n
input ciphertexts {(u;,v;, w;)} and a set of output ciphertexts {(U;, Vi, W;)} that may
be a shuffle of the input ciphertexts.

The first part of the NIZK argument consists of setting up pairing product equations
that can only be satisfied if indeed we are dealing with a shuffle. The prover will use
a set of variables {a;} and {b;} in these pairing product equations. She will set up
a Permutation Pairing Problem over these variables to guarantee that {(a;,b;)} are a
permutation of {(g;, i)}

Assume now that {(a;, b;)} are a permutation of {(g;, ;) }. Let {m;} be the plain-
texts of {(u;,v;, w;)} and {M;} be the plaintexts of {(U;, V;, W;)}. The prover also
sets up equations such that []}"_ e(a;, M;) = [[;—,e(gi,m;) and [[;— e(b;, M;) =
[T e(vi,m;). Since {(a;, b;)} are a permutation of {(g;, ;) }, then there exists a per-
mutation ™ € S,, so

He(giaMw—l(i)m21)=l A He(%‘yMﬂ—l(i)mf)zl.
=1 i=1

This is a Simultaneous Pairing Problem, and assuming the hardness of this problem we
will have Mﬂfl(i) = my, for all 3.

To give further intuition of the construction, consider a naive protocol where the
prover sends the permutation directly to the verifier. Denote a; := g ;) and b; := V(3.
With U; = uﬂ(i)fsi, Vi = vﬂ(i)th, W; = wﬂ(i)gSﬁTl we have:

He(aiauﬂ'(i)f =€ HaZ 7f He 9r(4) uﬂ'(z =e Cua He gh”z
=1

i i=1
H (@i, va(hT =e(Hal , He (Gr(i)> V(i) = e(cv,h)He(gi,vi)
i=1 i=1

n

He(aivwﬂ(i)gSiJrTl) = e(Ha'LS77g)He(gﬂ'(’L)7wﬂ'(’L)) = e(c’wag)He(givwi)v

i=1 i=1 =1 =1

where ¢, = H?:laisi,cv =11 la “and ¢, = [1aS i+ T . By construction, ¢,, =
CuCy. In addition, we may look at the equations by pairing the {b;} with the U;, V;,
and W;. From this we obtain another three equations, and we define new elements

=TI 05, ¢ = TIr b5, ¢, = ¢,¢,. In total we have six equations:

Hz:le(aiﬂUi) :e(cuvf)n?:le(giuui) H (bMU) 6(. f)H?:le(%'vui)
ITimrelai, Vi) =eleo. WITZyelgi o) TTimie(b Vi) =ele, T e(visvi)
L= elai, Wi) =e(cucw, 9)ITi= e(gis wi) szl (bs, Wi)=e(c] Cv,g)l_[re(yi, wi)

A naive non-interactive argument would be to let the prover sends , ¢y, ¢,, ¢, , ¢, to the

verifier. The verifier can check the six above equations himself for the verification step.

A Non-interactive Shuffle with Pairing Based Verifiability 63

The naive protocol described is complete by observation. We also have the following
lemma:

Lemma 1. The naive protocol is Rco-sound.

Proof. The idea behind R.,-soundness is to look at the underlying messages. If a dis-
honest prover were to convince a verifier with a non-shuffle as well as produce a witness
(decryption key) we, = (x,y), we can “decrypt” the equations checked by the verifier.

Namely, if we let m; = u; /"o, /Yw; and M; = U;"/“V;” /YW, then by applying

i i

the same algebraic manipulations to the equations, we obtain:

n —1/x n —1/y b

{He(ai, Ui)] : {He(ai, Vz)]

i=1 i—1 i=1
= [e(cu,f)He(gi,ui)] o [e(cv,h)He(gi,vi)}il/y

i=1 i=1 i=1

This gives us [[[e(ai M) = elczhg)e(cy, g)e(cucu, 9)TT1relgimi) =
[T e(gi, ma).

In a similar way we can show that [;"_ e(b;, M;) = [];_,e(vi, m;). Observe that
the equations may be rearranged to be []\"_ e(u;,g;) = 1 and [[;_ e(pi,vi) = 1
where j1; = m; /M -1(;). By the Simultaneous Pairing Assumption, it it is infeasible
for the prover to find non-trivial u; satisfying these two equations and thus we reach a
contradiction. 0O

The downfall of the naive protocol is that it completely reveals the permutation. In the
actual NIZK argument, we will instead argue that there exist elements {a;} and {b;}
that satisfy the equations above rather than revealing them directly. We accomplish this
by making a GS proof for the set of pairing product equations given earlier. Our NIZK
argument is described in Figure [Tl

Theorem 3. The protocol in Figure [Il is a non-interactive perfectly complete, com-
putationally R.,-sound, perfect zero-knowledge argument of a correct shuffle of BBS
ciphertexts under the Decisional Linear Assumption, Permutation Pairing Assumption,
and Simultaneous Pairing Assumption.

Proof. As we see in the protocol, the prover can generate the witness for the GS proof
herself. Perfect completeness follows from the perfect completeness of the GS proofs.

We will now prove that we have perfect zero-knowledge. The simulator S = (57, S2)
will generate a transcript as described in Figure 2l By construction, the common refer-
ence strings are generated in the same way. The only difference between a real proof
and a simulated proof is the witness given to the GS proof. By the perfect witness-
indistinguishability of the GS proof, real proofs and simulated proofs are perfectly in-
distinguishable.

It remains to prove that we have computational R.,-soundness. The adversary is
trying to output a public key (f, h) and a non-shuffle of n input ciphertexts and n output
ciphertexts, a convincing NIZK argument 1 of it being a shuffle, and a decryption key

64 J. Groth and S. Lu

Setup: Generate a bilinear group gk := (p, G, Gr, e, g) — G(1%).

Common reference string: Generate a perfectly hiding common reference string
(Uhiding7 Ttrapdoor) — Khiding (p, G, GT, e, g) to get perfectly
witness-indistinguishable GS proofs. Pick random z1, ..., x, < Z, and compute
Vi:gi:=g“,yi:= gz?.

The common reference string is o := (Chiding, {9i }> {7i })-

Shuffle statement: Public key (f, h) for the BBS cryptosystem. Input ciphertexts
{(ui, vi, w;i)} and output ciphertexts {(Us, Vi, W;)}.

Prover’s input: Permutation 7 € S,, and randomizers {(S;, T;)} so
Ui = uﬂ-(i)fsi s VZ = Uﬂ-(i)hT"' and WZ' = wﬂ(i)gSiJrTi for all .

Proof: The prover sets up the following pairing product equations:

p=1modp, di=1, di=1, dj=1, (d,)’=1 (d)’ =1, (d,)"=1,

Hafgi_qb = 17 Hbqb Tl = 17 (VZ) e(ai7ai) = e(g7bi)
i=1

e(du, g)] e(as, Us) =e(cu, f) [T e(giwi) e(du,g) [Te(bs, Us)=e(cy, f) [Te (%uz)
e(dv,g) [e(ai, Vi) = e(co, h) [T e(gi,vi) e(d, g) [T e(bi, Vi) = e(ciy, h) [Te(i, vi)
e(dw, 9) [1 e(ai, Wi) = e(cuco, g) [T e(gi, wi)
(di, 9) [T e(bs, Wi) = e(cucy, 9) [T e(yi, wi)

n n n
S; T; / S / T;
¢ =1, cu::”aib, cv::HaiL, cu::”bib, cU::”biL,
i i=1 i=1 i=1

Vi : Qi = Jr(i)s bl = V(i)
and setting the remaining variables to 1. The prover generates a GS proof ¢ that there
exists an exponent ¢ € Z, and group elements
{a;},{bi}, cu, o, iy, Chyy du, dv, duw, dyy, dy, d, that satisfy the equations.
Verification: The verifier accepts the non-interactive argument if and only if the GS proof
1 is valid.

Fig. 1. NIZK Argument for Correct Shuffle of BBS Ciphertexts

(z,y). The relation R, is a polynomial time decidable relation that tests that (z,y) is
the decryption key for (f, k) and that indeed we do have a non-shuffle.

We will change the way we construct the common reference string for the NIZK
argument. Instead of generating o = (Oniding, {9i}, {:}) as in the scheme, we return
g = (Ubindingv {gi}7 {'YZ}) where (Ubinding7 gextraction) — Kbinding(p; G; GT7 €, g)
By the Decisional Linear Assumption, perfect binding and perfect hiding common ref-
erence strings for the GS proofs are computationally indistinguishable, so the adver-
sary’s success probability only changes negligibly.

The commitment with trivial randomness is now a perfectly binding commitment
to the exponent ¢ = 1. The GS proof is a perfect proof of knowledge of variables
Cus Coy Chyy Coy Aoy doyy doyy iy dl L {ai}, {b; } satisfying the equations, which can be

extracted using §extractlon. Since ¢ = 1, the equations demonstrate that d, = d,, =

A Non-interactive Shuffle with Pairing Based Verifiability 65

dy, = d, = d, = d, = 1. The elements {a;},{b;} satisfy a Permutation Pairing
problem and the hardness of this problem tells us that with overwhelming probability
they are a permutation of {(g;,7;)}. Lemma [l now gives us that there is negligible

probability of ¢, ¢y, ¢}, ¢, {a; },{b;} satisfying the equations and at the same time the

ur v

input and output ciphertexts not being a shuffle. O

Simulated common reference string: The simulator S; runs the common reference string
generation protocol. It sets 7 := (Ttrapdoor; €1, - - - , n) and outputs (o, 7).

Shuffle statement: Public key (f, h) for the BBS cryptosystem. Input ciphertexts
{(us,vs,w;)} and output ciphertexts {(U;, Vi, W) }.

Simulator’s input: The simulator S> receives the shuffle statement and (o, 7).

Simulated proof: Create a trapdoor commitment with double opening to ¢ = 0 and ¢ = 1.
Compute

i=1 =1 i=1

n n
d, = Huf%, d, = Hv?’, d,, = wa
i=1 i=1 i=1
Set the remaining variables to 1 and create a perfect witness indistinguishable GS proof
1) that there exists an exponent ¢ € Z, and group elements
{ai}, {bi}, cus Cos Coy €y duy doy dus,y diy, iy, diy, that satisfy the required equations.

Fig. 2. Simulated Argument for Correct Shuffle of BBS Ciphertexts

S1ZE OF THE NIZK ARGUMENT. To commit to ¢ = 1 we can use trivial randomness,
so the commitment to ¢ does not have to be included in the proof — the verifier can
compute it himself. There are 2n + 10 variables in GG and it takes 3 group elements for
each commitment, so the commitments contribute a total of 6n 4 30 group elements
towards the proof size.

The first 6 equalities cost 9 group elements each for a total of 54 group elements.
The next two multi-exponentiation equations cost 9 group elements each for a total of
18 group elements. We then have n pairing product equations of the form e(a;, a;) =
e(g, b;) which cost a total of 9n group elements. Finally, we have 6 pairing product
equations, where one side of the pairings is publicly known and one side is committed.
They each cost 3 group elements for a total of 18 group elements.

The total size of the proof is 15n 4 120 group elements. The size of the common
reference string is 2n + 8 group elements

We remark that the cost of shuffling multiple sets of ciphertexts with the same per-
mutation may be amortized to a constant number of group elements. The first set of
ciphertexts costs 15n + 120 group elements. But we only need to commit to a;, b; and
prove e(a;, a;) = e(g, b;) once. Regardless of n, the subsequent shuffles under the same
permutation only cost 120 group elements each.

" One could wish for a common reference string that has only a constant number of group
elements, but currently even all known 3-move zero-knowledge arguments have common ref-
erence strings of size 2(n).

66 J. Groth and S. Lu

5 Remark on Shuffling BGN Ciphertexts

Another homomorphic cryptosystem over bilinear groups was introduced by Boneh,
Goh and Nissim [BGNO3]. This cryptosystem is based on the Subgroup Decision As-
sumption over composite order bilinear groups. The ciphertexts consist of one group
element each, so with n input ciphertexts and n outputs ciphertexts, the shuffle state-
ment contains 2n group elements and another group elements to describe the public
key. The techniques we have presented in this paper can also be used to shuffle BGN
ciphertexts. Assuming the Subgroup Decision Assumption holds and assuming suitable
variants of the Permutation Pairing and the Simultaneous Pairing Assumptions hold,
we can make an NIZK argument for correctness of a shuffle consisting of 3n + O(1)
group elements. Since the Subgroup Decision Assumption only holds when factoring
the group order is hard, the group elements in this scheme are quite large though.

While this scheme may have applications, we note that there is one subtle issue that
one must be careful about. The GS proofs can be instantiated with bilinear groups of
composite order where the Subgroup Decision Problem is hard, but they are only secure
if the factorization of the composite group is unknown. The decryption key for the
cryptosystem is the factorization of the group order. The R.,-soundness of the scheme
therefore only holds as long as the adversary does not know the decryption key for the
cryptosystem. The NIZK argument is therefore not R.,-sound as defined in this paper,
albeit it will satisfy a suitably weakened R.,-soundness definition.

References

[Abe99] Abe, M.: Mix-networks on permutation networks. In: Lam, K.-Y., Okamoto, E.,
Xing, C. (eds.) ASIACRYPT 1999. LNCS, vol. 1716, pp. 258-273. Springer, Hei-
delberg (1999)

[AF07] Abe, M., Fehr, S.: Perfect nizk with adaptive soundness. In: Vadhan, S.P. (ed.) TCC
2007. LNCS, vol. 4392, pp. 118-136. Springer, Heidelberg (2007)

[AHO1] Abe, M., Hoshino, F.: Remarks on mix-network based on permutation networks. In:
Kim, K.-c. (ed.) PKC 2001. LNCS, vol. 1992, pp. 317-324. Springer, Heidelberg
(2001)

[BBPO4] Bellare, M., Boldyreva, A., Palacio, A.: An uninstantiable random-oracle-model
scheme for a hybrid encryption problem. In: Cachin, C., Camenisch, J.L. (eds.)
EUROCRYPT 2004. LNCS, vol. 3027, pp. 171-188. Springer, Heidelberg (2004),
Full paper available at http://eprint.iacr.org/2003/077

[BBS04] Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41-55. Springer, Heidelberg (2004)

[BGNOS5] Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In:
Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325-341. Springer, Heidelberg
(2005)

[BR93] Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: ACM CCS 1993, pp. 62-73. ACM Press, New York (1993)

[CGHI98] Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited.
In: Proceedings of STOC 1998, pp. 209-218 (1998)

[CGHO4] Canetti, R., Goldreich, O., Halevi, S.: On the random-oracle methodology as ap-
plied to length-restricted signature schemes. In: Naor, M. (ed.) TCC 2004. LNCS,
vol. 2951, pp. 40-57. Springer, Heidelberg (2004)

http://eprint.iacr.org/2003/077

[Cha81]
[FSO1]
[Fur05]

[GKO03]

[GLO7]

[GOS06a]

[GOS06b]

[Gro03]

[Gro06]

[GS07]

[Nefol]

[Nie02]

[NSNKO5]

[NSNKO6]

[Pas03]

[Sho97]

[SK95]

[Wik05]

A Non-interactive Shuffle with Pairing Based Verifiability 67

Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms.
Communications of the ACM 24(2), 84-88 (1981)

Furukawa, J., Sako, K.: An efficient scheme for proving a shuffle. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 368-387. Springer, Heidelberg (2001)
Furukawa, J.: Efficient and verifiable shuffling and shuffle-decryption. IEICE Trans.
Fundam. Electron. Commun. Comput. Sci. 88-A(1), 172-188 (2005)

Goldwasser, S., Kalai, Y.T.: On the (in)security of the Fiat-Shamir paradigm.
In: proceedings of FOCS 2003, pp. 102-113 (2003), Full paper available at
http://eprint.iacr.org/2003/034

Groth, J., Lu, S.: Verifiable shuffle of large size ciphertexts. In: PKC 2007. Proceed-
ings of Practice and Theory in Public Key Cryptography, vol. 4450, pp. 377-392.
Springer, Heidelberg (2007)

Groth, J., Ostrovsky, R., Sahai, A.: Non-interactive zaps and new techniques for
nizk. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 97-111. Springer,
Heidelberg (2006)

Groth, J., Ostrovsky, R., Sahai, A.: Perfect non-interactive zero-knowledge for
NP. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 339-358.
Springer, Heidelberg (2006)

Groth, J.: A verifiable secret shuffle of homomorphic encryptions. In: Desmedt,
Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 145-160. Springer, Heidelberg (2002)
Groth, J.: Simulation-sound nizk proofs for a practical language and constant size
group signatures. In: Lai, X., Chen, K. (eds.) ASTACRYPT 2006. LNCS, vol. 4284,
Springer, Heidelberg (2006),
http://www.brics.dk/~jg/NIZKGroupSignFull.pdf

Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear
groups. Cryptology ePrint Archive, Report 2007/155 (2007), available at
http://eprint.iacr.org/2007/155

Neft, C.A.: A verifiable secret shuffle and its application to e-voting. In: Proceed-
ings of ACM CCS 2001, pp. 116-125. ACM Press, New York (2001)

Nielsen, J.B.: Separating random oracle proofs from complexity theoretic proofs:
The non-committing encryption case. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 111-126. Springer, Heidelberg (2002)

Nguyen, L., Safavi-Naini, R., Kurosawa, K.: A provably secure and effcient veri-
fiable shuffle based on a variant of the paillier cryptosystem. Journal of Universal
Computer Science 11(6), 9861010 (2005)

Nguyen, L., Safavi-Naini, R., Kurosawa, K.: Verifiable shuffles: a formal model
and a paillier-based three-round construction with provable security. International
Journal of Informations Security 5(4), 241-255 (2006)

Pass, R.: On deniability in the common reference string and random oracle model.
In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 316-337. Springer, Hei-
delberg (2003)

Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256-266. Springer, Heidelberg
(1997)

Sako, K., Kilian, J.: Receipt-free mix-type voting scheme - a practical solution to
the implementation of a voting booth. In: Guillou, L.C., Quisquater, J.-J. (eds.)
EUROCRYPT 1995. LNCS, vol. 921, pp. 393-403. Springer, Heidelberg (1995)
Wikstrom, D.: A sender verifiable mix-net and a new proof of a shuffle. In: Roy,
B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 273-292. Springer, Heidelberg
(2005)

http://eprint.iacr.org/2003/034
http://www.brics.dk/~jg/NIZKGroupSignFull.pdf
http://eprint.iacr.org/2007/155

	A Non-interactive Shuffle with Pairing Based Verifiability
	Introduction
	Preliminaries and Notation
	BBS Encryption
	Shuffling BBS Ciphertexts
	Non-interactive Zero-Knowledge Arguments
	Non-interactive Witness-Indistinguishable Proofs for Bilinear Groups

	Cryptographic Assumptions
	Decisional Linear Assumption
	Permutation Pairing Assumption
	Simultaneous Pairing Assumption
	Our Assumptions in the Generic Group Model

	NIZK Argument for Correctness of a Shuffle
	Remark on Shuffling BGN Ciphertexts

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

