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Abstract:  A key challenge in data stream classification is to detect changes of 
the concept underlying the data, and accurately and efficiently adapt classifiers 
to each concept change. Most existing methods for handling concept changes 
take a windowing approach, where only recent instances are used to update 
classifiers while old instances are discarded indiscriminately. However this 
approach can often be undesirably aggressive because many old instances may 
not be affected by the concept change and hence can contribute to training the 
classifier, for instance, reducing the classification variance error caused by 
insufficient training data. Accordingly this paper proposes a cellular automata 
(CA) approach that feeds classifiers with most relevant instead of most recent 
instances. The strength of CA is that it breaks a complicated process down into 
smaller adaptation tasks, for each a single automaton is responsible. Using 
neighborhood rules embedded in each automaton and emerging time of 
instances, this approach assigns a relevance weight to each instance. Instances 
with high enough weights are selected to update classifiers. Theoretical analyses 
and experimental results suggest that a good choice of local rules for CA can 
help considerably speed up updating classifiers corresponding to concept 
changes, increase classifiers’ robustness to noise, and thus offer faster and better 
classifications for data streams. 
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1. Introduction 

Nowadays, there are many applications in which data are not static but streaming, 
such as sensor network data and credit card transactions. In data streams, the concept 
underlying the data may change over time, which can cause the accuracy of current 
classifiers to decrease. Meanwhile, real-world data are seldom perfect and often suffer 
from significant amount of noise, which may affect the accuracy of induced 
classifiers. Dealing with concept changes and differentiating them from noise has 
become an interesting and challenging task in the machine learning and data mining 
community [8,3,24].  
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Instances in data streams often arrive in huge volume and at high speed. It is 
virtually impossible to apply general data mining algorithms to streaming data as a 
whole. Hence, methods proposed for mining data streams are mainly based on 
windowing approaches [8,9,10]. In windowing approaches, a frame of recent 
instances are selected as a window and are constantly used to train and evaluate the 
classifiers. Some of these windows are fixed-size [21,22], while others are resized 
adaptively according to the validity of the learner [8], for example,  whenever a 
concept change happens the window size is reduced so that the learner is supplied 
with a smaller portion of instances. In either case, the implicit idea underlying the 
method is that the more recent the data, the more relevant they are to test/train the 
current learner. 

However, due to concept change and noise in data streams, classifiers learned 
from a small portion of recent instances may vary significantly in performance [24]. 
Furthermore, it has been shown that the arrival time of an instance is not always the 
best relevance criterion [11,20,23]. The schemes proposed to deal with the mentioned 
problems and find the most relevant instances are mainly based on the ensemble 
approach [9,11,22]. The key idea is to divide data stream into sequential windows and 
assign a weight to each window so that the estimated generalization error is 
minimized. Based on authors claim, the approach shares the assumption that newer 
instances are always more important than older ones which is not the best selection 
strategy in noisy environments. Moreover the approach meets instances more than 
once to assign the windows’ corresponding weights what obviously affects efficiency 
of the model for mining high speed data streams [9,11]. 

Loureiro et al. have suggested that the nearness of instances according to the 
attributes used for learning can be a good measure of relevance [18]. Other 
experiments have revealed that clustering instances can aid the learning process in the 
sense that a group of "near" (according to some distance measure) instances with the 
same class label in neighborhood are more likely to be relevant [19].  

This paper proposes a cellular automata (CA) approach that takes advantages of 
the above-mentioned approaches to handle both concept change and noise problems. 
Using simple neighborhood rules, it retains instances corresponding to the current 
concept for learning even if they are old. This property provides the leaner with more 
relevant training instance, which can reduce its classification variance. Meanwhile, 
noisy instances can be discarded even when they are most recent data.  

The strength of CA is that it breaks a complicated process down into smaller 
adaptation tasks, for each a single automaton is responsible. Each individual 
automaton is only involved with the simple rules which are applied locally to update 
the overall automata’s states. Takac has studied utilization of a Cellular Genetic 
Programming method in static data mining applications [5, 6]. He shows that using 
GP in a cellular framework can improve scalability and efficiency of the previous 
algorithm utilized Genetic Programming to evolve decision trees [16, 17]. Similar 
research can be found in Folioni et al.’s research [4]. Maji et al. have studied the 
application of cellular automata theory in several pattern recognition fields [7]. They 
propose a cellular automata classifier, which can improve classification accuracy, 
minimize memory overhead, and has linear complexity in the training phase.  

As far as we know, the theory of cellular automata has not been studied in the 
context of data stream mining. To do so, our model keeps and updates a lattice of 



automata as data stream in. Upon arrival, each instance is "placed" on its 
corresponding automaton on the lattice and affects its neighbor instances according to 
some simple local rules. The instance corresponding to each automaton is assigned 
with a relevance weight, which represents its chance of being "selected" for training 
the classifier. By choosing appropriate local rules to be applied in each automaton, we 
can improve classifiers’ classification accuracy, adaptation speed to concept change 
and robustness to noise.  

The rest of the paper is organized as follows. Section 2 introduces the theory of 
cellular automata, emphasizing on the concepts we will use in our method. Section 3 
offers a formal representation of the CA approach to suppress noise and handle 
concept change in data streams. Section 4 presents experimental results and analyses. 
Section 5 gives concluding remarks and suggestions for future work. 

2. Background Knowledge 

The theory of cellular automata (CA) was originally presented by Von Neumann 
in the 1960's in hope of simulating complex biophysical behaviors [3]. It was then 
further explored by numerous researchers [1,2,3]. A cellular automata is a discrete 
dynamical system and includes a regular spatial lattice (gird) of points. Each point, 
called a cell or an automaton, is a finite state machine. The input to a cell are the 
states of all cells in its neighborhood. The states of the cells in the lattice are updated 
according to a local rule. That is, the state of a cell at a given time depends only on its 
own state and its nearby neighbors’ states one time step before. All cells on a lattice 
are updated synchronously. Thus the state of the entire lattice advances in discrete 
time steps.  

A 1-dimensional cellular automata takes as its underlying space the infinite strip 
SZ where S is a finite state machine and Z are integers (infinite in both positive and 
negative directions). Overall the state of the automata is updated according to a global 
function f: SZ  SZ, whose dynamics are determined "locally" as defined below. Let r 
be the radius of neighborhood. A local function f is defined on a finite region  

SSf r →+12:  (1) 

which uses the fact that the next state of a single cell in a 1-dimentional CA depends 
on the states of the r cells to its right, the r cells to its left and itself.  By applying 
function f to each cell and using the neighbors as input, the next state of each cell is 
calculated. For higher dimension cellular automata, there exist a variety of 
neighborhood rules among which Moore's and Von Neumann's neighborhood [3] are 
the most widely used. It is expected that CA generates an overall solution to the 
complicated process. 

3. Proposed Method 

Concept change is an intrinsic characteristic of data streams that makes re-
learning necessary. Furthermore, noisy instances often appear in data streams, which 
may falsely be considered as a concept change, trigger unnecessary (time-consuming) 



re-learning, and increase classification error. An ideal algorithm is one that handles 
concept changes in an efficient manner and differentiates real changes from noise. In 
the following subsections we will define our method based on CA for mining data 
streams, and study how it suppresses noise and adapts to concept changes.  

3.1 Cellular-Automata-Based Learning 

Suppose a data stream consists of instances with d attributes, each taking discrete 
values diVii ,...,1,0, =∈α  where { }i
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the instances in the problem space, and ck represent the kth cell or automaton in a 
sequential indexing. Each automaton is assigned three parameters that describe the 
state of its corresponding data point: t as timetag, w as weight, and c as class. Timetag 
is a monotonically decreasing value that shows the recency of the data. Weight is a 
parameter that accounts for the relevance of the automaton to the current concept. 
Class is the true label of the instance that is used afterwards to validate the learnt 
concept. We use the super-index notation to refer to parameters of a cell. Thus,  

means the timetag of the cell ,  stands for its corresponding instance, and  for 
its weight. Whenever a new instance streams in, the corresponding cell is activated 
and its timetag and weight are initialized to a pre-defined constant T and W 
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As soon as the timetag and weight of an active cell reach zero, the cell is deactivated. 
It is worth mentioning that the weight of each cell can also be altered by the local 
rules of the cells in its neighborhood. Local rules are simple heuristics that aim at 
feeding classifiers with more relevant instances by taking into account the local 
situations of the instances in the current concept with respect to each other. By adding 
local rules, our CA based approach is more appropriate than the naïve recency-based 
windowing approach. Different rules can be defined depending on the purpose, for 
example, do we need to deal with noise, detect concept changes or both, which is to 
be discussed in Sections 3.2 and 3.3. The only restriction on these rules is the one that 
has been set by the CA theory: locality. In other words, the next state of an automaton 
should only depend on its current state, and the states of its neighbors in the grid. We 
have adopted a generalized Moore neighborhood definition [3], which includes cells 
in a hyper-sphere that is centered at the base cell and with a radius of n cells. 
Formally, the neighborhood is a function N, which maps each cell to a group of cells: 
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where is a signed integer representing the distance of a neighbor to the 
center cell of the jth attribute.  

djj ...1, =δ

The algorithm runs as follows. The main loop waits until a new instance arrives. 
The new instance is classified using base learner and the classification accuracy of the 
learner is returned. The new instance is then placed on the grid and CA states are 
updated according to the local rules to be defined next. Any cell whose weight is 
above a threshold (usually W/2) is considered relevant and its corresponding instance 
is selected for learning whenever learner accuracy drops below predefined threshold. 

3.2 Noise Suppression 

To deal with noise, our approach simply checks for local class disagreements. For 
each instance, its true class is checked against the class of its neighbors. If most of the 
active neighbors have a different class, this instance is considered as noisy. Its weight 
is suppressed to an amount below the selection threshold. As a consequence, this 
instance is moved out of the selection basket of learning. This strategy is based on the 
heuristic "A positive sample will rarely emerge in-between many negative samples, 
and vice versa". 

3.3 Handling Concept Changes  

Both concept change and noise affect classifiers’ performance but in different 
ways. Effect of the concept change in a particular neighborhood is consistent while it 
is not the case for noise. Our proposed method adopts this local heuristic to detect 
concept change: “A newly misclassified instance, whose class label is different from 
most neighboring instances but is supported by coming instances from the stream, 
indicates a concept change".  

To distinguish between concept change and noise, a two-tailed binomial sign test 
is applied on misclassification sequence of the classifier. If the result is less than the 
critical level of 0.05, the drop in accuracy is the effect of concept change, otherwise it 
is due to noise. Whenever a concept change is detected, the misclassified new 
instances are considered as representatives of the new concept, while their nearby 
instances with a different class are considered as representatives of the outdated 
concept. In particular, whenever an instance of the new concept is detected by a cell, 
the cell looks for the neighbor cells that have a different class from that instance. 
These cells are thereafter suppressed, that is, their weight state is decreased by a large 
amount so as to reduce the probability that they are selected into the basket for 
learning. By suppressing instances of the older concept, the selection basket is left 
with instances that are more relevant to the new concept (both new and old instances).  

To illustrate CA’s advantage, let's consider a generic concept change scenario as 
depicted in Figure 1. The feature space is a 2-d plane with two linearly separable 



classes, positive and negative, whose instances are shown by circles and squares 
respectively. The solid line represents the “old” concept before the concept changes, 
where regions R1 and R4 are positive, and regions R2 and R3 are negative. Instances 
of the old concept are shown by “empty” shapes. The dashed line represents the 
“new” concept after the concept changes, where regions R1 and R2 are positive, and 
R3 and R4 are negative. Instances of the new concept are shown by “filled” shapes, in 
contrast to the older “empty” ones.  

Old concept New concept 

R2

R3

R4

R1 

+ + 

+

-

- + 

- 

- 

Regions R1 R2 R3 R4 
Labels in old concept + - - + 
Labels in new concept + + - - 

Concept change 

 
Figure 1. Regions R1 and R3 are not affected by the concept change. Their instances are still 
valid for the new concept and hence should be utilized to update classifiers. 

 
Now assume that the old concept is in effect (the solid line) and the algorithm 

detects concept change when new instances (filled shapes) fall into regions R2 or R4 
with unexpected class labels. Please note that it is impossible to detect the concept 
change if all new instances fall into the “unaffected regions” (R1 and R3). Once the 
concept change is detected, the CA approach will identify those negative instances 
(empty squares) in R2 and those positive instances (empty circles) in R4 are no longer 
relevant to the learning task. Those instances will be removed while instances in 
regions R1 and R3 will be retained for updating classifiers. In contrast, the windowing 
approach will indiscriminately remove instances from every region as long as they are 
not most recent regardless of whether they are still valid for the new concept. As a 
result, the windowing approach will unwisely reduce the amount of training data, 
undermine the learner’s ability to approximate the new concept and hence increase 
the classification error [14, 15]. 

4. Experiments 

Experiments are conducted to evaluate the cellular automata approach for dealing 
with noise and handling concept change using both synthetic and real-world data 
streams. Evaluations involve decision trees (DT) [27], support vector machines 
(SVM) [12] and adaptive neuro-fuzzy system (ANFIS) [26].  



4.1. Datasets 

Two public benchmark datasets are used for evaluation. They are relatively large, 
have concept changes, and are commonly used in published research of data stream 
classification. 

Hyperplane dataset [20-23] is created artificially to give a more elaborate view 
of algorithms’ performance. A hyperplane in a d-dimensional space is denoted 
by , where each vector of variables ∑=

=
d
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generated instance and is uniformly distributed. Instances satisfying 
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are labeled as positive, and otherwise negative. The value of each coefficient wi is 
continuously changed so that the hyperplane is gradually drifting in the space. 
Besides, the value of w0 is always set as ∑=

d

i iw
12

1  so that roughly half of the instances 

are positive and the other half are negative. Noise is introduced in the data by toggling 
the class label of a certain number of instances. We generate random instances 
uniformly distributed in [0,1]d and then discretize each dimension into 10 intervals of 
equal size. The data stream contains 50,000 instances. 

Car dataset [24] is from the UCI Machine Learning Repository [25]. This 
dataset consists of 6 nominal ordered attributes and 1728 instances in 4 classes. To 
simulate concept change, an attribute is randomly selected, and each of its values is 
treated as a state in the Markov Chain [20,23]. For each state 100 instances possessing 
the same attribute value are randomly selected from the data set, and are queued into 
the data stream. Altogether the data stream comprises 50,000 instances. To add class 
noise, we adopt a pairwise noise previously used in [24] 

4.2 Experiments with Different Levels of Noise  

To observe the role that local rules play in dealing with noise, we add different 
levels of noise into the data. We have used noise rates of 0% (noiseless), 10%, 20%, 
30% and 40% in this experiment, where a x% level means x% instances have their 
class labels toggled. It is worth noting that although the main focus of this subsection 
is how different models deal with noise, there are also concept changes in both 
datasets. Hence, the presented results demonstrate alternative methods’ behavior in 
face of both concept changes and different levels of noise.  

We deploy the adaptive windowing, the ensemble and the CA approaches into 
the noisy datasets. The CA removes instances that it has identified as noise and feed 
other instances to classifiers. The predictive performance of each classification 
algorithm (DT, SVM and ANFIS) under the windowing, the ensemble and the CA 
strategy respectively are compared in Figure 2. 

As the graphs show, the proposed CA approach yields better classification 
accuracy, which suggests that the local rule heuristic is more robust to noise. 
Although the ensemble approach performs better at first, but, it is outperformed by the 
CA approach in noisy environment what approves our early discussion that relying on 
the most recent instances is not always the best strategy in noisy environments.  
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a) Hyperplane dataset 
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Figure 2. Classification accuracy of different classification algorithms under the windowing, 
the ensemble and the CA approaches as a function of noise level.  

 

4.3 Experiments with Different Amount of Concept Changes 

In this section we compare the performance of the different approaches in data 
streams with different complexities of concept changes. As the complexity of concept 
changes is fixed in real-word data such as the Car dataset, we conduct the experiments 
only on the Hyperplane dataset [21]. In this dataset, the complexity of concept 
changes relates to the number of dimensions k whose weights are changing over time. 
Using four different values of k, we produce several Hyperplane datasets to evaluate 
the performance of our approach from different points of view. Three measures of the 
performance are calculated for each experiment: 1) convergence time, ct, which is the 
average time the system remains unstable during updating to a concept change, 
measured by the number of instances; 2) classification accuracy, acc, which is the 
percentage of the classifier's correct predictions, and 3) re-learning requirement, , 
as the total number of times the classifier is re-learned from scratch.  

lN

Results are shown in Table 1. It is observed that almost in every case the CA 
approach outperforms the windowing and ensemble approaches: it achieves higher 
classification accuracy; spends less time on updating classifiers upon concept 
changes; and require less frequently building classifiers from scratch. Lower ct and 

 are desirable because data streams demand fast online classification. In other 
words, whenever the other approaches present almost equal classification accuracy, it 
is at the cost of using more time resources. 

lN

 



Table 1. Experiment results in learning drifting concepts 
Windowing Approach Ensemble Approach CA Approach 

Learner k acc ct 
lN  acc ct 

lN  acc ct 
lN  

1 %75 43 70 %79 29 85 %77 31 58 
2 %71.2 47 79 %73 34 92 %73.3 37 67 
3 %60.8  72 95 %65 61 111 %64.8 57 74 

Decision 
Tree  

4 %56 75 104 %60 67 123 %61.3 60 86 
1 %84 47 66 %84 34 80 %84 35 54 
2 %73 70 80 %78 47 89 %77.7 45 62 
3 %69.7 77 85 %74 50 100 %76 48 66 

SVM 

4 %58 100 96 %67 67 119 %68.3 63 73 
1 %77  33 69 %79 15 72 %78.1  20 56 
2 %71.3 40 77 %74.5 23 80 %75 23 73 
3 %70.9 41 86 %72.9 26 98 %73.4 25 78 

ANFIS 

4 %63.8 57 102 %65 44 113 %66 40 83 
 

5. Conclusion and Future Work 

A cellular automata (CA) approach is proposed for data stream classifications. Its 
advantage is to use most relevant instances instead of most recent instances to update 
classifiers in face of concept changes. By using neighboring instances and simple 
local rules, the CA approach can be more robust to noise, achieve higher classification 
accuracy, adapt faster to changed concepts, and less frequently require building 
classifiers from scratch. 

Using cellular automata for data stream classification is a new topic and there are 
various interesting issues to further investigate. For example, as cellular automata are 
distributed along a grid with just interactions between neighboring cells, they can be 
consider as a means for parallel stream mining. For another example, cellular 
automata have a discrete nature. Hence, an effective online method for discretizing 
continuous attributes in data streams may be considered for future work.  
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