
To Better Handle Concept Change and Noise: A Cellular
Automata Approach to Data Stream Classification

Sattar Hashemi1, Ying Yang1, Majid Pourkashani2, Mohammadreza Kangavari2

1 Clayton School of Information Technology

Monash University, Australia
{Sattar.Hashemi,Ying.Yang}@infotech.monash.edu.au

2 Computer Engineering Department, Iran University

Of Science and Technology, Tehran, Iran
{mpkashani, kangavari}@iust.ac.ir

Abstract: A key challenge in data stream classification is to detect changes of
the concept underlying the data, and accurately and efficiently adapt classifiers
to each concept change. Most existing methods for handling concept changes
take a windowing approach, where only recent instances are used to update
classifiers while old instances are discarded indiscriminately. However this
approach can often be undesirably aggressive because many old instances may
not be affected by the concept change and hence can contribute to training the
classifier, for instance, reducing the classification variance error caused by
insufficient training data. Accordingly this paper proposes a cellular automata
(CA) approach that feeds classifiers with most relevant instead of most recent
instances. The strength of CA is that it breaks a complicated process down into
smaller adaptation tasks, for each a single automaton is responsible. Using
neighborhood rules embedded in each automaton and emerging time of
instances, this approach assigns a relevance weight to each instance. Instances
with high enough weights are selected to update classifiers. Theoretical analyses
and experimental results suggest that a good choice of local rules for CA can
help considerably speed up updating classifiers corresponding to concept
changes, increase classifiers’ robustness to noise, and thus offer faster and better
classifications for data streams.

 Keywords: Data Stream Classification, Cellular Automata, Concept Change,
Noise Suppression

1. Introduction

Nowadays, there are many applications in which data are not static but streaming,
such as sensor network data and credit card transactions. In data streams, the concept
underlying the data may change over time, which can cause the accuracy of current
classifiers to decrease. Meanwhile, real-world data are seldom perfect and often suffer
from significant amount of noise, which may affect the accuracy of induced
classifiers. Dealing with concept changes and differentiating them from noise has
become an interesting and challenging task in the machine learning and data mining
community [8,3,24].

mailto:kangavari%7D@iust.ac.ir

Instances in data streams often arrive in huge volume and at high speed. It is
virtually impossible to apply general data mining algorithms to streaming data as a
whole. Hence, methods proposed for mining data streams are mainly based on
windowing approaches [8,9,10]. In windowing approaches, a frame of recent
instances are selected as a window and are constantly used to train and evaluate the
classifiers. Some of these windows are fixed-size [21,22], while others are resized
adaptively according to the validity of the learner [8], for example, whenever a
concept change happens the window size is reduced so that the learner is supplied
with a smaller portion of instances. In either case, the implicit idea underlying the
method is that the more recent the data, the more relevant they are to test/train the
current learner.

However, due to concept change and noise in data streams, classifiers learned
from a small portion of recent instances may vary significantly in performance [24].
Furthermore, it has been shown that the arrival time of an instance is not always the
best relevance criterion [11,20,23]. The schemes proposed to deal with the mentioned
problems and find the most relevant instances are mainly based on the ensemble
approach [9,11,22]. The key idea is to divide data stream into sequential windows and
assign a weight to each window so that the estimated generalization error is
minimized. Based on authors claim, the approach shares the assumption that newer
instances are always more important than older ones which is not the best selection
strategy in noisy environments. Moreover the approach meets instances more than
once to assign the windows’ corresponding weights what obviously affects efficiency
of the model for mining high speed data streams [9,11].

Loureiro et al. have suggested that the nearness of instances according to the
attributes used for learning can be a good measure of relevance [18]. Other
experiments have revealed that clustering instances can aid the learning process in the
sense that a group of "near" (according to some distance measure) instances with the
same class label in neighborhood are more likely to be relevant [19].

This paper proposes a cellular automata (CA) approach that takes advantages of
the above-mentioned approaches to handle both concept change and noise problems.
Using simple neighborhood rules, it retains instances corresponding to the current
concept for learning even if they are old. This property provides the leaner with more
relevant training instance, which can reduce its classification variance. Meanwhile,
noisy instances can be discarded even when they are most recent data.

The strength of CA is that it breaks a complicated process down into smaller
adaptation tasks, for each a single automaton is responsible. Each individual
automaton is only involved with the simple rules which are applied locally to update
the overall automata’s states. Takac has studied utilization of a Cellular Genetic
Programming method in static data mining applications [5, 6]. He shows that using
GP in a cellular framework can improve scalability and efficiency of the previous
algorithm utilized Genetic Programming to evolve decision trees [16, 17]. Similar
research can be found in Folioni et al.’s research [4]. Maji et al. have studied the
application of cellular automata theory in several pattern recognition fields [7]. They
propose a cellular automata classifier, which can improve classification accuracy,
minimize memory overhead, and has linear complexity in the training phase.

As far as we know, the theory of cellular automata has not been studied in the
context of data stream mining. To do so, our model keeps and updates a lattice of

automata as data stream in. Upon arrival, each instance is "placed" on its
corresponding automaton on the lattice and affects its neighbor instances according to
some simple local rules. The instance corresponding to each automaton is assigned
with a relevance weight, which represents its chance of being "selected" for training
the classifier. By choosing appropriate local rules to be applied in each automaton, we
can improve classifiers’ classification accuracy, adaptation speed to concept change
and robustness to noise.

The rest of the paper is organized as follows. Section 2 introduces the theory of
cellular automata, emphasizing on the concepts we will use in our method. Section 3
offers a formal representation of the CA approach to suppress noise and handle
concept change in data streams. Section 4 presents experimental results and analyses.
Section 5 gives concluding remarks and suggestions for future work.

2. Background Knowledge

The theory of cellular automata (CA) was originally presented by Von Neumann
in the 1960's in hope of simulating complex biophysical behaviors [3]. It was then
further explored by numerous researchers [1,2,3]. A cellular automata is a discrete
dynamical system and includes a regular spatial lattice (gird) of points. Each point,
called a cell or an automaton, is a finite state machine. The input to a cell are the
states of all cells in its neighborhood. The states of the cells in the lattice are updated
according to a local rule. That is, the state of a cell at a given time depends only on its
own state and its nearby neighbors’ states one time step before. All cells on a lattice
are updated synchronously. Thus the state of the entire lattice advances in discrete
time steps.

A 1-dimensional cellular automata takes as its underlying space the infinite strip
SZ where S is a finite state machine and Z are integers (infinite in both positive and
negative directions). Overall the state of the automata is updated according to a global
function f: SZ SZ, whose dynamics are determined "locally" as defined below. Let r
be the radius of neighborhood. A local function f is defined on a finite region

SSf r →+12: (1)

which uses the fact that the next state of a single cell in a 1-dimentional CA depends
on the states of the r cells to its right, the r cells to its left and itself. By applying
function f to each cell and using the neighbors as input, the next state of each cell is
calculated. For higher dimension cellular automata, there exist a variety of
neighborhood rules among which Moore's and Von Neumann's neighborhood [3] are
the most widely used. It is expected that CA generates an overall solution to the
complicated process.

3. Proposed Method

Concept change is an intrinsic characteristic of data streams that makes re-
learning necessary. Furthermore, noisy instances often appear in data streams, which
may falsely be considered as a concept change, trigger unnecessary (time-consuming)

re-learning, and increase classification error. An ideal algorithm is one that handles
concept changes in an efficient manner and differentiates real changes from noise. In
the following subsections we will define our method based on CA for mining data
streams, and study how it suppresses noise and adapts to concept changes.

3.1 Cellular-Automata-Based Learning

Suppose a data stream consists of instances with d attributes, each taking discrete
values diVii ,...,1,0, =∈α where { }i

n
ii

i i
vvvV ,...,, 21= and is the number of

possible values of the ith attribute. Without loosing generality, we assume that
. In this manner, each instance si can be identified by the d-tuple

of attribute values

in

nnnn d ==== ...21

),...,,(21 dααα . This d-tuple represents a point in a d-dimensional
problem space. Let (){ }diforVDcwtDcG iidk ...1,,...,,),,,,(21 =∈=== αααα be a d-
dimensional grid (lattice) of cellular automata, which has a one-to-one relation with
the instances in the problem space, and ck represent the kth cell or automaton in a
sequential indexing. Each automaton is assigned three parameters that describe the
state of its corresponding data point: t as timetag, w as weight, and c as class. Timetag
is a monotonically decreasing value that shows the recency of the data. Weight is a
parameter that accounts for the relevance of the automaton to the current concept.
Class is the true label of the instance that is used afterwards to validate the learnt
concept. We use the super-index notation to refer to parameters of a cell. Thus,

means the timetag of the cell , stands for its corresponding instance, and for
its weight. Whenever a new instance streams in, the corresponding cell is activated
and its timetag and weight are initialized to a pre-defined constant T and W
respectively. These parameters for other active cells are decreased by a pre-defined
forgetting factor

t
kc

kc D
kc w

kc

λ ;
cellactiveisctskccandcc k

w
k

w
k

t
k

t
k ..)(∀−←−← λλ (2)

As soon as the timetag and weight of an active cell reach zero, the cell is deactivated.
It is worth mentioning that the weight of each cell can also be altered by the local
rules of the cells in its neighborhood. Local rules are simple heuristics that aim at
feeding classifiers with more relevant instances by taking into account the local
situations of the instances in the current concept with respect to each other. By adding
local rules, our CA based approach is more appropriate than the naïve recency-based
windowing approach. Different rules can be defined depending on the purpose, for
example, do we need to deal with noise, detect concept changes or both, which is to
be discussed in Sections 3.2 and 3.3. The only restriction on these rules is the one that
has been set by the CA theory: locality. In other words, the next state of an automaton
should only depend on its current state, and the states of its neighbors in the grid. We
have adopted a generalized Moore neighborhood definition [3], which includes cells
in a hyper-sphere that is centered at the base cell and with a radius of n cells.
Formally, the neighborhood is a function N, which maps each cell to a group of cells:

{ } { }() ()
{ }dincandcccN

AofsetpowerdenotesAPwherecPcN

idd
D
pd

D
kpkn

kk

≤≤≤+++===

→

1),,,,(),,,()(

.,:

221121 δδαδαδαααα LL

(3)

where is a signed integer representing the distance of a neighbor to the
center cell of the jth attribute.

djj ...1, =δ

The algorithm runs as follows. The main loop waits until a new instance arrives.
The new instance is classified using base learner and the classification accuracy of the
learner is returned. The new instance is then placed on the grid and CA states are
updated according to the local rules to be defined next. Any cell whose weight is
above a threshold (usually W/2) is considered relevant and its corresponding instance
is selected for learning whenever learner accuracy drops below predefined threshold.

3.2 Noise Suppression

To deal with noise, our approach simply checks for local class disagreements. For
each instance, its true class is checked against the class of its neighbors. If most of the
active neighbors have a different class, this instance is considered as noisy. Its weight
is suppressed to an amount below the selection threshold. As a consequence, this
instance is moved out of the selection basket of learning. This strategy is based on the
heuristic "A positive sample will rarely emerge in-between many negative samples,
and vice versa".

3.3 Handling Concept Changes

Both concept change and noise affect classifiers’ performance but in different
ways. Effect of the concept change in a particular neighborhood is consistent while it
is not the case for noise. Our proposed method adopts this local heuristic to detect
concept change: “A newly misclassified instance, whose class label is different from
most neighboring instances but is supported by coming instances from the stream,
indicates a concept change".

To distinguish between concept change and noise, a two-tailed binomial sign test
is applied on misclassification sequence of the classifier. If the result is less than the
critical level of 0.05, the drop in accuracy is the effect of concept change, otherwise it
is due to noise. Whenever a concept change is detected, the misclassified new
instances are considered as representatives of the new concept, while their nearby
instances with a different class are considered as representatives of the outdated
concept. In particular, whenever an instance of the new concept is detected by a cell,
the cell looks for the neighbor cells that have a different class from that instance.
These cells are thereafter suppressed, that is, their weight state is decreased by a large
amount so as to reduce the probability that they are selected into the basket for
learning. By suppressing instances of the older concept, the selection basket is left
with instances that are more relevant to the new concept (both new and old instances).

To illustrate CA’s advantage, let's consider a generic concept change scenario as
depicted in Figure 1. The feature space is a 2-d plane with two linearly separable

classes, positive and negative, whose instances are shown by circles and squares
respectively. The solid line represents the “old” concept before the concept changes,
where regions R1 and R4 are positive, and regions R2 and R3 are negative. Instances
of the old concept are shown by “empty” shapes. The dashed line represents the
“new” concept after the concept changes, where regions R1 and R2 are positive, and
R3 and R4 are negative. Instances of the new concept are shown by “filled” shapes, in
contrast to the older “empty” ones.

Old concept New concept

R2

R3

R4

R1

+ +

+

-

- +

-

-

Regions R1 R2 R3 R4
Labels in old concept + - - +
Labels in new concept + + - -

Concept change

Figure 1. Regions R1 and R3 are not affected by the concept change. Their instances are still
valid for the new concept and hence should be utilized to update classifiers.

Now assume that the old concept is in effect (the solid line) and the algorithm

detects concept change when new instances (filled shapes) fall into regions R2 or R4
with unexpected class labels. Please note that it is impossible to detect the concept
change if all new instances fall into the “unaffected regions” (R1 and R3). Once the
concept change is detected, the CA approach will identify those negative instances
(empty squares) in R2 and those positive instances (empty circles) in R4 are no longer
relevant to the learning task. Those instances will be removed while instances in
regions R1 and R3 will be retained for updating classifiers. In contrast, the windowing
approach will indiscriminately remove instances from every region as long as they are
not most recent regardless of whether they are still valid for the new concept. As a
result, the windowing approach will unwisely reduce the amount of training data,
undermine the learner’s ability to approximate the new concept and hence increase
the classification error [14, 15].

4. Experiments

Experiments are conducted to evaluate the cellular automata approach for dealing
with noise and handling concept change using both synthetic and real-world data
streams. Evaluations involve decision trees (DT) [27], support vector machines
(SVM) [12] and adaptive neuro-fuzzy system (ANFIS) [26].

4.1. Datasets

Two public benchmark datasets are used for evaluation. They are relatively large,
have concept changes, and are commonly used in published research of data stream
classification.

Hyperplane dataset [20-23] is created artificially to give a more elaborate view
of algorithms’ performance. A hyperplane in a d-dimensional space is denoted
by , where each vector of variables ∑=

=
d

i ii wxw
0 0 >< dxx ,,1 L

 is a randomly

generated instance and is uniformly distributed. Instances satisfying
00

wxw i
d

i i ≥∑ =

are labeled as positive, and otherwise negative. The value of each coefficient wi is
continuously changed so that the hyperplane is gradually drifting in the space.
Besides, the value of w0 is always set as ∑=

d

i iw
12

1 so that roughly half of the instances

are positive and the other half are negative. Noise is introduced in the data by toggling
the class label of a certain number of instances. We generate random instances
uniformly distributed in [0,1]d and then discretize each dimension into 10 intervals of
equal size. The data stream contains 50,000 instances.

Car dataset [24] is from the UCI Machine Learning Repository [25]. This
dataset consists of 6 nominal ordered attributes and 1728 instances in 4 classes. To
simulate concept change, an attribute is randomly selected, and each of its values is
treated as a state in the Markov Chain [20,23]. For each state 100 instances possessing
the same attribute value are randomly selected from the data set, and are queued into
the data stream. Altogether the data stream comprises 50,000 instances. To add class
noise, we adopt a pairwise noise previously used in [24]

4.2 Experiments with Different Levels of Noise

To observe the role that local rules play in dealing with noise, we add different
levels of noise into the data. We have used noise rates of 0% (noiseless), 10%, 20%,
30% and 40% in this experiment, where a x% level means x% instances have their
class labels toggled. It is worth noting that although the main focus of this subsection
is how different models deal with noise, there are also concept changes in both
datasets. Hence, the presented results demonstrate alternative methods’ behavior in
face of both concept changes and different levels of noise.

We deploy the adaptive windowing, the ensemble and the CA approaches into
the noisy datasets. The CA removes instances that it has identified as noise and feed
other instances to classifiers. The predictive performance of each classification
algorithm (DT, SVM and ANFIS) under the windowing, the ensemble and the CA
strategy respectively are compared in Figure 2.

As the graphs show, the proposed CA approach yields better classification
accuracy, which suggests that the local rule heuristic is more robust to noise.
Although the ensemble approach performs better at first, but, it is outperformed by the
CA approach in noisy environment what approves our early discussion that relying on
the most recent instances is not always the best strategy in noisy environments.

Decision Tree

0.55

0.6

0.65

0.7

0.75

0.8

0 0.1 0.2 0.3 0.4

Noise Rate

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

Window ing

Ensemble

CA

Support Vector Machine

0.6

0.65

0.7

0.75

0.8

0.85

0 0.1 0.2 0.3 0.4

Noise Rate
C

la
ss

ifi
ca

tio
n

A
cc

ur
ac

y

Window ing

Ensemble

CA

ANFIS

0.55

0.6

0.65

0.7

0.75

0.8

0 0.1 0.2 0.3 0.4

Noise Rate

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

Window ing

Ensemble

CA

a) Hyperplane dataset

Decision Tree

0.6

0.65

0.7

0.75

0.8

0.85

0 0.1 0.2 0.3 0.4

Noise Rate

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

Window ing

Ensemble

CA

Support Vector Machine

0.54

0.59

0.64

0.69

0.74

0.79

0 0.1 0.2 0.3 0.4

Noise Rate

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

Window ing

Ensemble

CA

ANFIS

0.68
0.7

0.72
0.74
0.76
0.78
0.8

0.82
0.84
0.86

0 0.1 0.2 0.3 0.4

Noise Rate

C
la

ss
ifi

ca
tio

n
A

cc
ur

ac
y

Window ing

Ensemble

CA

b) Car dataset
Figure 2. Classification accuracy of different classification algorithms under the windowing,
the ensemble and the CA approaches as a function of noise level.

4.3 Experiments with Different Amount of Concept Changes

In this section we compare the performance of the different approaches in data
streams with different complexities of concept changes. As the complexity of concept
changes is fixed in real-word data such as the Car dataset, we conduct the experiments
only on the Hyperplane dataset [21]. In this dataset, the complexity of concept
changes relates to the number of dimensions k whose weights are changing over time.
Using four different values of k, we produce several Hyperplane datasets to evaluate
the performance of our approach from different points of view. Three measures of the
performance are calculated for each experiment: 1) convergence time, ct, which is the
average time the system remains unstable during updating to a concept change,
measured by the number of instances; 2) classification accuracy, acc, which is the
percentage of the classifier's correct predictions, and 3) re-learning requirement, ,
as the total number of times the classifier is re-learned from scratch.

lN

Results are shown in Table 1. It is observed that almost in every case the CA
approach outperforms the windowing and ensemble approaches: it achieves higher
classification accuracy; spends less time on updating classifiers upon concept
changes; and require less frequently building classifiers from scratch. Lower ct and

 are desirable because data streams demand fast online classification. In other
words, whenever the other approaches present almost equal classification accuracy, it
is at the cost of using more time resources.

lN

Table 1. Experiment results in learning drifting concepts
Windowing Approach Ensemble Approach CA Approach

Learner k acc ct
lN acc ct

lN acc ct
lN

1 %75 43 70 %79 29 85 %77 31 58
2 %71.2 47 79 %73 34 92 %73.3 37 67
3 %60.8 72 95 %65 61 111 %64.8 57 74

Decision
Tree

4 %56 75 104 %60 67 123 %61.3 60 86
1 %84 47 66 %84 34 80 %84 35 54
2 %73 70 80 %78 47 89 %77.7 45 62
3 %69.7 77 85 %74 50 100 %76 48 66

SVM

4 %58 100 96 %67 67 119 %68.3 63 73
1 %77 33 69 %79 15 72 %78.1 20 56
2 %71.3 40 77 %74.5 23 80 %75 23 73
3 %70.9 41 86 %72.9 26 98 %73.4 25 78

ANFIS

4 %63.8 57 102 %65 44 113 %66 40 83

5. Conclusion and Future Work

A cellular automata (CA) approach is proposed for data stream classifications. Its
advantage is to use most relevant instances instead of most recent instances to update
classifiers in face of concept changes. By using neighboring instances and simple
local rules, the CA approach can be more robust to noise, achieve higher classification
accuracy, adapt faster to changed concepts, and less frequently require building
classifiers from scratch.

Using cellular automata for data stream classification is a new topic and there are
various interesting issues to further investigate. For example, as cellular automata are
distributed along a grid with just interactions between neighboring cells, they can be
consider as a means for parallel stream mining. For another example, cellular
automata have a discrete nature. Hence, an effective online method for discretizing
continuous attributes in data streams may be considered for future work.

References

1. A. Adamatzky. Identification of Cellular Automata. Taylor and Francis, London, Bristol,

1994.
2. J. D. Farmer, T. Toffoli, and S. Wolfram, editors. Cellular Automata : Proceedings of an

Interdisciplinary Workshop. Los Alamos, New Mexico, March 7-11, 1983,
3. S. Wolfram, editor. Theory and Applications of Cellular Automata. World Scientific,

Singapore, 1986. Collection of papers on CA's.
4. G. Folioni, C. Pizzuti and G.Spezzano. A Cellular Genetic Programming Approach to

Classification. In the Proceedings of the Genetic and Evolutionary Computation
Conference, vol. 2, pp. 1015-1020, 1999

5. A. Takac, Application of Cellular Genetic Programming in Data Mining, Proceedings of
Conference Knowledge 2004, Brno, Czech Republic.

6. A. Takac, Genetic Programming in Data Mining: Cellular Approach, Ms-Thesis for the
faculty of mathematics, physics and informatics, Institute of informatics, Comenius
University, Bratislava, Slovakia, 2003

7. P. Maji, C. Shaw, N. Ganguly, B. K. Sikdar and P.P. Chaudhuri, , Theory and Application
of Cellular Automata for data mining. Fundamenta Informaticae, Issue 58, pp. 321-354,
2003

8. G. Widmer and M. Kubat, Learning is presence of concept drift and hidden contexts,
Machine Learning, 23 (1), pp. 69-101, 1996

9. R. Klinkenberg, Learning drifting concepts: example selection vs. example weighting,
Intelligent Data Analysis, Special Issue on Incremental Learning Systems Capable of
Dealing with Concept Drift, Vol. 8 (3), 2004.

10. A. Tsymbal, The problem of concept drift: definitions and related work, 2004. Technical
Report TCD-CS-2004-15, Computer Science Department, Trinity College Dublin, Ireland.

11. Wei Fan, StreamMiner: A Classifier Ensemble-based Engine to Mine Concept-Drifting
Data Streams, 2004, Very Large Databases, 1257-1260, 2004.

12. V. Vapnik, The Nature of Statistical Learning Theory, Springer, N.Y., 1995. ISBN 0-387-
94559-8.

13. M.M. Gaber, A. Zaslavsky, S. Krishnaswamy, Mining Data Streams, A Review, ACM
SIGMOD Record, Vol. 34 (2), pp. 18-26, June 2005.

14. P.L. Bartlett, S.B. David, and S.R. Kulkarni, Learning Changing Concepts by Exploiting
the Structure of Change, Computational Learning Theory, pp. 131-139, 1996.

15. D.P. Helmbold and P.M. Long, Tracking Drifting Concepts by Minimizing Disagreement,
Machine Learning, vol. 14 (1), pp. 27-45. 1994.

16. A.A. Freitas, A Genetic Programming Framework for two Data Mining Tasks:
Classification and Generalized Rule Induction, Proceedings of the 2nd Annual Conference
on Genetic Programming, pp.96-101, 1997, Stanford University, CA, USA.

17. M.D. Ryan and V.J. Rayward-Smith, The Evolution of Decision Trees, Proceedings of the
3rd Annual Conference on Genetic Programming, 1998, Morgan Kaufmann.

18. A. Loureiro, L. Torgo and C. Soares, Outlier Detection Using Clustering Methods: a Data
Cleaning Application, In Proceedings of the Data Mining for Business Workshop, 2005,
Porto, Portugal

19. X. Li and N. Ye. A supervised clustering and classification algorithm for mining data with
mixed variables, IEEE Transactions on Systems, Man, and Cybernetics-Part A, Vol. 26,
No. 2, 2006.

20. Ying Yang, Xidong Wu & Xingquan Zhu, Combining Proactive Reactive Predictions for
Data Streams, Proceeding of the 11th ACM SIGKDD international conference on
knowledge discovery in data mining, pp. 710-715, 2005.

21. G. Hulten, L. Spencer, and P. Domingos. Mining time-changing data streams. In
Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (SIGKDD), pages 97–106, 2001.

22. H. Wang, W. Fan, P. S. Yu, and J. Han. Mining concept drifting data streams using
ensemble classifiers. In Proceedings of the 9th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (SIGKDD), pages 226–235, 2003.

23. Ying Yang, Xindong Wu and Xingquan Zhu, Mining in Anticipation for Concept Change:
Proactive-Reactive Prediction in Data Streams. In Data Mining and Knowledge Discovery
(DMKD), Volume 13, Number 3, 261-289, 2006

24. Xingquan Zhu, Xindong Wu and Ying Yang, Effective Classification of Noisy Data
Streams with Attribute-Oriented Dynamic Classifier Selection. In Knowledge and
Information Systems An International Journal (KAIS), Volume 9, Number 3, 339-363,
2006

25. D. J. Newman, S. Hettich, C. Blake, and C. Merz. UCI repository of machine learning
databases, 1998

26. Jang JSR. ANFIS: Adaptive-network-based fuzzy inference systems. IEEE Transaction on
System, Man and Cybernetic 23(3): 665–685, 1993

27. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers (1993)

