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Abstract. The protein structure alignment problem addresses the question of
measuring the degree of similarity, in three–dimensional structure, of twopro-
teins. The representation of each protein using a simple contact map allowsthe
correspondence graph for the protein pair to be generated and the maximum
clique within this graph provides a measure of the structural similarity between
the two proteins. This study uses a recently developed maximum clique algo-
rithm, Phased Local Search (PLS), to locate the maximum cliques within corre-
spondence graphs.

1. Introduction

In bioinformatics, structural comparison of proteins is useful in several domains. For
example, as protein function is intrinsically tied to a protein’s structure [1], identify-
ing structural similarity between a protein and other proteins whose function is known
can allow the prediction of that protein’s function. Over the last decade, a number
of techniques for structurally comparing proteins have been developed however, none
have proved adequate across a range of applications. A relatively new technique, Con-
tact Map Overlap (CMO), first proposed in [2] (and subsequently shown to be NP-
complete [3]), is to identify alignments between protein contact maps with the goal
of maximising the number of consistent alignments. A protein consists of a chain of
residues (amino acids). When a protein folds into its tertiary (lowest energy) structure,
residues that are not directly adjacent in the chain may be physically close in space. The
contact map for a protein is a simple representation of this three–dimensional structure
and is the matrix of all pairwise distances between the components of the protein. For
this study, the components of the protein are identified as the alpha carbon atoms (Cα)
of each amino acid. The contact map can be further simplified into a 0–1 contact map
by encoding each pairwise distance as one if the pairwise distance is less than some
distance threshold (typically in the range 4 - 8Å and 5.5Å in this study) and zero oth-
erwise. As shown in [4], the CMO problem can be directly translated to a maximum
clique (MC) problem which calls for finding the maximum sizedsub-graph of pairwise
adjacent vertices in a given graph. Formally, the MC problemcan be stated as: Given
an undirected graphG = (V,E), whereV is the set of all vertices andE the set of
all edges, find a maximum size clique inG, where a cliqueK in G is a subset of ver-
tices,K ⊆ V , such that all pairs of vertices inK are connected by an edge,i.e., for



all v, v′ ∈ K, {v, v′} ∈ E, and the size of the cliqueK is the cardinality|K| of K.
The maximum clique problem is to maximise|K|, the cardinality ofK. MC isNP-hard
and the associated decision problem isNP-complete [5]. Therefore, large and hard in-
stances of MC are typically solved using heuristic approaches of which the most recent
is Phased Local Search (PLS) [6], a reactive algorithm that interleaves sub-algorithms
which alternate between sequences of iterative improvement and plateau search. The
differences between these sub-algorithms are primarily inthe vertex selection method
and the perturbation mechanisms used to overcome search stagnation. Extensive com-
putational experiments [6] have shown that PLS has equivalent, or improved, perfor-
mance compared to other state-of-the-art MC search algorithms, on a range of widely
studied benchmark instances.

2. The PLS Algorithm

PLS [6] is now described using the following additional notation:
N(i) = {j ∈ V : {i, j} ∈ E} — the vertices adjacent toi; K — current clique ofG;
and,Cp(K) = {i ∈ V : |K \ N(i)| = p}, p = 0, 1 — the set of all vertices not adjacent
to exactlyp vertices inK.

Algorithm PLS (G, tcs, max-selections)
Input: graphG; integerstcs (target clique size),max-selections
Output: K of sizetcs or ‘failed’

1. selections := 0, pu := 0, pd := 2;
2. sa := Random, iterations := 50;
3. <Randomly select a vertexv ∈ V , K := {v} >;
4. ∀ i ∈ V, pi := 0;
5. do
6. do
7. while C0(K) \ U 6= ∅ do
8. v :=Select(C0(K), sa);
9. K := K ∪ {v};

10. selections := selections + 1;
11. if |K| = tcs then return K;
12. U := ∅;
13. end while
14. if C1(K) \ U 6= ∅ then
15. v := Select(C1(K) \ U, sa);
16. K := [K ∪ {v}] \ {i}, U := U ∪ {i}, where{i} = K \ N(v);
17. selections := selections + 1;
18. end if;
19. while C0(K) 6= ∅ or C1(K) \ U 6= ∅;
20. iterations := iterations − 1;
21. UpdatePenalties(sa);
22. Perturb(sa);
23. until selections ≥ max-selections
24. return ‘failed’;



PLS uses three sub-algorithms within theSelect function which are effective for
three different instance types. The first sub-algorithm,Random, effectively solves in-
stances where the maximal clique consists of vertices with awide range of vertex
degrees. The second sub-algorithm,Penalty, uses vertex penalties to bias the search to-
wards cliques containing lower degree vertices. The vertexpenalties are increased when
the vertex is in the current clique when a perturbation occurs and are subject to occa-
sional decrease, which effectively allows the sub-algorithm to ‘forget’ vertex penalties
over time. PLS adaptively modifies the frequency of penalty decreases to obtain near
optimal performance. The third PLS sub-algorithm,Degree, uses vertex degrees to bias
the search towards cliques containing higher degree vertices.

3. Empirical Performance Results

For this study, two protein structure alignment benchmarkswere utilised to evaluate the
performance of PLS on this type of problem. Benchmark–1 was used in [4] (the cor-
respondence graphs for this benchmark were obtained directly from the authors of this
paper) and consists of 10 different protein structure alignment problems. The proteins
in this benchmark all contain approximately 50 residues andthe correspondence graphs
have up to3 000 vertices and700 000 edges.

Benchmark–2 was constructed using proteins from the Protein Data Bank [7]. The
Universality Similarity Measure (USM) software1 [8] (with a 5.5Å threshold) was used
to generate the contact maps for these proteins. From the contact maps for the proteins
to be compared, the two-dimensional gridG was generated and the correspondence
graph created by adding an edge when the two alignments represented by pairs of ver-
tices are a feasible solution to the CMO problem. The proteins in this benchmark range
in size from60 to100 residues and the correspondence graphs have up to approximately
8 000 vertices and9 000 000 edges. All experiments for this study were performed on
a dedicated computer that, for the DIMACS Machine Benchmark2, required 0.41 CPU
seconds for r300.5, 2.52 CPU seconds for r400.5 and 9.71 CPU seconds for r500.5. In
the following, unless explicitly stated otherwise, all CPUtimes refer to the reference
machine.

The performance results for PLS on Benchmark–1 are shown in Table 1. To gener-
ate these results, 100 independent trials were performed for each instance using target
clique sizes corresponding to those obtained in [4]. As shown, PLS achieved a 100%
success rate on all Benchmark-1 instances while using considerably less processor time
than that required in [4].

The performance of PLS for Benchmark–2 is shown in Table 2. Togenerate these
results, an extensive trial was first performed to identify the putative maximum clique
size for each benchmark instance. Using the putative maximum clique size obtained for
each instance, 100 independent trials of PLS were performedusing amaxSelections

of 100 000 000 to obtain the results shown in Table 2.
Figure 1 is an undirected graph showing the 0–1 contact maps for the 1KDI and

1PLA proteins and also the alignments (dotted lines) obtained by locating the max-

1 http://www.cs.nott.ac.uk/ nxk/USM/protocol.html
2 dmclique, ftp://dimacs.rutgers.edu in directory /pub/dsj/clique



imum clique within the 1KDI–1PLA correspondence graph. Theconsistency of the
alignments can be verified by the observation that there are no intersections between
any alignment lines.

Problem G G Success Max. PLS
Instance Vertices Edges Rate Clique CPU(s) SCPU(s)

1BPI-1KNT 2 279 385 009 100 31 0.0469 1.52
1BPI-2KNT 2 436 446 657 100 29 0.0574 14.56
1BPI-5PTI 3 016 698 195 100 42 0.0299 2.4

1KNT-1BPI 2 494 462 092 100 30 0.0959 8.8
1KNT-2KNT 1 806 240 521 100 39 0.0098 0
1KNT-5PTI 2 236 378 609 100 28 0.0353 3.68
1VII-1CPH 171 1 581 100 6 0.0001 0
2KNT-5PTI 2 184 364 315 100 28 0.0267 7.6

3EBX-1ERA 2 548 477 720 100 31 0.1257 18.88
3EBX-6EBX 1 768 225 761 100 28 0.0163 0.48
6EBX-1ERA 1 666 199 074 100 20 0.0169 8.08

Table 1. PLS performance results, averaged over 100 independent trials, for the benchmark in-
stances from [4]. The maximum known clique size, for each instance, isshown in the ‘Max.
Clique’ column; CPU(s) is the PLS run-time in CPU seconds, averaged over all successful trials,
for each instance. ‘SCPU(s)’ is the CPU time reported in [4], scaled by 0.08 to allow some basis
for comparison with the reference computer used in this study.

1KDI

1PLA

Fig. 1. Undirected graph representation of the 0–1 contact maps and putative maximal alignments
for the 1KDI and 1PLA proteins. The vertices (dots) represent the residues of each protein, the
solid edges (arcs) the contacts within each protein and the dashed edges show alignments identi-
fied by finding the maximum clique in the correspondence graph.

4. Conclusions and Future Work

The overall performance of PLS on the CMO instances reportedhere suggests that the
underlying dynamic local search method has substantial potential to provide the basis
for high-performance algorithms for other optimisation problems.



Problem G G Success Clique Sels. /
Instance Vertices Edges Rate Max. Avg. Min. CPU(s) Sels. Sec.
1A8O–1F22 2 728 1 063 344 100 25 25 25 30.52 1 412 602 46 278

1AVY–1BCT 6 278 6 842 400 99 50 49.99 49 630.30 14 726 972 23 365
1B6W–1BW5 4 131 3 095 143 100 34 34 34 84.09 2 977 231 35 407
1BAW–2B3I 7 200 5 519 222 100 53 53 53 28.36 488 140 17 215

1BCT–1BW5 4 386 3 277 240 77 36 35.77 35 1 117.91 36 305 118 32 476
1BCT–1F22 3 784 2 101 393 100 25 25 25 20.38 695 072 34 111
1BCT–1ILP 4 988 3 866 071 100 30 30 30 0.36 10 465 28 941
1BPI–2KNT 1 848 362 922 100 32 32 32 0.28 18 291 64 976

1C7V–1C7W 2 401 886 821 100 34 34 34 17.70 971 361 54 871
1C9O–1KDF 2 805 729 697 100 21 21 21 0.45 18 950 41 775
1DF5–1F22 3 960 2 462 200 100 27 27 27 46.27 1 513 993 32 718

1KDI–1BAW 7 920 6 774 365 100 53 53 53 610.03 9 700 460 15 901
1KDI–1PLA 6 424 4 392 217 100 53 53 53 369.05 7 053 785 19 113
1KDI–2B3I 7 040 5 246 576 100 47 47 47 679.82 11 884 684 17 482

1KDI–2PCY 7 216 5 583 059 98 57 56.98 56 1543.28 26 656 690 17 272
1NMF–2NEW 2 728 800 896 100 21 21 21 55.00 2 272 339 41 313
1NMG–1WDC 4 698 2 754 536 100 17 17 17 0.98 26 320 26 928

1PFN–1SVF 5 992 5 197 600 100 30 30 30 83.02 1 922 495 23 156
1PLA–1BAW 6 570 4 512 505 100 55 55 55 368.79 6 860 641 18 603

1PLA–2B3I 5 840 3 510 020 100 47 47 47 80.16 1 646 885 20 544
1PLA–2PCY 5 986 3 725 919 100 57 57 57 218.30 4 381 399 20 070
1VII–1CPH 903 99 638 100 15 15 15 0.024 3 121 128 429

1VNB–1BHB 6 120 4 011 048 100 28 28 28 138.98 2 786 011 20 046
2KNT–1KNT 1 980 402 659 100 41 41 41 0.06 3 800 64 083
2NEW–3MEF 2 552 631 920 100 16 16 16 0.14 6 248 43 357
2PCY–1BAW 7 380 5 769 409 100 66 66 66 535.34 8 920 572 16 663

2PCY–2B3I 6 560 4 475 832 100 52 52 52 136.20 2 524 044 18 532
3EBX–1ERA 2 205 356 245 100 19 19 19 0.04 2 279 51 444
3EBX–6EBX 2 331 461 771 100 25 25 25 0.51 24 855 48 735

5PTI–1BPI 1 596 285 692 100 35 35 35 0.17 12 602 75 733
5PTI–1KNT 1 710 303 273 100 31 31 31 0.063 4 505 71 508
5PTI–2KNT 1 672 290 649 100 32 32 32 0.63 44 616 70 339

6EBX–1ERA 1 295 168 119 100 22 22 22 0.02 1 986 92 373

Table 2. PLS performance results, averaged over 100 independent trials, for the PDB protein
pairs in Benchmark-2. ‘G’ is the correspondence graph for each protein pair, the sizes found for
each maximum clique are shown as maximum, average and minimum foundover the 100 trials
while ‘Sels.’ is the average number of vertices that were added to the clique over the 100 trials.
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