Skip to main content

How to do Things with Cryptographic Protocols

  • Conference paper
  • 778 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4846))

Abstract

When a distributed system may need to operate in the presence of an adversary, when it must support the activities of parties that do not trust one another fully, then cryptographic protocols will play a fundamental role in its design. One example of their importance is their ability to allow principals to agree on keys that will be shared for a session with an authenticated peer. But more fundamentally, a cryptographic protocol is a mechanism to achieve agreement among specific sets of peers, whether on keys or other values. Thus, they can play a fundamental role in organizing transactions in distributed systems, and coordinating interactions among principals.

Supported by the MITRE-Sponsored Research Program.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Doghmi, S.F., Guttman, J.D., Thayer, F.J.: Completeness of the authentication tests. In: Biskup, J., Lopez, J. (eds.) ESORICS. European Symposium on Research in Computer Security. LNCS, vol. 4734, pp. 106–121. Springer, Heidelberg (2007)

    Google Scholar 

  2. Doghmi, S.F., Guttman, J.D., Thayer, F.J.: Searching for shapes in cryptographic protocols. In: Tools and Algorithms for Construction and Analysis of Systems (TACAS). LNCS, vol. 4424, pp. 523–538. Springer, Heidelberg (2007), http://eprint.iacr.org/2006/435

    Chapter  Google Scholar 

  3. Gordon, A.D., Jeffrey, A.: Types and effects for asymmetric cryptographic protocols. Journal of Computer Security 12(3/4), 435–484 (2003)

    Google Scholar 

  4. Guttman, J.D.: Authentication tests and disjoint encryption: a design method for security protocols. Journal of Computer Security 12(3/4), 409–433 (2004)

    Google Scholar 

  5. Guttman, J.D., Thayer, F.J.: Authentication tests and the structure of bundles. Theoretical Computer Science. Conference version appeared in IEEE Symposium on Security and Privacy, June 2002, 283(2), pp. 333–380 (May 2002)

    Google Scholar 

  6. Guttman, J.D., Thayer, F.J., Carlson, J.A., Herzog, J.C., Ramsdell, J.D., Sniffen, B.T.: Trust management in strand spaces: A rely-guarantee method. In: Schmidt, D. (ed.) ESOP 2004. LNCS, vol. 2986, pp. 325–339. Springer, Heidelberg (2004)

    Google Scholar 

  7. Heather, J., Schneider, S.: Toward automatic verification of authentication protocols on an unbounded network. In: Proceedings, 13th Computer Security Foundations Workshop, IEEE Computer Society Press, Los Alamitos (2000)

    Google Scholar 

  8. Lampson, B., Abadi, M., Burrows, M., Wobber, E.: Authentication in distributed systems: Theory and practice. ACM Transactions on Computer Systems 10(4), 265–310 (1992)

    Article  Google Scholar 

  9. Li, N., Mitchell, J.C., Winsborough, W.H.: Design of a role-based trust management framework. In: Proceedings, 2002 IEEE Symposium on Security and Privacy, pp. 114–130. IEEE Computer Society Press, Los Alamitos (2002)

    Google Scholar 

  10. Lowe, G.: Breaking and fixing the Needham-Schroeder public-key protocol using FDR. In: Margaria, T., Steffen, B. (eds.) TACAS 1996. LNCS, vol. 1055, pp. 147–166. Springer, Heidelberg (1996)

    Google Scholar 

  11. Needham, R., Schroeder, M.: Using encryption for authentication in large networks of computers. Communications of the ACM 21(12) (1978)

    Google Scholar 

  12. Paulson, L.C.: The inductive approach to verifying cryptographic protocols. In: Journal of Computer Security (1998) (Also Report 443, Cambridge University Computer Lab)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Iliano Cervesato

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Guttman, J.D. (2007). How to do Things with Cryptographic Protocols. In: Cervesato, I. (eds) Advances in Computer Science – ASIAN 2007. Computer and Network Security. ASIAN 2007. Lecture Notes in Computer Science, vol 4846. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76929-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76929-3_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76927-9

  • Online ISBN: 978-3-540-76929-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics