Skip to main content

An Evolutionary Algorithm with Spatially Distributed Surrogates for Multiobjective Optimization

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4828))

Abstract

In this paper, an evolutionary algorithm with spatially distributed surrogates (EASDS) for multiobjective optimization is presented. The algorithm performs actual analysis for the initial population and periodically every few generations. An external archive of the unique solutions evaluated using the actual analysis is maintained to train the surrogate models. The data points in the archive are split into multiple partitions using k-Means clustering. A Radial Basis Function (RBF) network surrogate model is built for each partition using a fraction of the points in that partition. The rest of the points in the partition are used as a validation data to decide the prediction accuracy of the surrogate model. Prediction of a new candidate solution is done by the surrogate model with the least prediction error in the neighborhood of that point. Five multiobjective test problems are presented in this study and a comparison with Nondominated Sorting Genetic Algorithm II (NSGA-II) is included to highlight the benefits offered by our approach. EASDS algorithm consistently reported better nondominated solutions for all the test cases for the same number of actual evaluations as compared to a single global surrogate model and NSGA-II.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jin, Y.: A comprehensive survey of fitness approximation in evolutionary computation. Soft Computing - A Fusion of Foundations, Methodologies and Applications 9, 3–12 (2005)

    Google Scholar 

  2. Wilson, B., Cappelleri, D., Simpson, T.W., Frecker, M.: Efficient pareto frontier exploration using surrogate approximations. Optimization and Engineering 2, 31–50 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  3. Goel, T., Haftka, R.T., Shyy, W., Queipo, N.V.: Ensemble of surrogates. Structural and Multidisciplinary Optimization 33, 199–216 (2007)

    Article  Google Scholar 

  4. Schaffer, J.D.: Multiple Objective Optimization with Vector Evaluated Genetic Algorithms. In: Proceedings of the 1st International Conference on Genetic Algorithms, pp. 93–100. Lawrence Erlbaum Associates, Mahwah, NJ (1985)

    Google Scholar 

  5. Zhou, Z.Z, Ong, Y.S, Nair, P.B, Keane, A.J, Lum, K.Y: Combining global and local surrogate models to accelerate evolutionary optimization. IEEE Transactions on Systems Man and Cybernetics Part C-Applications and Reviews 37, 66–76 (2007)

    Article  Google Scholar 

  6. Gaspar-Cunha, A., Vieira, A.S.: A hybrid multi-objective evolutionary algorithm using an inverse neural network. In: Hybrid Metaheuristics (HM 2004) Workshop at ECAI 2004, Valencia, Spain (2004)

    Google Scholar 

  7. Breiman, L.: Bagging predictors. Machine Learning 24, 123–140 (1996)

    MATH  MathSciNet  Google Scholar 

  8. Abney, S., Schapire, R.E., Singer, Y.: Boosting applied to tagging and PP attachment. In: Joint SIGDAT Conference on Empirical Methods in Natural Language Processing and Very Large Corpora (1999)

    Google Scholar 

  9. Zhao, Y., Gao, J., Yang, X.: A survey of neural network ensembles. In: International Conference on Neural Networks and Brain (ICNN&B 2005), vol. 1, pp. 438–442 (2005)

    Google Scholar 

  10. Jin, Y., Sendhoff, B.: Reducing fitness evaluations using clustering techniques and neural networks ensembles. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 688–699. Springer, Heidelberg (2004)

    Google Scholar 

  11. Hamza, K., Saitou, K.: Vehicle crashworthiness design via a surrogate model ensemble and a coevolutionary genetic algorithm. In: Proceedings of IDETC/CIE 2005 ASME 2005 International Design Engineering Technical Conference, California, USA (September 2005)

    Google Scholar 

  12. Zerpa, L.E., Queipo, N.V., Pintos, S., Salager, J.L.: An optimization methodology of alkaline-surfactant-polymer flooding processes using field scale numerical simulation and multiple surrogates. Journal of Petroleum Science and Engineering 47, 197–208 (2005)

    Article  Google Scholar 

  13. Zhou, Z., Ong, Y.S., Lim, M.H., Lee, B.S.: Memetic algorithm using multi-surrogates for computationally expensive optimization problems. Soft Computing - A Fusion of Foundations, Methodologies and Applications 11, 957–971 (2007)

    Google Scholar 

  14. Nain, P., Deb, K.: A computationally effective multi-objective search and optimization techniques using coarse-to-fine grain modeling. In: 2002 PPSN Workshop on Evolutionary Multiobjective Optimization (2002)

    Google Scholar 

  15. Ray, T., Smith, W.: Surrogate assisted evolutionary algorithm for multiobjective optimization. In: Proceedings of 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, pp. 1–8 (2006)

    Google Scholar 

  16. Nain, P.K.S., Deb, K.: A multi-objective optimization procedure with successive approximate models. Technical Report 2005002, KanGAL, IIT Kanpur (2005)

    Google Scholar 

  17. Knowles, J.: ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems. IEEE Transactions on Evolutionary Computation 10, 50–66 (2006)

    Article  Google Scholar 

  18. Emmerich, M.T.M., Giannakoglou, K.C., Naujoks, B.: Single and multiobjective evolutionary optimization assisted by gaussian random field metamodels. IEEE Transactions on Evolutionary Computation 10, 421–439 (2006)

    Article  Google Scholar 

  19. Chafekar, D., Shi, L., Rasheed, K., Xuan, J.: Multiobjective ga optimization using reduced models. Systems, Man and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on 35, 261–265 (2005)

    Article  Google Scholar 

  20. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6, 182–197 (2002)

    Article  Google Scholar 

  21. Deb, K., Agrawal, S.: Simulated binary crossover for continuous search space. Complex Systems 9, 115–148 (1995)

    MATH  MathSciNet  Google Scholar 

  22. Deb, K., Goyal, M.: A combined genetic adaptive search (GeneAS) for engineering design. Computer Science and Informatics 26, 30–45 (1996)

    Google Scholar 

  23. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: A review. ACM Computing Surveys 31, 265–323 (1999)

    Article  Google Scholar 

  24. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II. In: Proceedings of the Parallel Problem Solving from Nature VI, pp. 849–858 (2000)

    Google Scholar 

  25. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. John Wiley and Sons, Chichester (2001)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Marcus Randall Hussein A. Abbass Janet Wiles

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Isaacs, A., Ray, T., Smith, W. (2007). An Evolutionary Algorithm with Spatially Distributed Surrogates for Multiobjective Optimization. In: Randall, M., Abbass, H.A., Wiles, J. (eds) Progress in Artificial Life. ACAL 2007. Lecture Notes in Computer Science(), vol 4828. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76931-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76931-6_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76930-9

  • Online ISBN: 978-3-540-76931-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics