
Creating and Managing Ontology Data on the
Web: a Semantic Wiki Approach

Chao Wang, Jie Lu, Guangquan Zhang1 and Xianyi Zeng2

1 Faculty of Information Technology, University of Technology, Sydney
PO Box 123, Broadway, NSW 2007, Australia
{cwang, jielu, zhangg}@it.uts.edu.au

2 Ecole Nationale Supérieure des Arts et Industries Textiles
9 rue de l’Ermitage 59100 Roubaix, France

xianyi.zeng@ensait.fr

Abstract. The creation of ontology data on web sites and proper man-
agement of them would help the growth of the semantic web. This paper
proposes a semantic wiki approach to tackle this issue. Desirable func-
tions that a semantic wiki approach should implement to offer a better
solution to this issue are discussed. Along with that, some key problems
such as usability, data reliability and data quality are identified and ana-
lyzed. Based on that, a system framework is presented to show how such
functions are designed. These functions are further explained along with
the description of our implemented prototype system. By addressing the
identified key problems, our semantic wiki approach is expected to be
able to create and manage web ontology data more effectively.

1 Introduction

Ontology has been realized to be an essential layer of the emerging semantic web
[1, 2]. So the abundance of ontology related information is critical to the maturity
of the semantic web. However, through the semantic web search engine Swoogle
[3], while we’ve found that there are plenty of ontology schemas (which refer to
classes, properties and their relations, as what “TBox” contains in description
logics [4]) available over the web, ontology data (which refer to instances of
classes or individuals as what “ABox” contains) do not seem to be very abundant
in contrast.

One barrier for the problem is that it is not an easy job for ordinary users to
create ontology data due to the complexity of the ontology languages, compared
to the creation of normal web pages. Tools have been developed to assist the
generation of ontologies with ease (e.g., Protege [5], OntoEdit [6], SWOOP [7]),
but mostly they are not web-based tools and often used by ontology experts. In
addition, while the ontology schemas, which usually reflect the domain knowl-
edge, are relatively stable once developed, the ontology data are often prone to
changes in a dynamic environment. Therefore, it may not be convenient to use
offline tools to maintain such ontology data.



Recently, wikis 3 have been studied as an alternative way to create and
maintain ontology data on the web. Several semantic wiki systems have been
proposed. In contract to these studies, which mostly focus on some specific as-
pects or topics, this paper will first discusses the functions that a semantic wiki
approach should implement to offer a better solution to web ontology data cre-
ation and management. Along with that, some key problems such as usability,
data reliability and data quality will be identified and discussed. A system frame-
work will be proposed to show how such functions are designed. These functions
are further explained along with the description of our prototype system.

The rest of the paper is organized as follows. Section 2 discusses related work.
Section 3 discusses the desirable functions for managing ontology data and the
framework design. Section 4 and Section 5 present in detail the fundamental
functions of browsing, editing, search and query along with the description of
our prototype system. Section 6 outlines the design and/or implementation of
other functions. Section 7 concludes the paper and discusses the future work.

2 Related Work

This section first discusses the general ideas of wiki systems. Then related work
on typical semantic wiki systems or frameworks is analyzed.

The main idea of most wiki systems is to let web users create and maintain
web contents in a collaborative way. These systems provide convenient functions
so that an ordinary user with little knowledge of web page making can contribute
contents to the web. Wikipedia4, the most well-known online collaborative ency-
clopedia on the Web, is a successful application of wiki systems. However, most
contents maintained in wiki systems are semi-structured web pages only for web
users to search and read. Facts and knowledge expressed in those web pages lack
proper syntax and semantics for computers to process.

Semantic wiki systems then emerge to introduce semantic web standards
(e.g., RDF/RDFS , OWL) and techniques to the common wiki systems, trying to
make the collaborated contents have more semantics for computers to understand
and process. We will discuss these systems as follows.

Platypus Wiki [8] is an extended wiki system that allows users to input RDF
and OWL statements in addition to plain text. However, how the system helps
user to create such semantic statements has not been discussed in detail in [8].

Powl [9] is a web based platform that provides a collaborative environment
for semantic web development. OntoWiki [10], which is built upon Powl, employs
web 2.0 techniques to bring more features in authoring, editing, and searching
semantic contents. Unlike Powl and OntoWiki which concentrate more on ontol-
ogy editing, Semantic Wikipedia [11], as an extension to the popular MediaWiki
software, brings semantics to texts and links in its wiki system. These systems
usually have better user interfaces than those discussed before.

3 http://en.wikipedia.org/wiki/Wiki
4 http://www.wikipedia.org



There exist more other semantic wiki systems (e.g., WikSAR [12], COW [13],
WikiFactory [14] and etc), which provide more features such as integration with
the desktop [12], typical query mechanisms [13], domain-oriented design [14],
and etc.

3 Design Considerations

3.1 Desirable Functions for Managing Web Ontology Data

The previous section shows that the existing work on semantic wikis is mostly
focused on some specific topics. In contrast, we first discuss some desirable func-
tions that are commonly required for managing web ontology data. By doing so,
we try to provide some hints towards the design and development of better and
more extendable semantic wiki systems.

Browsing, creating and editing. These functions involve the provision of fa-
cilities and interfaces for browsing the ontology schema and data, creating and
updating the data as required. These functions are actually the most fundamen-
tal functions for any types of semantic wikis. However, how such functions are
implemented matters. Since the formats of ontology data (e.g., OWL) are not
intuitive to ordinary users, it is desirable to design these functions with more
intuitive and interactive features.

Search and Query. Obviously, these functions help to retrieve created ontol-
ogy data from the web site in response to the information need of the users. Gen-
erally, the search function may refer to some form of query upon free/unstructured
texts such as the search provided by web search engines. In contrast, the query
function is usually associated with the structured data (i.e., SQL for the rela-
tional databases). Since web ontology data is kind of semi-structured data, it is
desirable to have both of these functions in semantic wikis.

Authentication and access control. These functions deal with the identifica-
tion of the user and the control of their operations on the web ontology data.
Existing semantic wiki systems seem to lack a sophisticated mechanism to im-
plement this type of functions. The lack of this mechanism affects the trust on
the contents from people, which hinders their use in some serious situations.

Data quality control. Functions of this type ensure the overall web ontology
data contributed by users are of accepted quality. One issue of quality is that the
data are not reliable. The deployment of proper functions on “authentication and
access control” could help handle this issue as malicious editing or spam could
be screened off by it. Another common issue is that the duplicated data may
be generated in a distributed Web environment, which also decreases the overall
data quality. In addition, incompleteness and inaccuracy are threats to data
quality as well.

3.2 The System Framework

This subsection overviews the framework based on which the prototype system
“robinet” is developed. It shows the general structure of the system and the
relations among the functions. The system is implemented in Java.



Fig. 1 illustrates the general structure of the robinet system and the inter-
action between it and its managed web ontology data and users. At its lowest
layer, the data layer, access rules and indexed data are stored in addition to the
managed ontology data. Above the data layer is the API layer, which is made up
of low level packages and the APIs they offer. Based on these APIs, a supporting
layer provides customized tools which are used to build various operations, data
models and functions for presentation. The propose of this layered design is to
make the implemented system easy to be maintained and extended.

Fig. 1. The framework for the prototype system “robinet”

The framework is designed with principles such as modularity, friendly URLs,
and ease of use. Along with these design principles, we have implemented essen-
tial functions to help web ontology data creation and management. Such func-
tions allow users to browse ontology schemas, create and edit instances and etc.
The following sections will discuss them in detail.

4 Browsing, Creating and Editing

4.1 Ontology Schema Browsing

Browsing ontology schemas helps ordinary users get familiar with the domain
that the ontology schemas are intended to describe. It is clear that a user with-
out an adequate understanding of the domain ontology schema may not be able
to proceed and create the correct information for the domain. Some ontology
specific editing tools (e.g., Protege [5], and etc) can provide graphical user in-
terfaces that allow users to view the domain ontology schemas intuitively. But
this requires users to install additional software. In addition, since such editing



tools are mostly designed for domain experts or certain professionals to develop
ontologies in a desktop environment, they are not web-based solutions preferred
by ordinary users. Therefore, it is desirable to have a web-based browsing mech-
anism so that users can just use any types of browsers to learn the domain
ontology schemas before they are ready to contribute information.

Initially, the “robinet” system requires a setup process such as loading the
ontology schemas for browsing. Once the initial setup is done, users can view
the ontology schemas using common browsers. Fig. 2 (a) shows the web interface
which renders the classes (concepts) in an ontology schema about the academic
domain in a tree structure according to their is-a relationship. Users can get
familiar with these classes and their relations by exploring this tree. In addition,
if they are interested in a particular class, they can click it in the tree to see
detailed comments (if supplied by the schema makers) on this class in the right-
hand side panel. If further information is needed to know about this class, users
can follow the link in the right-hand side panel to view such information.

Fig. 2. The interfaces for browsing domain ontology schema and editing ontology data

In the system, the URLs used to identify their corresponding resources (classes
or properties) is quite friendly to both end users and other semantic web appli-
cations which may run at other computers in the network. For example, while the
URLs http://decide/robinet/onto/univ/ and http://decide/robinet/onto/univ/Article
lead to human-readable web pages about the ontology schema univ and the
its class Article respectively, the URLs http://decide/robinet/onto/univ and
http://decide/robinet/onto/univ#Article identify the original OWL formatted
versions which are more machine-understandable. Therefore, other semantic web
applications can use such URLs to import the interested ontology schemas into
their application space remotely. This mechanism could help the development of
semantic web applications and intelligent software agents over the web.



4.2 Ontology Data Creation and Editing

Once users have become familiar with the ontology schemas by browsing them,
they can create new ontology data through the functions of the system. Cur-
rently, two main types of functions are implemented. We will discuss them re-
spectively.

The first type of functions enables user to create completely new ontology
data. For example, a staff, if he/she wants to publish some data about his/her
recent publications, can choose the class that is appropriate for the data. He/She
may choose the class Article in the ontology schema univ and use it as the
type for the new instance created to annotate a paper. Fig. 2 (b) demonstrates
the interface used for this operation. An unique ID is required from the user to
form the URL used to identify this publication.

Fig. 3 (a) shows the created instance in a human-readable view, which can
be accessed through the URL generated based on the user-supplied ID. Actually,
this view is generated by the system from the OWL formatted ontology data
which can also be accessed through a browser, as shown in Fig. 3 (b). Obviously,
the actual ontology data is not comfortable for ordinary users to read. However,
computers on the other hand is good at processing such data. Since they are
aligned with the given ontology schema, well designed semantic web applica-
tions that are aware of this domain ontology can use them to perform further
complicated tasks.

Fig. 3. The created instance of the class Article. (a) The instance shown in a human
readable view; (b) The actual ontology data created by the user. (c) The instance after
related instances are created and automatically linked with it.

After instances are created, they can be further edited by clicking the “Edit”
button as shown in Fig. 3 (a).



The second type of functions allows users to create new ontology data which
are related to the existing data.

First we discuss why we need this type of functions. This type of functions
rely on the existence of a type of properties called “object properties” which
link one instance to another with a particular semantic relation [15]. They offer
the functionality similar to hyperlinks which are used over the current web to
link different web pages together. The importance of hyperlinks has ready been
obvious. Without them, The web could not form and grow into such a huge con-
nected information repository as currently is; nor could modern search engines
build a large information base and rank the related information with certain
measurements such as authority or popularity [16][17]. Similarly, it is also very
important to use object properties to link instances together. The resulting re-
lational feature in ontology data could be even more essential than using normal
hyperlinks in web pages as it delivers more specific semantic meanings than
normal hyperlink mechanism. Therefore, it is very desirable to enable users to
create ontology data which are linked to other ontology data via certain object
properties.

Then we show how easy it is to create related new ontology data based on
existing ontology data in our system. As explained before, when a completely
new instance is created, initially all the property values are supplied as strings by
users, regardless of the types of properties. However, after the instance is created,
the system will detect according to the ontology schema whether a property value
should be a certain data type or an instance. For those who should be instances
via given object properties, it provide the function to create them. As shown in
Fig. 3 (a), those property values that should be instances have question marks
associated. By clicking the question mark, users will be presented an instance
creation interface which is similar to the one shown in Fig. 2 (b). After creating
these new instances, they are related to the existing instance with the specified
object properties. Fig. 3 (c) shows the web pages of the existing instance after
its related instances are created. The question marks has disappeared. Instead,
those object property values are linked to the web pages of it’s related instances.

5 Search and Query

As mentioned earlier, we distinguish search and query as two types of retrieval
functions with their different focuses. The following discusses them respectively.

5.1 Free Text Search

Free text search doesn’t require users to know much about query languages. One
or more keywords are enough as input to invoke a search, just like the experience
of using a web search engine. This seemingly basic function has become perva-
sive. For a conventional web site especially a web portal, having this type of
search function offers users a simple and straightforward way to find and locate



information. The same is applied to a semantic web site (or portal) that hosts
ontology data.

Currently, we implement the free text search function using Lucene 5, a
convenient java package for indexing and searching. In our implementation, every
instance is treated as a virtual document. Its properties (including annotation
information such as labels and comments) are concatenated together to form the
contents of the document. This virtual document is then tokenized and indexed,
therefore, able to be searched.

5.2 Structured Query

Structured queries are very useful to retrieve specific information out of the
data source. This usually requires the knowledge of the data structure or the
schema. Users are also required to know certain query languages that are used
to issue queries. SPARQL [18] is one of the languages designed for the query
of semi-structured RDF data like ontology data. We use ARQ 6, a SPARQL
engine to process queries upon the created ontology data. Users are assumed to
know about the query language. By browsing the ontology schema through the
system, they could get familiar enough with it to compose their queries to get
desired data.

Since most users are reluctant to learn specific query languages, it would be
better to use structured query in some indirect ways other than this straight way.
Similar to the idea in [13], queries can be specified by some competent users and
they can be embedded in certain web pages. This mechanism allows the creation
of typical and useful views on the ontology data. Furthermore, external web
related applications or web agents can use the query mechanism to exploit the
repository of the web ontology data effectively.

6 Discussion on Other Functions

Due to limited space, this section briefly outlines the design and/or implemen-
tation of the rest of the two functions as follows.

Authentication and Access Control. Some serious situations require au-
thentication and access control for web ontology data management. We exploit
the semantics of the ontology and use a set of access rules to provide a flexi-
ble mechanism for the implementation of this type of functions. To do so, we
treat the system as a model with tuple Λ(C,O, P,R) where C denotes Semantic
Contents, O denotes Operations, P denotes Participants and R denotes Access
Rules. In the system, C, O and P are all modeled using ontology. R is then com-
posed using the elements from these three sets. When an access to the system
happens, the access pattern is identified and reasoned against the rules together
with the ontology to determine whether the access is accepted or rejected. Fig. 1

5 http://lucene.apache.org/
6 http://jena.sourceforge.net/ARQ/



also shows the general components that are designed to work together for this
type of functions.

Data Quality Control. One major issue related to data quality is data
duplication and overlapping, which often happens when many users contribute
their data simultaneously. To tackle this issue, first the duplicated data should
be detected. We have developed particular methods [19][20] to accomplish this
task. our methods explore the features of ontology data, therefore, achieve better
results compared to other conventional methods according to our experiments.
We are currently in the process of integrating these methods into the system.
So the system will be able to detect potential duplicated instances created by
different users. They will be labeled (for example using the annotation property
rdfs:seeAlso) for further review from users. Once the positive feedbacks are
made by users, they can be further labeled with the tag owl:sameAs. When
multiple duplicates are found for one instance, it is then possible to determine
which instance is the most complete and reliable. Therefore, it also helps to solve
the problem of data incompleteness.

7 Conclusions and Future Work

This paper proposed a semantic wiki approach for managing ontology data on
the Web. It discussed the desirable functions a semantic wiki should have to
manage the data. A framework were presented to illustrate the design of such a
semantic wiki system. These functions were then further explained and demon-
strated in regard to the implementation of this framework. In particular, funda-
mental functions of our implemented prototype system were discussed in detail
to demonstrate the usability of the semantic wiki approach to web ontology data
creation and management.

As an ongoing project, the future work includes the further improvement of
the system interaction by using more advanced web techniques and the tighter
and better integration with other function modules, for example, the function
for data quality control. How to utilize the managed ontology data to provide
certain services through web applications or agents will also be studied.

References

1. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American
284(5) (2001) 34–43

2. Hendler, J.: Agents and the semantic web. Intelligent Systems, IEEE 16 (2001)
30–37

3. Ding, L., Finin, T., Joshi, A., Pan, R., Cost, R.S., Peng, Y., Reddivari, P., Doshi,
V., Sachs, J.: Swoogle: a search and metadata engine for the semantic web. In:
Proceedings of the thirteenth ACM international conference on Information and
knowledge management, ACM Press (2004) 652–659

4. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P., eds.:
The description logic handbook : theory, implementation, and applications. Cam-
bridge University Press, New York (2002)



5. Gennari, J.H., Musen, M.A., Fergerson, R.W., Grosso, W.E., Crubezy, M., Eriks-
son, H., Noy, N.F., Tu, S.W.: The evolution of protege: an environment for
knowledge-based systems development. Int. J. Hum.-Comput. Stud. 58(1) (2003)
89–123

6. Sure, Y., Erdmann, M., Angele, J., Staab, S., Wenke, R.S.D.: Ontoedit: Collab-
orative ontology development for the semantic web. In: Proceedings of the 1st
International Semantic Web Conference, Sardinia, Italy. (2002)

7. Kalyanpur, A., Parsia, B., Sirin, E., Cuenca-Grau, B., Hendler, J.: Swoop: A ’web’
ontology editing browser. Journal of Web Semantics 4(2) (June 2006) 144–153

8. Tazzoli, R., Castagna, P., Campanini, S.E.: Towards a semantic wiki wiki web. In:
Proceedings of the 3rd International Semantic Web Conference. (2004)

9. Auer, S.: Powl - a web based platform for collaborative semantic web development.
In: Proceedings of the First Workshop Scripting for the Semantic Web. (2005)
http://www.semanticscripting.org/SFSW2005/papers/Auer-Powl.pdf.

10. Auer, S., Dietzold, S., Riechert, T.: Ontowiki - a tool for social, semantic collabora-
tion. In: Proceedings of the 5th International Semantic Web Conference, Springer
(2006) 736–749

11. Völkel, M., Krötzsch, M., Vrandecic, D., Haller, H., Studer, R.: Semantic wikipedia.
In: Proceedings of the 15th international conference on World Wide Web, New
York, NY, USA, ACM Press (2006) 585–594

12. David Aumueller, S.A.: Towards a semantic wiki experience c desktop integration
and interactivity in wiksar. In: Proceedings of the 1st Workshop on the Semantic
Desktop in conjuction with the 4th International Semantic Web Conference. (2005)

13. Fischer, J., Gantner, Z., Stritt, M., Rendle, S., Schmidt-Thieme, L.: Ideas and
improvements for semantic wikis. In: Proceedings of the 3rd European Semantic
Web Conference. (2006) 650–663

14. Iorio, A.D., Presutti, V., Vitali, F.: Wikifactory: a web ontology-based application
for creating domain-oriented wikis. In: Proceedings of the 3rd European Semantic
Web Conference. (2006)

15. McGuinness, D.L., Harmelen, F.v.: Owl web ontology language overview. w3c
recommendation. http://www.w3.org/tr/2004/rec-owl-features-20040210 (2004)

16. Kleinberg, J.: Authoritative sources in a hyperlinked environment. In: Proceedings
of 9th ACM-SIAM Symposium on Discrete Algorithms. (1998)

17. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. In:
Proceedings of the seventh international conference on World Wide Web. (1998)
107–117

18. Prudhommeaux, E., Seaborne, A.: Sparql query language for rdf
(http://www.w3.org/tr/rdf-sparql-query/) (2007)

19. Wang, C., Lu, J., Zhang, G.: Integration of ontology data through learning instance
matching. In: Proceedings of the 2006 IEEE/WIC/ACM International Conference
on Web Intelligence. (2006) 536–539

20. Wang, C., Lu, J., Zhang, G.: A constrained clustering approach to duplicate de-
tection among relational data. In: Proceedings of the 11th Pacific-Asia Conference
on Knowledge Discovery and Data Mining. (2007) 308–319


