Mircea Gh. Negoita and Sorin Hintea

Bio-Inspired Technologies for the Hardware of Adaptive Systems

Studies in Computational Intelligence, Volume 179

Editor-in-Chief Prof. Janusz Kacprzyk Systems Research Institute Polish Academy of Sciences ul. Newelska 6 01-447 Warsaw Poland *E-mail:* kacprzyk@ibspan.waw.pl

Further volumes of this series can be found on our homepage: springer.com

Vol. 158. Marina Gavrilova (Ed.) Generalized Voronoi Diagram: A Geometry-Based Approach to Computational Intelligence, 2009 ISBN 978-3-540-85125-7

Vol. 159. Dimitri Plemenos and Georgios Miaoulis (Eds.) Artificial Intelligence Techniques for Computer Graphics, 2009 ISBN 978-3-540-85127-1

Vol. 160. P. Rajasekaran and Vasantha Kalyani David Pattern Recognition using Neural and Functional Networks, 2009 ISBN 978-3-540-85129-5

Vol. 161. Francisco Baptista Pereira and Jorge Tavares (Eds.) Bio-inspired Algorithms for the Vehicle Routing Problem, 2009 ISBN 978-3-540-85151-6

Vol. 162. Costin Badica, Giuseppe Mangioni, Vincenza Carchiolo and Dumitru Dan Burdescu (Eds.) Intelligent Distributed Computing, Systems and Applications, 2008 ISBN 978-3-540-85256-8

Vol. 163. Pawel Delimata, Mikhail Ju. Moshkov, Andrzej Skowron and Zbigniew Suraj Inhibitory Rules in Data Analysis, 2009 ISBN 978-3-540-85637-5

Vol. 164. Nadia Nedjah, Luiza de Macedo Mourelle, Janusz Kacprzyk, Felipe M.G. França and Alberto Ferreira de Souza (Eds.) Intelligent Text Categorization and Clustering, 2009 ISBN 978-3-540-85643-6

Vol. 165. Djamel A. Zighed, Shusaku Tsumoto, Zbigniew W. Ras and Hakim Hacid (Eds.) *Mining Complex Data*, 2009 ISBN 978-3-540-88066-0

Vol. 166. Constantinos Koutsojannis and Spiros Sirmakessis (Eds.) Tools and Applications with Artificial Intelligence, 2009 ISBN 978-3-540-88068-4

Vol. 167. Ngoc Thanh Nguyen and Lakhmi C. Jain (Eds.) Intelligent Agents in the Evolution of Web and Applications, 2009 ISBN 978-3-540-88070-7 Vol. 168. Andreas Tolk and Lakhmi C. Jain (Eds.) Complex Systems in Knowledge-based Environments: Theory, Models and Applications, 2009 ISBN 978-3-540-88074-5

Vol. 169. Nadia Nedjah, Luiza de Macedo Mourelle and Janusz Kacprzyk (Eds.) Innovative Applications in Data Mining, 2009 ISBN 978-3-540-88044-8

Vol. 170. Lakhmi C. Jain and Ngoc Thanh Nguyen (Eds.) Knowledge Processing and Decision Making in Agent-Based Systems, 2009 ISBN 978-3-540-88048-6

Vol. 171. Chi-Keong Goh, Yew-Soon Ong and Kay Chen Tan (Eds.) *Multi-Objective Memetic Algorithms*, 2009 ISBN 978-3-540-88050-9

Vol. 172. I-Hsien Ting and Hui-Ju Wu (Eds.) Web Mining Applications in E-Commerce and E-Services, 2009 ISBN 978-3-540-88080-6

Vol. 173. Tobias Grosche Computational Intelligence in Integrated Airline Scheduling, 2009 ISBN 978-3-540-89886-3

Vol. 174. Ajith Abraham, Rafael Falcón and Rafael Bello (Eds.) Rough Set Theory: A True Landmark in Data Analysis, 2009 ISBN 978-3-540-89886-3

Vol. 175. Godfrey C. Onwubolu and Donald Davendra (Eds.) Differential Evolution: A Handbook for Global Permutation-Based Combinatorial Optimization, 2009 ISBN 978-3-540-92150-9

Vol. 176. Beniamino Murgante, Giuseppe Borruso and Alessandra Lapucci (Eds.) *Geocomputation and Urban Planning*, 2009 ISBN 978-3-540-89929-7

Vol. 177. Dikai Liu, Lingfeng Wang and Kay Chen Tan (Eds.) Design and Control of Intelligent Robotic Systems, 2009 ISBN 978-3-540-89932-7

Vol. 178. Swagatam Das, Ajith Abraham and Amit Konar *Metaheuristic Clustering*, 2009 ISBN 978-3-540-92172-1

Vol. 179. Mircea Gh. Negoita and Sorin Hintea Bio-Inspired Technologies for the Hardware of Adaptive Systems, 2009 ISBN 978-3-540-76994-1 Mircea Gh. Negoita Sorin Hintea

Bio-Inspired Technologies for the Hardware of Adaptive Systems

Real-World Implementations and Applications

Prof. Mircea Gh. Negoita 24 Fiona Grove Karori Wellington 6012 New Zealand E-mail: mnegoita@hotmail.com

Prof. Dr. ing. Sorin Hintea Technical University of Cluj-Napoca Faculty of Electronics Telecommunications and IT Basis of Electronics Department str G. Baritiu nr 26-28 Cluj-Napoca 400027 Romania E-mail: Sorin.Hintea@bel.utcluj.ro

ISBN 978-3-540-76994-1

e-ISBN 978-3-540-76995-8

DOI 10.1007/978-3-540-76995-8

Studies in Computational Intelligence

ISSN 1860949X

Library of Congress Control Number: 2008942067

© 2009 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Typeset & Cover Design: Scientific Publishing Services Pvt. Ltd., Chennai, India.

Printed in acid-free paper

987654321

springer.com

To my country Australia – a world leader and promoter of high technology

To my native country Romania– an EU member of the world elite in high technology

Mircea Negoita

Foreword

Bio-Inspired Computing Technologies led to the spectacular progress of the Computational Intelligence (CI) nowadays and to its implementations in form of the Hybrid Intelligent Systems (HIS). Evolvable Hardware (EHW) has emerged as a novel and highly diversified technology and paradigm supporting the design, analysis and deployment of the high performance intelligent systems. The intellectual landscape of EHW is enormously rich. The discipline of EHW brings together hardware implementation of the main technologies of CI including fuzzy sets, neural networks, and evolutionary optimisation. But EHW systems use more than just the three broad areas mentioned above. They also cover novel areas as Artificial Immune Systems and DNA computing. The strength of EHW hinges on the synergy between these technologies supported by the advanced analogue and digital programmable circuits. This synergy helps exploit the advantages of the contributing technologies while reducing their possible limitations. The advanced programmable circuits confer the suitable hardware environment for a CI implementation from day to day more close to the intelligence of a human being.

EHW is a special case of the adaptive hardware, namely being strongly related to the Adaptive Systems (AS) and the Adaptive Hardware (AH). The progress in EHW is rapid. The individual technologies evolve quite quickly paving a way to new interesting and truly amazing applications. In the heart of all of those is the principle of hybridisation. EHW is suitable for the dramatic changes that happen in the relation between hardware and the application environment . This is in the case of malicious fault/ defects and need for new emergent functions that claim for in-situ synthesis of a totally new hardware configuration. It is not surprising at all witnessing a lot of activities and achievements within this realm included on the agenda of high tech organizations as NASA or ESA.

It is my pleasure indeed to introduce an attempt to provide the basis for EHW /AH through a comprehensive presentation of the fundamentals, key methods and the recent trends. The authors are two well-known researchers – both of them having a large industrial and academic experience: Professor Mircea Gh. Negoita of BLA Ltd, Brisbane, Australia and Professor Sorin Hintea of The Technical University of Cluj-Napoca, Romania. Both of them have a successful track record in this area and are highly qualified for this job. Consequently, the book has immensely benefited from their individual research, professional insights and practical experience.

I am convinced that the book will be a useful tool in pursuing further developments and applications of EHW/AH methods and circuits. The editors are to be congratulated on the careful selection of the material that very well reflects the breadth of the discipline covering a range of highly relevant and practical design principles governing the development of EHW/AH. Given this amazingly wide scope of the area, the reader will be pleased by the depth and clarity of exposure of the material. A newcomer will be pleased by the comprehensive and wellorganized material of the volume. A practitioner will gain a down-to-the earth view at the design principles useful in the design, implementation, and validation of EHW/AH that rely on intelligent systems. This volume supplements very well the previous book by Negoita et al. entitled "Computational Intelligence. Engineering of Hybrid Systems" being already published in 2004 and the co-edited book by Negoita and Reusch entitled "Real World Applications of Computational Intelligence" already published in 2005.

The authors deserve our congratulations on their outstanding work. The authoritative coverage of the area is performed through a clear and well-organised way of presenting the fundamentals of key methods. This feature makes the book highly attractive. It is an excellent reading for everybody who is practically interested in the design and analysis of EHW/AH.

Charles C Nguyen, D.Sc. Dean and Professor Nguyen@cua.edu October 15, 2008 School of Engineering Catholic University of America Washington DC, USA

Preface

Problems in engineering, computational science and the physical and biological sciences are using the increasingly sophisticated methods of Computational Intelligence (CI). This science/engineering field is mainly the result of an increasing merger of the stand alone Intelligent Technologies (IT), namely Fuzzy Systems (FS), Neural Networks (NN), Evolutionary Computation (EC), Artificial Immune Systems (AIS), DNA Computing and Knowledge Based Expert Systems (KBES). Because of the high interdisciplinary requirements featuring most real-world applications, no bridge exists between the different stand alone ITs. These technologies are providing *increasing benefit to business and industry*. The concomitant increase in dialogue and interconnection between the ITs has led to CI and its practical engineering implementation – the Hybrid Intelligent Systems (HIS).

Hardware implementation synergy of the main CI technologies including fuzzy sets, neural networks, and evolutionary optimization led to Evolvable Hardware (EHW). This is a novel and high performance technology and paradigm supporting the design, analysis and deployment of the high performance intelligent systems. EHW is a technical component typically featuring the most advanced structures of the Adaptive Systems (AS) and the most flexible Adaptive Hardware (AH). Nevertheless, it is hardware implementation of the most benefit for the society and indeed most revolutionizing application of CI by leading to the so-called EHW. These new CI based methodologies make possible the hardware implementation of both genetic encoding and artificial evolution, having a new brand of machines as a result. This type of machines is evolved to attain a desired behaviour that means they have a behavioural computational intelligence. There is no more difference between adaptation and design concerning these machines, these two concepts representing no longer opposite concepts. A dream of technology far years ago currently became reality: adaptation transfer from software to hardware is possible by the end. Much more, the electronics engineering as a profession was radically changed: the most soldering-based assembling manufacturing technologies are largely replaced now by technologies that use the strong technological support of advanced VLSI programmable circuitry, including EHW technologies. EHW can overcome a lot of technological manufacturing problems of the electronics integrated circuits: fabrication mismatches, drifts, temperature and other plagues to analog, exploiting the actual on-chip resources - finding a new circuit solution to the requirements with given constrains and actual on-chip resources.

EHW design methodology for the electronic circuits and systems is not a fashion. It is suitable for solving the special uncertain, imprecise or incomplete defined real-world problems, claiming a continuous adaptation and evolution too. Dramatic changes happen in the relation between hardware and the application environment, and this in case of malicious faults or need for emergent new functions that claim for in-situ synthesis of a totally new hardware configuration. EHW is suitable for flexibility and survivability of autonomous intelligent systems. EHW survivability means to maintain functionality coping with changes in hardware characteristics under the circumstances of adverse environmental conditions as for example: temperature variations, radiation impacts, aging and malfunctions. EHW *flexibility* means the availability to create new functionality required by changes in requirements or environment. The application developer may meet different design tasks to be evolved. As the case, the design to be evolved could be: a program, a model of hardware or the hardware itself. Algorithms that run outside the reconfigurable hardware, mainly feature the actual EHW state of the art. But also some chip level attempts were done. The path from chromosome to behaviour data-file is different in case of intrinsic and extrinsic EHW.

The progress in EHW is rapid. The expanding of EHW area of application nowadays is similar to Fuzzy technology in the last twenty years. Beginning with space and defense applications a few years ago, EHW/AHS is applied in humanoid robots for intelligent handling, EMG-prosthetic hand, and data compression for graphic arts, cellular phones, polymorphic electronics, self-repairing hardware and so on. It is not surprising at all witnessing the growing up of the EHW/AHS community as a distinct elite group inside the international scientific community of CI. The main EHW/AHS international conferences, workshops, symposia are supported by famous international research organizations, as NASA from USA or ESA from EU. Some reference research groups marked the previous and current trends and achievements of the EHW/AHS community at a world level: NASA JPL Evolvable Hardware Laboratory, USA; EHW Group at the Advanced Semiconductor Research Center of National Institute of Advanced Industrial Science and Technology (AIST), Japan; EHW Group at the Intelligent Systems Research Group of the University of York, UK; EHW Group at Department of Computer Systems, The Faculty of Information Technology (FIT), Brno University of Technology, Czech Republic; The Reconfigurable and Embedded Digital Systems Institute (REDS) at The University of Applied Sciences (HEIG-VD), Switzerland.

The idea of writing a book on this topic first crossed my mind in 2001, and I am really happy that the book is finally complete. Initially I thought this book would be of real help to my gifted students at the School of IT at Wellington Institute of Technology, Wellington, New Zealand. New ideas and suggestions crucially guiding the final structure of the book were used as a result of my research visit at NASA JPL in 2003 and as a result of my direct contacts and involvement in organizing the NASA/DoD EHW series of conferences.

The purpose of this book is to illustrate the current needs and to emphasize the future needs for the interaction between various component parts of the EHW/AHS framework. The team writing this book did this firstly by encouraging the ways that EHW techniques may be applied in those areas where they are already

Preface

traditional, as well as pointing towards new and innovative areas of application involving emergent technologies such as Artificial Immune Systems. Secondly, the team aimed to help encourage other disciplines to engage in a dialogue with practitioners of EHW/AHS engineering, outlining their problems in accessing these new methods in the engineering of intelligent AS, and also suggesting innovative developments within the area itself. Thus the progress of EHW/AH within the framework of intelligent AS was discussed from an application - engineering point of view, rather than from a cognitive science or philosophic view point. In this respect, regarding the technological support of EHW/AH the team of authors is most focused on the analog reconfigurable hardware that has actually a huge weight in the EHW environment. The appearance of reconfigurable analogue arrays (FPAAs) was crucial for the technological support required by companies involved in electronics research and development as well as in manufacturing. The analog reconfigurable hardware allows prevention or removal of essential fabrication mismatches and other refined technological problems by evolving circuits as the case. Practical engineering comments are made regarding the so-called custom made EHW-oriented reconfigurable hardware that can reprogram many times, can understand what's inside and is featured by a flexible programmability.

Beside some concrete elements of the EHW design, the book delivers a global image of the current limits in evolutionary design of AH. Also the practitioners get an accurate image of two different and distinct approaches governing EHW/AH: *Evolutionary circuit design* performs the evolution (the design) of a single circuit, with additional features such as fault tolerance, testability, polymorphic behaviour, that are difficult to design by conventional methods; *Evolvable hardware* involves an evolution responsible for continual adaptation applied to high-performance and adaptive systems in which the problem specification is unknown beforehand and can vary in time

Due to the best efforts of both co-authors, the book looks like a homogenous work aimed to be accessed very comfortable to a large range of public.

Chapter 1 is an introduction to Computational Intelligence and Intelligent Hybrid Systems, focused on their terminology and classification connections to EHW/AH. Emergent Intelligent Technologies implication on the Adaptive Hardware Systems is presented. A special part describes the AIS as a special technology for the Adaptive Systems.

Chapter 2 presents an engineering perspective of the EHW terminology, design methods and application relied on very practical engineering remarks. Direct application related aspects of immediate help for any EHW practitioners are another topic of this chapter. Some EHW specific programmable integrated circuits are introduced, especially the new generation – field programmable gate arrays (FPGAs) and most recently reconfigurable analogue arrays (FPAAs) and field-programmable interconnection circuits (FPICs) or configurable digital chips at the functional block level, (open-architecture FPGAs).

Chapter 3 presents a number of Genetic Algorithms applications in the field of electronic circuits design, both analog and digital. Examples of logic circuits are introduced, including arithmetic circuits designed using evolutionary techniques, and the results are compared with the conventional methods. Another promising

field of application is consisting of reconfigurable circuits applied in mobile communications, as a part of more complex adaptive systems. Also, there are proposed biomedical applications such as the implanted auditory prosthesis and other electronic stimulators. It is included a description of an AO design method based on fuzzy techniques and genetic algorithms.

Most sub-chapters include useful suggestions for the practical design and development of further applications. Both authors agree that although this book is a primer, it is not useful to only students. This book has practical value for both those new to the discipline and also for those who are already practitioners in the area.

The common research work and exchange of ideas with my distinguished colleague – constitutes the foundation for this book. Professor Sorin Hintea, from the Technical University of Cluj-Napoca, from my native country - Romania is a world known personality acting inside a very promising EHW/AH high tech European research group.

A decisive element for finally completing the book was the support of EHW/AH Group at NASA JPL, the special remarks and advice from its leader - dr. Adrian Stoica. Special thanks are due to Prof. Lukas Sekanina , Faculty of Information Technology, Brno University of Technology, for our permanent interactive scientific connection.

The authors are grateful for the understanding and permanent support of Springer Verlag Publishing House throughout the writing of this book. We would also like to acknowledge our special appreciation for the permanent support of dr. Robert J. Howlett - the Executive Chairman of KES International Organization - a leading professional organization that strongly supports and promotes EHW/AH technologies, conferences and publications.

On behalf of both authors,

Queensland, Australia October 15, 2008 Bongaree, Bribie Island Prof. Mircea Gh. Negoita

Contents

Bio Ada	-Inspir	red Com Systems	putational Intelligence for the Hardware of
1.1	Tech	niques of	Computational Intelligence
1.2	Featu	res and C	Classifications of Hybrid Intelligent Systems
1.3	Emer	gent Inte	lligent Technologies and the Adaptive Hardware
110	Syste	ems: AIS	– A Technology for the Adaptive Systems
Adv	anced	Hardwa	are Implementation of the Computational
	Evolu	ce and In	dwara: An Overview
2.1			Use if a stratical Engineering Remarks
	2.1.1 2.1.2	EHW T	Cashing Remarks
	2.1.2	FPMA	PsoC)
		2121	Introduction to Programmable Integrated
		2.1.2.1	Circuits
		2.1.2.2	FPGA Families and Advanced Type of FPGA
		2.1.2.3	Field Programmable Analog Arrays(FPAA)
		2.1.2.4	Field Programmable Transistor Arrays (FPTA) Produced by NASA IPL
		2.1.2.5	Practical Remarks on the Technological Support of
	2.1.3	EC Bas	ed Methods in EHW Implementation: EHW
	2.1.4	An App	lication of GA for the Design of EHW
	2.1.5	Global	Remarks on Current Methods in EHW Technology
2.2	TT 1	and Its	Prospectus
2.2	Hardy	vare Imp	lementation of the Artificial Immune Systems
2.5	Flore	vale inip	tereammunications Inside the AHS/EHW
2.4	Interr	otional (Community (Conferences: Books: Journals:
	Flite	Departm	ents)
	Line	Departin	ems)
Bio-	Inspir	ed Anal	ogue and Digital Circuits and Their
App	licatio	ns	
3.1	Introd	uction	

3.2	Genetic Algorithms for Analogue Circuits Design			
	3.2.1	GA as Tools to Design Analogue Circuits	84	
	3.2.2	Overview of the Genetic Algorithm	86	
	3.2.3	Representation	89	
	3.2.4	Analogue Applications with FPTA Cells	91	
	3.2.5	Design Optimization of a CMOS Amplifier	92	
		3.2.5.1 Formulation of the Optimization Problem	92	
		3.2.5.2 Evaluation Engine	94	
		3.2.5.3 Optimization Engine	94	
		3.2.5.4 Design Optimization of a CMOS Amplifier	95	
	3.2.6	Evolving Software Models of Analogue Circuits	97	
3.3	Evolutionary Design of Digital Circuits			
	3.3.1	Combinational Logic Circuits Evolutionary Design	99	
	3.3.2	Conventional Design Techniques for Arithmetic Adders		
		and Multipliers	102	
		3.3.2.1 One Bit Full Adders	102	
		3.3.2.2 Parallel Processing Adder	105	
		3.3.2.3 CMOS Gates Full Adder	106	
		3.3.2.4 The Mirror Adder	107	
		3.3.2.5 Full Adder with CMOS Transmission Gates	107	
		3.3.2.6 Serial Processing Adder	109	
		3.3.2.7 Conventional Binary Multipliers	109	
	3.3.3	Arithmetic Circuits Designed with Evolutionary		
		Algorithms	112	
		3.3.3.1 Full Adders Design	112	
		3.3.3.2 Gate-Level Evolutionary Design	114	
		3.3.3.3 Binary Multipliers Designed with Evolutionary		
		Algorithms	116	
	3.3.4	Concluding Remarks on Digital Circuits Evolutionary		
		Design	118	
3.4	Recor	nfigurable Analogue Circuits in Mobile Communications		
	Syste	ms	119	
	3.4.1 Multi-standard Terminals for Mobile			
		Telecommunications	119	
	3.4.2	Reconfigurable Multi-Standard Analogue Baseband		
		Front-End Circuits in Mobile Communications Systems	122	
	3.4.3	Reconfigurable RF Receiver Architectures	125	
		3.4.3.1 Superheterodyne Receiver	125	
		3.4.3.2 Direct - Conversion Architecture	126	
		3.4.3.3 Low IF Architecture	127	
		3.4.3.4 Software Defined Radio	127	
	_	3.4.3.5 Digital – IF Receiver	129	
	3.4.4	Fully Reconfigurable Analogue Filters Design	129	
	3.4.5 Reconfigurable Filter Stage for a Combined			
		Zero-IF/Low-IF Radio Architecture	131	
		3.4.5.1 Flexible Zero-IF/Low-IF Radio Architecture	131	

Contents

		3.4.5.2	Transconductor-Based Reconfigurable and	
			Programmable Analogue Array	133
		3.4.5.3	Modular G _m -C State-Variable "Leapfrog"	
			Filters	135
		3.4.5.4	Simulation Results	139
		3.4.5.5	Conclusions	140
	3.4.6	Variable	e Gain Amplifiers	141
	3.4.7	Genetic	Algorithms for Reconfigurable Analogue IF	
		Filters l	Design	146
3.5	Biome	edical En	gineering Applications	148
	3.5.1	Electric	al Stimulation and Neural Prosthesis	148
	3.5.2	Cochlea	ar Prosthesis via Telemetric Link	150
	3.5.3	Reconfi	gurable Circuits in Implantable Auditory	
		Prosthe	sis	151
	3.5.4	AGCs i	n Auditory Prosthesis	153
	3.5.5	Binary	Controlled Variable Gain Amplifiers	156
		3.5.5.1	Introduction	156
		3.5.5.2	Digitally Controlled Gain Amplifier with	
			Current Mirrors	156
		3.5.5.3	Current Division Network	160
		3.5.5.4	Programmable Amplifiers with CDN	162
		3.5.5.5	Digitally Controlled Current Attenuator	165
3.6	Concl	uding Re	emarks	168
Ref	erence	s		169

List of Acronymes

Α	Adenine (a DNA base)
ABR	Architecture Bit Registers
ADC	Analogue – to - Digital Converter
AEH	Adaptive and Evolvable Hardware
AGC	Automatic Gain Control
AH	Adaptive Hardware
AI	Artificial Intelligence
AIS	Adaptive Immune System
AIS	Artificial Immune System
AMR	Advanced RISC Machine,
ANFIS	Adaptive Neuro - Fuzzy Inference System
APC	Antigen-Presenting Cells
AS	Adaptive System
ASIC	Application-Specific Integrated Circuit
B-cells	B -lymphocytes
BCA	B-cell Algorithm
BDD	Binary Decision Diagram
BDT	Binary Decision Tree
BioMEMS	Bio medical MEMS
BIST	$\mathbf{B}uilt - \mathbf{I}n - \mathbf{S}elf - \mathbf{T}est$
BPF	Band Pass Filter
С	Cytosine
CA	Cellular Automata
CAP	Configurable Analog Processor
CDN	Current Division Network
CI	Computational Intelligence
CPLD	Complex Programmable Logic Devices

CPU	Central Processing Unit
CWP	Computing with Word and Perception
DAC	D igital – to - A nalogue C onverter
DCR	Direct – Conversion Receiver
DGA	Designer Genetic Algorithms
DN	Distribution Network
DNA	Deoxyribo Nucleic Acid
DNA-AIS	Hybridization between DNA systems and AIS
DNA-FS	Hybridization between DNA systems and FS
DNA-NN	Hybridization between DNA systems and NN
DNA-GA	Hybridization between DNA systems and GA
DSP/ASIC	Digital Signal Processor/ ASIC (a hybrid solution
	onto a configurable core featured by the best of both
	DSP and ASIC architectures)
EA	Evolutionary Algorithms
EC	Evolutionary Computation
EC -AIS	Hybridization between EC systems and AIS
EHW	Evolvable HardWare
EHW-AIS	Hybridization between EHW systems and AIS
ES	Evolutionary Strategy
EP	Evolutionary Platform
EUNITE	European Network on Intelligent Technologies for
EW	Electronic Warfare
FES	Functional Electrical Stimulation
FNS	Functional Neuromuscular Stimulation
FPAA	Field Programmable Analog Arrays
FPGA	Field Programmable Gate Arrays
FPIC	Field Programmable Interconnection Circuits
FL	Fuzzy Logic
FPMA	Field Programmable Mixed-signal Array
FPTA	Field Programmable Transistor Arrays
FPPA	Field Programmable Processor Arrays
FS	Fuzzy System
FS-AIS	Hybridization between AIS systems and FS
FSM	Finite State Machines
G	Guanine
GA	Genetic Algorithm

GA-FS	Hybridization between GA systems and FS
GA-NN	Hybridization between GA systems and NN
GA-NN-FS	Hybridization between GA systems, NN systems and FS systems
GAP	Genetic Algorithm Processor
GP	Genetic Programming
HIS	Hybrid Intelligent Systems
НОТ	Hardware Object Technology
HPRC s	High Performance Reconfigurable Computers
HPF	High Pass Filter
I/O	Input/Output interface
IIM	Innate Immune System
IT	Intelligent Technologies
ITS	Intelligent Tutoring Systems
IT-2 FP	Interval Type-2 Fuzzy Processors
IT2-FLS	Interval Type-2 Fuzzy Logic System
JPL	(NASA) Jet Propulsion Laboratory
KBES	Knowledge Based Expert Systems
KDD	Knowledge Discovery in Data Bases
LNA	Low - Noise Amplifier
LPF	Low Pass Filter
MC	Molecular Computing
MEMS	Micro-Electro-Mechanical Systems
MPU	Main Processing Unit
MLCEA-TC	Multi-Layer Chromosome Evolutionary
NESW	Algorithm – Transistor Count North- East-South-West interconnection
NGA	Nagoya GA
NN	Neural Networks
NW-AIS	network-based AIS
OTA	O perational T rans-conductance A mplifiers
PAL	Programmable Array Logic
PAMA	Programmable Analog Multiplexer Array
PB-AIS	population-based AIS
PCR	Polymerase Chain Reaction
PCI	Peripheral Component Interconnect Standard
PDC	Personal Digital Cellphone

PFU	Programmable Floating Unit
PGA	Programmable Gain Amplifier
PLA	Programmable Logic Array
PLD	Programmable Logic Devices
РТА	Programmable Transistor Array
PROM	Programmable Read-Only Memory
PSO	Particle swarm optimization
PSO-DR	Particle swarm optimization with discrete
	r ecombination
PSoC	Programmable System-on-Chip
QC	Quantum Computing
RAT	Radio Access Technologies
RH	Reconfigurable Hardware
RHIS	Robust (Soft Computing) Intelligent Systems
RISC	Reduced Instruction Set Computer architecture
RLC	Reinforcement Learning Component
RLD	Reconfigurable Logic Device
RM	Reconfigurable Mechanism (RM)
RNA	Ribo Nucleic Acid
RPU	Reconfigurable Processing Unit
SABLES	Stand-Alone Board-Level Evolvable System
SAS	Smart Adaptive System
SC	Soft Computing
SDR	Software Defined Radio
SGA	Simple GA (A classical Goldberg's GA)
SME	Small and Medium Enterprises
SoPC	Systems on Programmable Chip
SRAM	Static Random Access Memory
SS	Smart System
S-W	Smith-Waterman algorithm
T-cells	T -lymphocytes (T-cells
Т	Thymine
TI DSP	Texas Instruments DSP
T2-FLS	Type-2 Fuzzy Logic System
TRAC	Totally Recofigurable Analog Circuit
UMTS	Universal Mobile Telecommunications System
VGA	Variable Gain Amplifier

VHDL	Very High-speed integrated Circuit Hardware
	Description Language
VLGGA	Variable Length Genotype Genetic Algorithm
VLSI	Very Large Scale Integration
VPU	Vector Processing Unit
WITNeSS	Wellington Institute of Technology Novel Expert
	Student Support