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Abstract. This paper presents the development of a bivawadr agent inte-
racting with a realistic ecological simulation /st The purpose of the farmer
agent is to determine the best combinations ofl\sévaeeding areas in a large
region, maximizing the production without exceedihg total allowed seeding
area. A system based on simulated annealing, ®@ancts genetic algorithms
and reinforcement learning, was developed to mirgnthe number of itera-
tions required to unravel a semi-optimum solutignuising customizable tac-
tics. The farmer agent is part of a multi-agenttesyswhere several agents,
representing human interaction with the coastasestems, communicate with
a realistic simulator developed especially for diguacological simulations.
The experiments performed revealed promising resualthe field of optimiza-
tion techniques and multi-agent systems appliegctdogical simulations. The
results obtained open many other possible useleoSimulation architecture
with applications in industrial and ecological mgement problems, towards
sustainable development.
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1 Introduction

Coastal ecosystems are used for multiple purpdiségng, tourism, aquaculture, har-
bor activities, sports, etc.) and are the finaltidasion of many pollutants generated
by agriculture and other human activities. Considgthat over 60% of the world’'s
population lives within 60 km from the sea, thereot management of these ecosys-
tems is very important towards world sustainablesttgoment [1] [2].

The diversity of usages and the opposite interdsttakieholders and some institu-
tional authorities, coupled with the slowness @& tlecision process due to the huge
number of possible decisions generated by therdiffemanagement policies, make
the implementation of efficient automatic managetragorithms very difficult to
achieve [3].



In this context, the use of intelligent agents[Bl][6] seems to be very promising.
Each institutional authority and stakeholder maymueleled as an agent, interacting
with simulation tools - able to predict the outcoofalifferent decisions - getting re-
sults and configuring new conditions for furthenslation experiments.

The human factors can be represented by agentspsttific goals and visions for
the coastal area that can sometimes contradictoof unsure effect upon the ecosys-
tem. Examples of such agents are tourism manageedyéd farmers, and representa-
tives of civil authorities. Each has different gotidat they want to see maximized or
minimized. Including them in a multi-agent systemrsunding the ecological simu-
lator allows them to be concurrently representeti emabling the prediction, to some
extent, of the outcome through time of their intéitns with the ecosystem [7].

Realistic simulations of ecosystems require desugilseveral physical, chemical
and biological processes in mathematical termssiellyprocesses include flow and
circulation patterns, mixing and dispersion of maed heat, settling and resuspen-
sion of planktonic organisms and suspended maitisujation and light penetration.
Chemical processes include biogeochemical cyclegnpbrtant elements, such as
nitrogen and phosphorus. Biological processes declgrowth and death rate of any
organisms that may alter the concentration of difieelements. The accurate simula-
tion of these processes is very important forsgttip a reliable and realistic model of
the whole ecosystem. Detailed representationsesfetiprocesses can be found in the
literature since the 1980’s [8].

This paper refers, in particular, to the developnudra bivalve farmer agent which
interacts with a realistic ecological simulator (Bgonamo [2]) to find out the best
combination of bivalve seeding areas within anvedld area of exploitation and a
maximum seeding occupied area.

The developed bivalve farmer agent has implememstiand adaptations of
known multi-objective optimization algorithms, wedocumented in the literature
such as Simulated Annealing [9], Tabu Search [1@nekic Algorithms [11] and
Reinforcement Learning [12]. It attempts to takeaadage of each algorithm positive
aspects, minimizing their limitations. The bivalfamer agent has the objective of
finding an optimum combination of locations provigibetter shellfish growth and
production within a bay.

The paper is organized as follows: section 2 dessribe problem in analysis; sec-
tion 3 presents the architecture and implementatention 4 contains a description
and analysis of obtained results; section 5 mesttbe conclusions and indicates fu-
ture work.

2 Problem Statement

As a proof of concept, a bivalve farmer agent wagetbped to discover by itself the
best combinations of locations to seed and habiealve species. The bivalve farmer
agent interacts with the simulator application idey to run series of test simulations
seeking to find the optimum, or very near optimwombination of lagoon bivalve
farming regions (cells) where bivalve productionubbe maximized.

The tests were carried out using one validated mimdebungo Bay, People’s Re-
public of China [1]. Sungo Bay is modeled as a 2Rtigally integrated, coupled hy-



drodynamic-biogeochemical model, based on a fidifeerence bathymetric stag-
gered grid with 1120 cells (32 columns x 35 linagyl a spatial resolution of 500m
[1]. The idea is to find the best solution - fivegions within a rectangular area of 88
cells (square regions) that maximize bivalve prdéiduc Hereafter, “solution” will be
used to refer to any combination of five regionshin the mentioned area. It is im-
portant to refer that due to the realistic chamésties of the ecological simulation, the
existence of bivalves in one location will affebetgrowth of bivalves in the neigh-
borhood. Simulated bivalves feed on suspendedcfestsuch as detritus and phytop-
lankton cells, with the potential to cause sigmifit local depletion of these food
items. Therefore, placing many regions togetherdoelgatively affect the potential
yield of those regions. The extent of the influedepends on many factors such as
tidal flux, quantity and quality of suspended fooalticles, and water quality, sub-
stantially increasing the complexity of the probleRigure 1 shows two different
possible combinations of regions (cells).

Fig. 1. Two different configurations (A and B) of farmimggions: five farming cells are se-
lected from the wide available area in each sinanat

Taking into account the heavy time and processorepawquired to perform full
length realistic simulations (complete bivalve atdtcycle is approximately 1.5 years
— about 1 576 800 simulation time steps of 30 s@€pit was a requirement of the
bivalve farmer agent to intelligently choose itstteombinations of cells with simula-
tions of only 1000 time steps.

3 Implementation

3.1 Architecture

The implementation is based on a multi-agent archite following the principles of
Weiss [5] and Wooldridge [6], where agents commatt@iavith the simulator applica-



tion via TCP/IP packets. The simulation tool (EcoDyndR]) was developed for the

simulation of aquatic ecosystems, and is able tonconicate with several agents
representing the human interests over the simukxtedystem, namely the stakehold-
ers, the national authorities and the municipalityis communication is supported by
ECOLANG messages [2] - ECOLANG is a high-level largpithat describes ecolog-
ical systems in terms of regional characteristied &ianslates living agent’s actions
and perceptions. The format of the messages enahysreadability, simplicity and

expandability, and is independent from any comjputat platform or operating sys-

tem. Figure 2 shows the architecture used in thpem@xent with the simulator, the

farmer agent and one visualizer application.
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Fig. 2 Experimental system architecture.

The architecture of the multi-agent system was &trad to allow several agents to
interact with the simulator at the same time wiiffiedent purposes in mind. There is
much space for diverse applications of machinenlagrin ecological modeling
which can be better exploited with the proper decture [7] [8] [13].

3.2 Implemented Algorithms

To implement the sense of intelligence in the chaiteegion combinations of the
bivalve farmer agent, a system of customizableidsavas developed. The system
allows different multi-objective optimum solutiomder techniques to be applied at
the same time. The base of the program is a simlblelimbing optimization algo-
rithm based on Simulated Annealing with Monte Carabability [9] [14], iteratively
seeking a new possible solution and accepting thedest found so far if its quality



is considered higher than the previous best. Therane, however, allows for several
other configurable optimizations to be activateftligncing the selection logic. These
optimizations are based and adapted from documemetémentations of Tabu

Search [10] [14] [15], Genetic Algorithms [16] [1&@nhd Reinforcement Learning
[12]. A simple example: one configuration may alltve iterations to start function-
ing with a random search algorithm, trigger a gienatgorithm based crossbreeding
at 45% of the search process, and switch to a ispetsion local neighbor solution
selection near the end.

It is important to also notice that depending om dlgorithms that are used, the se-
lection of the initial combination to test can eitlgreatly assist or greatly hinder the
overall performance of the algorithm. Thus, a decisvas made to create an archi-
tecture that would always start from a random dmeccould then easily be configur-
able to alternate, in real time, between the difieimplemented algorithms. The se-
lection of what and when to change is describedutiin the so called tactics files,
which are nothing more than simple text files witited algorithms and their corres-
pondent parameters. The fine tune of the paramatdisese files to achieve better
results can be compared to a meta-heuristic prablem

The algorithms implemented in the farmer agent voalked FarmerSA, Farmer-
Tabu, FarmerGA and FarmerRL. A small descriptionaaheone follows.

Farmer SA. The implemented Simulated Annealing (SA) algoritfultows the usual
guidelines of Kirkpatrick [9], allowing the user tiefine the typical parameters of
initial temperature, final temperature and descatet.

As documented widely in literature, SA is basedhie natural process of slower
cooling giving higher resistance to certain materia threshold formula slowly in-
creases the probability of accepting a given tekttion of superior quality as the
temperature lowers by each passing iteration. Thegatl concept behind the algo-
rithm is allowing the system to have enough timexplore most part of its universe
of solutions whilst the entropy is high enough tevent the algorithm to follow only
one path of the best solutions. By slowly restnigtits entropy, the algorithm will
eventually constrain itself to the best local Solut and hopefully this slow process
will prevent it from getting stuck in local maximsninstead of finding the global
maximum. In critic terms, for some cases it cankwary well, but for others it re-
quires a great number of iterations to assure la igbability of finding a good solu-
tion and without certainty of being the optimum. dépends on the complexi-
ty/linearity of the solution search area itself, loow the neighbor solutions are de-
fined, on the speed of the temperature drop and bafty amount of luck with the
Monte Carlo probabilities. In synthesis - too méagtors that make the exclusive use
of this algorithm not recommendable for complextjems.

A special parameter exists in this implementatiwat &llows the algorithm to ig-
nore the Monte Carlo probability. This parameteused to guarantee using a new
solution when its quality is higher than the onasidered as the best.

FarmerTabu. The adaptation of Tabu Search [10] was called Farnber&ad its

implementation is based on maintaining a hash dfsall the previously tested
solutions, so that when it is toggled on, it simplsevents the simulation from
choosing a previously tested solution as the nekitisn to test, also keeping a



counter of how many times the algorithm has revoltesl choice of a new and
previously untested option from its choice of pblkesinext (referred to as neighbor)
solution [14]. The user can define a threshold vdiethe counter of refused
solutions to activate a special mutation factot Heaves to stir the process into other
solution search paths once the current path hasrapiy already been overly
explored without much success.

Farmer GA. The FarmerGA implementation maintains a list oftlsedutions found
so far and crosshreeds them to form new combimatbnegions. The user can define
the number of solutions to take into account asmqtarand the number of new breeds.
Unlike common Genetic Algorithms [16], this Farmér@oesn’'t account for any
mutation factor, making imperative that the listsolutions used as parents contains
combinations of regions as spread out through tihgtisn universe as possible, in
order to achieve results that guarantee a solatimestricted to a local maximum.

The way the FarmerGA crossbreeds the parents lisased on the quality hie-
rarchy and in one parameter configurable by the. usesimple terms, it attempts to
breed the best solution with all the others inlitteof top candidates, the second best
with half of all the other members of the list, théd best with a third of all the oth-
ers and so on. The child genes are selected ase#tendividual locations amongst
both parents. For each pair of two good solutighsuid B) as seen on figure 3, the
best locations are genes of each parent chosemdatgdo their individual perfor-
mance (measured in tons of bivalve harvested imique simulation). The child de-
rived (C) is either registered in a list of childreo be tested or disregarded if it is
present on the FarmerTabu list.
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Fig. 3 FarmerGA breeding result: A and B - parent configions; C - child configuration

FarmerRL. The FarmerRL optimization is somewhat far from wimatusually

referred to as Reinforcement Learning [12]. This langentation maintains a
neighbors list for each possible region, containinfprmation on its neighbor
locations quality for farming. As the test iteratsooccur, calculated weights are
summed to the quality of the areas selected intélseed solution, increasing or



decreasing its value. The value of the weight ddpemn the geometric distance
between the farming result of an individual zonel &ne average amongst all the
zones of the tested solution.

The farming quality value of each region is takeo imccount when the next selec-
tion of other neighboring solutions for testingperformed. As more iterations occur,
the quality values of good bivalve farming regi@eis higher and the quality values
of bad bivalve farming regions gets lower, thugregsing the scope of search to the
better regions. The strength of the weight is camfigle by the user and can vary in
real-time. The definition of neighbor solutions aisfluences greatly on how this
optimization will perform. There are 8 implementggdds of algorithms for choosing
the next neighbor solution of FarmerRL:

1. Choosing the best neighbors of each position, uMogte Carlo probability

factor.

2. Choosing the best neighbors of each position, osigg Monte Carlo probabili-

ty factor for the positions below average quality.

3. Choosing the best neighbors of each position, witlising Monte Carlo prob-

ability factor.

. Choosing the best neighbors of each position, withising Monte Carlo prob-
ability factor, but changing only one of the pawis.

. Randomly shift all positions to their neighbors.

. Randomly shift positions to their neighbors of oahe of the positions.

. Random search new position in positions below ayecpiality.

. All new positions completely randomly selected.

N
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3.3 Tactics System

A tactics system was developed to allow the usemhfigure the real-time parame-
ter reconfiguration of the implemented algorithms.

The base algorithm FarmerSA is always being apphed can be confi-
gured/parameterized through a text fiberfig.cfg). The parameters on this file will
define the number of iterations that the procedistakie to finish (extracted from ini-
tial value, final values and descent rate of tmepterature), the number of simulation
steps and the tactics file to use during the pmces

The remaining algorithms can be configured throughdpecific tactics file used.
This tactics file contains text lines which are redd to as toggles lines. These lines
contain the parameterization of the algorithms dieed previously. If these algo-
rithms are not toggled in this file to start atigeg time frame of the process, they
will not be used during the process.

FarmerTabu and FarmerRL can be toggled on, re-pagamex or toggled off at
any point in time of the process. FarmerGA fundidm a different manner: as each
toggle line for FarmerGA will trigger the processronning the genetic crossing it-
self, it is expected to only be toggled a few steps the process so that it has time to
build a large and wide spread enough list of g@sdilts for its cross breeding.

Toggles for the same algorithm can be defined mwer dbnce per tactics file, typ-
ically representing reconfigurations of the pararseft different time frames of the
process. As seen in table 1 each toggle liog) Contains several parameters, the first



one refers to the algorithm it is configuring for FarmerTabu, 1 for FarmerGA, 2

for FarmerRL), the second one to the time frame in percentagieg which it shall

be activated (e.d0.0 will be triggered right from the first iteration, 0.5 will be trig-
gered after half the iterations have occurred). The other parameters depend on the
specific algorithm.

Table 1. Example of a tactics file: ‘toggles_rand.tgl’

Keyword Toggle Paraml Param2 Param3 Param4

Number

init

tog 0(TA) 0.0 1 0.8 2
tog 1(GA) 0.5 1 15 8
tog 1(GA) 0.8 1 15 8
tog 2(RL) 0.0 1 0.05

tog 2(RL) 0.5 8 0.05

tog 2 (RL) 0.7 7 0.05

eof

Table 1 exemplifies a tactics file with a total afoggles defined:

- The first refers to FarmerTabtog 0), defining it to actuate from the beginning
of the procesd0), turned on 1) using a0.8 threshold for repeated selections in
tabu list before applying mutation of ty@e(distribute one random number of
solution members for neighboring regions with ggodlitative indicators).

- The second type of toggles refers to the Farmen@g\1), it is used twice dur-
ing this process, one at half of the iterations again after 80% of the iterations
have been processed. It is turned dnhand will create a list of maximum 15
children members out of the top 8 members of ths toeind results so far.

- The third type of toggles refers to the FarmerRhg (2), which starts with
neighbor selection algorithm tyfde(best neighbor with Monte Carlo probability
factor), using quality weight update @05, then changes to neighbor selection
type 8 (completely random) at half of the process withighe update 010.05,
and finally changes to neighbor selection typéhalf random) at 70% of the
process and using weight updateddb.

Different tactics may easily be defined and différeyntaxes for the tactics confi-

guration file are also very easy to define, inahgdhew parameters for the available
algorithms.

4 Resultsand Discussion

Several different tactics were tested on the SiBeyomodel to assist on determining
the optimum combination of 5 bivalve farming regioout of the allowed bivalve
farming area. Table 2 shows the results of the smsation encountered by each tac-
tic.



Table 2. Results of tested tactics

Tactic Result (Ton)
hillclimber 01 8019.142
hillclimber 02 8027.930

neigh 01 8051.824
neigh 02 8053.852
3GA 01 8049.961

3GA 02 8050.868
neighrand 01 8056.120
neighrand 02 8055.063
neighrand 03 8053.148

totrand 01 8051.824
totrand 02 8051.824

The different tactics were intuitively determinedilshundergoing the develop-
ment of the application. Some were uniquely writieshow the performance follow-
ing traditional simplistic methods for terms of qoamison -hillclimber performs a
simple choice of the best close neighbor (only pasition from the possible five is
changed from each solution at a time) and its eefinersion namedeigh which al-
lowed for up to 3 positions to shift from each siolo at a time.
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Fig. 4 Results of theeighrand 01 development

Other tactics were aimed at abusing a certain Glitpad the application beyond
reason to test its impact on the outcome resule sith is th&GA tactic which re-
peats the genetic algorithm variance three timdabhout a priori having a proper




scope of the whole possible universe. In similahfan, totrand tactic had a more
random search orientation (admits bursts of beigthber searches) in an attempt to
measure the real value of scoping the entire usévprior to applying the remaining
available methods. At lasteighrand is the more balanced of all the tactics devised,
despite not being fully fine tuned to always untathe optimum or very near opti-
mum solution.

Figure 4 shows the development throughout thetiters. of tacticneighrand 01.
This tactic was scripted by the file showed in tablgoggles rand.tgl) - had Farmer-
Tabu on during all the process, had 2 instancesanh&GA occurring once at half
way through the simulation and again at 80%, amdédrmerRL changed three times
through the process to alter its neighbor selegtiarameters. The weight refers the
amount of bivalves harvested in each iteration hef simulation. Each iteration
represents the same simulation period of a new bwtibn/solution of bivalve
zones. So the first line on the graph shows thghteaiesult for the current iteration,
whilst the second line shows the weight resultiier best solution found so far. Test-
ing the different tactics under the same conditionshort time period simulation
provided several different combinations of locasiomhich could be tested later in
longer time period simulations for the validatidrresults.

The best results from the tests carried out areepted in tables 3 and 4 and can be
seen in figure 5. Analyzing the test results le@dsonclude that the best farming re-
gions of the area are located on the lower bottérthe global search area of 88
zones. There is a strong possibility that other,exaptimum combinations could be
found by re-analyzing the problem concentratinghat area alone.

Table 3. Best solution Table 4. Second best solution
Locarion Weight (Ton) Location Weight (Ton)
81 1613.490035 81 1613.646772

82 1612.912944 82 1613.165278

83 1612.423538 83 1612.508254

/] 1611.792726 63 1610.178968

80 1613.570428 £0 1613.654490
Total weight 8056.11005 Total weight | 8055.084283

Best solution 2nd besl solution

Fig. 5 Visualization of the two best solutions obtaingchbighrand 01 development



A reminder must be added that the program is based random initial search
solution. The fact that all of the tactics converde similar solutions (containing a
majority of elements in early 80s locations) reassuhe quality of the location as a
most profitable zone to explore bivalve farming.

5 Conclusions and Future Work

Generally, the management of coastal ecosystemsbenalpne in many different
ways and there is hardly one optimal solution, fmost likely a “family” of “good”
management options. Giving the large complexittheke systems and the numerous
synergies between environmental conditions and gemant options, finding “good”
choices cannot be reduced to simple optimizatigoridthms, assuming linear or some
defined form of non-linear relationship betweenea af parameters, variables and
goal seeking functions. Mathematical models maydéry useful in finding “good”
management solutions. However, finding these mayire many trial and error si-
mulations and this is why using agents that mak Extomatically for the mentioned
solutions may be advantageous. This requireatmeori definition of “good” solu-
tions and constraints. For example, one may wishdmease aquaculture production
but keeping water quality within certain limits fother uses.

This paper presented a different approach for tblem of bivalve aquaculture
optimization in coastal ecosystems. The approadiased on the development of a
bivalve farmer agent interacting with a realistmlegical simulation system. The
farmer agent optimizes bivalve production by udimgwn optimization techniques
for solving the problem of selecting the best fargniegions combinations, maximiz-
ing the production of the zone. The approach enabledl to achieve better results
than using hand-tuned techniques.

From the comparison between distinct optimizatioethndologies, it was also
concluded that better results are achieved by wsiogmbination of different optimi-
zation methodologies by the use of our tacticsigondtion file. However more expe-
riences with different scenarios and longer growtintges must be carried out in order
to fully validate this conclusion.

There is still plenty of research to be accomplishittiin the combined fields of
ecological simulation and multi-agent systems. Tl@eemany scenarios where intel-
ligent programs acting as agents could emulateeahdnce the realistic behavior of
many different factors within simulation system®ciion support systems based on
realistic ecological simulator have much to gaithvihe inclusion of multi-agent sys-
tems interaction in their architecture.

The methodology experienced in this work will beeexted to test more combina-
tions with benthic species and regions: one reg@mral benthic species, several
regions/one benthic species, several regions/delverdhic species, restricted farm-
ing areas/unrestricted farming areas, etc.

Also the optimization methodologies must be imprbireorder to allow the simu-
lation period to grow in order to verify the behavof the best tactics in one complete
farming cycle (about 1.5 years).
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