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Abstract. This paper presents the development of a bivalve farmer agent inte-
racting with a realistic ecological simulation system. The purpose of the farmer 
agent is to determine the best combinations of bivalve seeding areas in a large 
region, maximizing the production without exceeding the total allowed seeding 
area. A system based on simulated annealing, tabu search, genetic algorithms 
and reinforcement learning, was developed to minimize the number of itera-
tions required to unravel a semi-optimum solution by using customizable tac-
tics. The farmer agent is part of a multi-agent system where several agents, 
representing human interaction with the coastal ecosystems, communicate with 
a realistic simulator developed especially for aquatic ecological simulations. 
The experiments performed revealed promising results in the field of optimiza-
tion techniques and multi-agent systems applied to ecological simulations. The 
results obtained open many other possible uses of the simulation architecture 
with applications in industrial and ecological management problems, towards 
sustainable development. 
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1   Introduction 

Coastal ecosystems are used for multiple purposes (fishing, tourism, aquaculture, har-
bor activities, sports, etc.) and are the final destination of many pollutants generated 
by agriculture and other human activities. Considering that over 60% of the world’s 
population lives within 60 km from the sea, the correct management of these ecosys-
tems is very important towards world sustainable development [1] [2]. 

The diversity of usages and the opposite interests of stakeholders and some institu-
tional authorities, coupled with the slowness of the decision process due to the huge 
number of possible decisions generated by the different management policies, make 
the implementation of efficient automatic management algorithms very difficult to 
achieve [3]. 



In this context, the use of intelligent agents [4] [5] [6] seems to be very promising. 
Each institutional authority and stakeholder may be modeled as an agent, interacting 
with simulation tools - able to predict the outcome of different decisions - getting re-
sults and configuring new conditions for further simulation experiments. 

The human factors can be represented by agents with specific goals and visions for 
the coastal area that can sometimes contradictory or of unsure effect upon the ecosys-
tem. Examples of such agents are tourism managers, bivalve farmers, and representa-
tives of civil authorities. Each has different goals that they want to see maximized or 
minimized. Including them in a multi-agent system surrounding the ecological simu-
lator allows them to be concurrently represented and enabling the prediction, to some 
extent, of the outcome through time of their interactions with the ecosystem [7]. 

Realistic simulations of ecosystems require describing several physical, chemical 
and biological processes in mathematical terms. Physical processes include flow and 
circulation patterns, mixing and dispersion of mass and heat, settling and resuspen-
sion of planktonic organisms and suspended matter, insulation and light penetration. 
Chemical processes include biogeochemical cycles of important elements, such as 
nitrogen and phosphorus. Biological processes include growth and death rate of any 
organisms that may alter the concentration of different elements. The accurate simula-
tion of these processes is very important for setting up a reliable and realistic model of 
the whole ecosystem. Detailed representations of these processes can be found in the 
literature since the 1980’s [8]. 

This paper refers, in particular, to the development of a bivalve farmer agent which 
interacts with a realistic ecological simulator (EcoDynamo [2]) to find out the best 
combination of bivalve seeding areas within an allowed area of exploitation and a 
maximum seeding occupied area. 

The developed bivalve farmer agent has implementations and adaptations of 
known multi-objective optimization algorithms, well documented in the literature 
such as Simulated Annealing [9], Tabu Search [10], Genetic Algorithms [11] and 
Reinforcement Learning [12]. It attempts to take advantage of each algorithm positive 
aspects, minimizing their limitations. The bivalve farmer agent has the objective of 
finding an optimum combination of locations providing better shellfish growth and 
production within a bay.  

The paper is organized as follows: section 2 describes the problem in analysis; sec-
tion 3 presents the architecture and implementation; section 4 contains a description 
and analysis of obtained results; section 5 mentions the conclusions and indicates fu-
ture work. 

2   Problem Statement 

As a proof of concept, a bivalve farmer agent was developed to discover by itself the 
best combinations of locations to seed and harvest bivalve species. The bivalve farmer 
agent interacts with the simulator application in order to run series of test simulations 
seeking to find the optimum, or very near optimum, combination of lagoon bivalve 
farming regions (cells) where bivalve production would be maximized.  

The tests were carried out using one validated model for Sungo Bay, People’s Re-
public of China [1]. Sungo Bay is modeled as a 2D vertically integrated, coupled hy-



drodynamic-biogeochemical model, based on a finite difference bathymetric stag-
gered grid with 1120 cells (32 columns x 35 lines) and a spatial resolution of 500m 
[1]. The idea is to find the best solution - five regions within a rectangular area of 88 
cells (square regions) that maximize bivalve production. Hereafter, “solution” will be 
used to refer to any combination of five regions within the mentioned area. It is im-
portant to refer that due to the realistic characteristics of the ecological simulation, the 
existence of bivalves in one location will affect the growth of bivalves in the neigh-
borhood. Simulated bivalves feed on suspended particles such as detritus and phytop-
lankton cells, with the potential to cause significant local depletion of these food 
items. Therefore, placing many regions together could negatively affect the potential 
yield of those regions. The extent of the influence depends on many factors such as 
tidal flux, quantity and quality of suspended food particles, and water quality, sub-
stantially increasing the complexity of the problem. Figure 1 shows two different 
possible combinations of regions (cells). 

 

     

Fig. 1. Two different configurations (A and B) of farming regions: five farming cells are se-
lected from the wide available area in each simulation. 

Taking into account the heavy time and processor power required to perform full 
length realistic simulations (complete bivalve culture cycle is approximately 1.5 years 
– about 1 576 800 simulation time steps of 30 seconds) it was a requirement of the 
bivalve farmer agent to intelligently choose its test combinations of cells with simula-
tions of only 1000 time steps. 

3   Implementation 

3.1   Architecture 

The implementation is based on a multi-agent architecture following the principles of 
Weiss [5] and Wooldridge [6], where agents communicate with the simulator applica-



tion via TCP/IP packets. The simulation tool (EcoDynamo [2]) was developed for the 
simulation of aquatic ecosystems, and is able to communicate with several agents 
representing the human interests over the simulated ecosystem, namely the stakehold-
ers, the national authorities and the municipality. This communication is supported by 
ECOLANG messages [2] - ECOLANG is a high-level language that describes ecolog-
ical systems in terms of regional characteristics and translates living agent’s actions 
and perceptions. The format of the messages enables easy readability, simplicity and 
expandability, and is independent from any computational platform or operating sys-
tem. Figure 2 shows the architecture used in the experiment with the simulator, the 
farmer agent and one visualizer application. 
 

 

Fig. 2 Experimental system architecture. 

The architecture of the multi-agent system was structured to allow several agents to 
interact with the simulator at the same time with different purposes in mind. There is 
much space for diverse applications of machine learning in ecological modeling 
which can be better exploited with the proper architecture [7] [8] [13]. 

3.2 Implemented Algorithms 

To implement the sense of intelligence in the choice of region combinations of the 
bivalve farmer agent, a system of customizable tactics was developed. The system 
allows different multi-objective optimum solution finder techniques to be applied at 
the same time. The base of the program is a simple hill-climbing optimization algo-
rithm based on Simulated Annealing with Monte Carlo probability [9] [14], iteratively 
seeking a new possible solution and accepting it as the best found so far if its quality 



is considered higher than the previous best. The program, however, allows for several 
other configurable optimizations to be activated influencing the selection logic. These 
optimizations are based and adapted from documented implementations of Tabu 
Search [10] [14] [15], Genetic Algorithms [16] [17] and Reinforcement Learning 
[12]. A simple example: one configuration may allow the iterations to start function-
ing with a random search algorithm, trigger a genetic algorithm based crossbreeding 
at 45% of the search process, and switch to a low dispersion local neighbor solution 
selection near the end. 

It is important to also notice that depending on the algorithms that are used, the se-
lection of the initial combination to test can either greatly assist or greatly hinder the 
overall performance of the algorithm. Thus, a decision was made to create an archi-
tecture that would always start from a random seed but could then easily be configur-
able to alternate, in real time, between the different implemented algorithms. The se-
lection of what and when to change is described through the so called tactics files, 
which are nothing more than simple text files with listed algorithms and their corres-
pondent parameters. The fine tune of the parameters in these files to achieve better 
results can be compared to a meta-heuristic problem. 

The algorithms implemented in the farmer agent were called FarmerSA, Farmer-
Tabu, FarmerGA and FarmerRL. A small description of each one follows. 

FarmerSA. The implemented Simulated Annealing (SA) algorithm follows the usual 
guidelines of Kirkpatrick [9], allowing the user to define the typical parameters of 
initial temperature, final temperature and descent rate. 

As documented widely in literature, SA is based in the natural process of slower 
cooling giving higher resistance to certain materials. A threshold formula slowly in-
creases the probability of accepting a given test solution of superior quality as the 
temperature lowers by each passing iteration. The overall concept behind the algo-
rithm is allowing the system to have enough time to explore most part of its universe 
of solutions whilst the entropy is high enough to prevent the algorithm to follow only 
one path of the best solutions. By slowly restricting its entropy, the algorithm will 
eventually constrain itself to the best local solutions and hopefully this slow process 
will prevent it from getting stuck in local maximums instead of finding the global 
maximum. In critic terms, for some cases it can work very well, but for others it re-
quires a great number of iterations to assure a high probability of finding a good solu-
tion and without certainty of being the optimum. It depends on the complexi-
ty/linearity of the solution search area itself, on how the neighbor solutions are de-
fined, on the speed of the temperature drop and on a hefty amount of luck with the 
Monte Carlo probabilities. In synthesis - too many factors that make the exclusive use 
of this algorithm not recommendable for complex problems. 

A special parameter exists in this implementation that allows the algorithm to ig-
nore the Monte Carlo probability. This parameter is used to guarantee using a new 
solution when its quality is higher than the one considered as the best. 

FarmerTabu. The adaptation of Tabu Search [10] was called FarmerTabu and its 
implementation is based on maintaining a hash list of all the previously tested 
solutions, so that when it is toggled on, it simply prevents the simulation from 
choosing a previously tested solution as the next solution to test, also keeping a 



counter of how many times the algorithm has revoked the choice of a new and 
previously untested option from its choice of possible next (referred to as neighbor) 
solution [14]. The user can define a threshold value for the counter of refused 
solutions to activate a special mutation factor that serves to stir the process into other 
solution search paths once the current path has apparently already been overly 
explored without much success. 

FarmerGA. The FarmerGA implementation maintains a list of best solutions found 
so far and crossbreeds them to form new combinations of regions. The user can define 
the number of solutions to take into account as parents and the number of new breeds. 
Unlike common Genetic Algorithms [16], this FarmerGA doesn’t account for any 
mutation factor, making imperative that the list of solutions used as parents contains 
combinations of regions as spread out through the solution universe as possible, in 
order to achieve results that guarantee a solution not restricted to a local maximum. 

The way the FarmerGA crossbreeds the parents list is based on the quality hie-
rarchy and in one parameter configurable by the user. In simple terms, it attempts to 
breed the best solution with all the others in the list of top candidates, the second best 
with half of all the other members of the list, the third best with a third of all the oth-
ers and so on. The child genes are selected as the best individual locations amongst 
both parents. For each pair of two good solutions (A and B) as seen on figure 3, the 
best locations are genes of each parent chosen according to their individual perfor-
mance (measured in tons of bivalve harvested in previous simulation). The child de-
rived (C) is either registered in a list of children to be tested or disregarded if it is 
present on the FarmerTabu list. 

 

 
Fig. 3 FarmerGA breeding result: A and B - parent configurations; C - child configuration 

FarmerRL. The FarmerRL optimization is somewhat far from what is usually 
referred to as Reinforcement Learning [12]. This implementation maintains a 
neighbors list for each possible region, containing information on its neighbor 
locations quality for farming. As the test iterations occur, calculated weights are 
summed to the quality of the areas selected in the tested solution, increasing or 



decreasing its value. The value of the weight depends on the geometric distance 
between the farming result of an individual zone and the average amongst all the 
zones of the tested solution. 

The farming quality value of each region is taken into account when the next selec-
tion of other neighboring solutions for testing is performed. As more iterations occur, 
the quality values of good bivalve farming regions gets higher and the quality values 
of bad bivalve farming regions gets lower, thus restraining the scope of search to the 
better regions. The strength of the weight is configurable by the user and can vary in 
real-time. The definition of neighbor solutions also influences greatly on how this 
optimization will perform. There are 8 implemented types of algorithms for choosing 
the next neighbor solution of FarmerRL: 

1. Choosing the best neighbors of each position, using Monte Carlo probability 
factor. 

2. Choosing the best neighbors of each position, only using Monte Carlo probabili-
ty factor for the positions below average quality. 

3. Choosing the best neighbors of each position, without using Monte Carlo prob-
ability factor. 

4. Choosing the best neighbors of each position, without using Monte Carlo prob-
ability factor, but changing only one of the positions. 

5. Randomly shift all positions to their neighbors. 
6. Randomly shift positions to their neighbors of only one of the positions. 
7. Random search new position in positions below average quality. 
8. All new positions completely randomly selected. 

3.3 Tactics System 

A tactics system was developed to allow the users to configure the real-time parame-
ter reconfiguration of the implemented algorithms. 

The base algorithm FarmerSA is always being applied and can be confi-
gured/parameterized through a text file (config.cfg). The parameters on this file will 
define the number of iterations that the process will take to finish (extracted from ini-
tial value, final values and descent rate of the temperature), the number of simulation 
steps and the tactics file to use during the process. 

The remaining algorithms can be configured through the specific tactics file used. 
This tactics file contains text lines which are referred to as toggles lines. These lines 
contain the parameterization of the algorithms described previously. If these algo-
rithms are not toggled in this file to start at a given time frame of the process, they 
will not be used during the process.  

FarmerTabu and FarmerRL can be toggled on, re-parameterized or toggled off at 
any point in time of the process. FarmerGA functions in a different manner: as each 
toggle line for FarmerGA will trigger the process of running the genetic crossing it-
self, it is expected to only be toggled a few steps into the process so that it has time to 
build a large and wide spread enough list of good results for its cross breeding. 

Toggles for the same algorithm can be defined more then once per tactics file, typ-
ically representing reconfigurations of the parameters at different time frames of the 
process. As seen in table 1 each toggle line (tog) contains several parameters, the first 



one refers to the algorithm it is configuring (0 for FarmerTabu, 1 for FarmerGA, 2 
for FarmerRL), the second one to the time frame in percentage during which it shall 
be activated (e.g: 0.0 will be triggered right from the first iteration, 0.5 will be trig-
gered after half the iterations have occurred). The other parameters depend on the 
specific algorithm. 

Table 1. Example of a tactics file: ‘toggles_rand.tgl’ 

Keyword Toggle 
Number 

Param1 Param2 Param3 Param4 

init      

tog 0 (TA) 0.0 1 0.8 2 

tog 1 (GA) 0.5 1 15 8 

tog 1 (GA) 0.8 1 15 8 

tog 2 (RL) 0.0 1 0.05  

tog 2 (RL) 0.5 8 0.05  

tog 2 (RL) 0.7 7 0.05  

eof      
 
Table 1 exemplifies a tactics file with a total of 6 toggles defined: 
− The first refers to FarmerTabu (tog 0), defining it to actuate from the beginning 

of the process (0.0), turned on (1) using a 0.8 threshold for repeated selections in 
tabu list before applying mutation of type 2 (distribute one random number of 
solution members for neighboring regions with good qualitative indicators). 

− The second type of toggles refers to the FarmerGA (tog 1), it is used twice dur-
ing this process, one at half of the iterations and again after 80% of the iterations 
have been processed. It is turned on (1) and will create a list of maximum 15 
children members out of the top 8 members of the best found results so far. 

− The third type of toggles refers to the FarmerRL (tog 2), which starts with 
neighbor selection algorithm type 1 (best neighbor with Monte Carlo probability 
factor), using quality weight update of 0.05, then changes to neighbor selection 
type 8 (completely random) at half of the process with weight update of 0.05, 
and finally changes to neighbor selection type 7 (half random) at 70% of the 
process and using weight update of 0.05. 

Different tactics may easily be defined and different syntaxes for the tactics confi-
guration file are also very easy to define, including new parameters for the available 
algorithms. 

4   Results and Discussion 

Several different tactics were tested on the Sungo Bay model to assist on determining 
the optimum combination of 5 bivalve farming regions out of the allowed bivalve 
farming area. Table 2 shows the results of the best solution encountered by each tac-
tic. 



Table 2. Results of tested tactics 

Tactic Result (Ton) 

hillclimber 01 8019.142 

hillclimber 02 8027.930 

neigh 01 8051.824 

neigh 02 8053.852 

3GA  01 8049.961 

3GA 02 8050.868 

neighrand 01 8056.120 

neighrand 02 8055.063 

neighrand 03 8053.148 

totrand 01 8051.824 

totrand 02 8051.824 
 
The different tactics were intuitively determined whilst undergoing the develop-

ment of the application. Some were uniquely written to show the performance follow-
ing traditional simplistic methods for terms of comparison - hillclimber performs a 
simple choice of the best close neighbor (only one position from the possible five is 
changed from each solution at a time) and its refined version named neigh which al-
lowed for up to 3 positions to shift from each solution at a time.  
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Fig. 4 Results of the neighrand 01 development 

 
Other tactics were aimed at abusing a certain capability of the application beyond 

reason to test its impact on the outcome result. One such is the 3GA tactic which re-
peats the genetic algorithm variance three times without a priori having a proper 



scope of the whole possible universe. In similar fashion, totrand tactic had a more 
random search orientation (admits bursts of best neighbor searches) in an attempt to 
measure the real value of scoping the entire universe prior to applying the remaining 
available methods. At last, neighrand is the more balanced of all the tactics devised, 
despite not being fully fine tuned to always unravel the optimum or very near opti-
mum solution. 

Figure 4 shows the development throughout the iterations of tactic neighrand 01. 
This tactic was scripted by the file showed in table 1 (toggles_rand.tgl) - had Farmer-
Tabu on during all the process, had 2 instances of FarmerGA occurring once at half 
way through the simulation and again at 80%, and its FarmerRL changed three times 
through the process to alter its neighbor selection parameters. The weight refers the 
amount of bivalves harvested in each iteration of the simulation. Each iteration 
represents the same simulation period of a new combination/solution of bivalve 
zones. So the first line on the graph shows the weight result for the current iteration, 
whilst the second line shows the weight result for the best solution found so far. Test-
ing the different tactics under the same conditions in short time period simulation 
provided several different combinations of locations which could be tested later in 
longer time period simulations for the validation of results. 

The best results from the tests carried out are presented in tables 3 and 4 and can be 
seen in figure 5. Analyzing the test results leads to conclude that the best farming re-
gions of the area are located on the lower bottom of the global search area of 88 
zones. There is a strong possibility that other, more optimum combinations could be 
found by re-analyzing the problem concentrating on that area alone. 

 
Fig. 5 Visualization of the two best solutions obtained by neighrand 01 development 



 
A reminder must be added that the program is based on a random initial search 

solution. The fact that all of the tactics converged to similar solutions (containing a 
majority of elements in early 80s locations) reassures the quality of the location as a 
most profitable zone to explore bivalve farming. 

5   Conclusions and Future Work 

Generally, the management of coastal ecosystems may be done in many different 
ways and there is hardly one optimal solution, but most likely a “family” of “good” 
management options. Giving the large complexity of these systems and the numerous 
synergies between environmental conditions and management options, finding “good” 
choices cannot be reduced to simple optimization algorithms, assuming linear or some 
defined form of non-linear relationship between a set of parameters, variables and 
goal seeking functions. Mathematical models may be very useful in finding “good” 
management solutions. However, finding these may require many trial and error si-
mulations and this is why using agents that may look automatically for the mentioned 
solutions may be advantageous. This requires the a priori definition of “good” solu-
tions and constraints. For example, one may wish to increase aquaculture production 
but keeping water quality within certain limits for other uses.  

This paper presented a different approach for the problem of bivalve aquaculture 
optimization in coastal ecosystems. The approach is based on the development of a 
bivalve farmer agent interacting with a realistic ecological simulation system. The 
farmer agent optimizes bivalve production by using known optimization techniques 
for solving the problem of selecting the best farming regions combinations, maximiz-
ing the production of the zone. The approach enabled also to achieve better results 
than using hand-tuned techniques.  

From the comparison between distinct optimization methodologies, it was also 
concluded that better results are achieved by using a combination of different optimi-
zation methodologies by the use of our tactics configuration file. However more expe-
riences with different scenarios and longer growing times must be carried out in order 
to fully validate this conclusion. 

There is still plenty of research to be accomplished within the combined fields of 
ecological simulation and multi-agent systems. There are many scenarios where intel-
ligent programs acting as agents could emulate and enhance the realistic behavior of 
many different factors within simulation systems. Decision support systems based on 
realistic ecological simulator have much to gain with the inclusion of multi-agent sys-
tems interaction in their architecture. 

The methodology experienced in this work will be extended to test more combina-
tions with benthic species and regions: one region/several benthic species, several 
regions/one benthic species, several regions/several benthic species, restricted farm-
ing areas/unrestricted farming areas, etc. 

Also the optimization methodologies must be improved in order to allow the simu-
lation period to grow in order to verify the behavior of the best tactics in one complete 
farming cycle (about 1.5 years). 
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