What Is the Goal?

Agile elicitation of semantic goal definitions using wikis

David Lambert, Stefania Galizia, and John Domingue

Knowledge Media Institute, The Open University, Milton Keynes, UK
{d.j.lambert,s.galizia,j.b.domingue}@open.ac.uk

Abstract. Formal goal and service descriptions are the shibboleth of the
semantic web services approach, yet the people responsible for creating
them are neither machines nor logicians, and rarely even knowledge en-
gineers: the people who need and specify functionality are not those who
provide it, and both may be distinct from the semantic annotators. The
gap between users’ informal conceptualisations of problems and formal
descriptions is one which must be effectively bridged for semantic web
services to be widely adopted. We show how a simple technique using
a wiki to collect user requirements and mediate a progressive, iterative
refinement and formalisation of user goals by domain experts and their
knowledge engineer colleagues can achieve this. Further, we outline how
the process can be automated, so as to itself benefit from semantic tech-
nologies.

1 Introduction

Service oriented computing (SOC) offers a promising new approach to program-
ming, resource sharing, and organisational collaboration. Semantic web services
address several of the problems SOC faces as the number and complexity of ser-
vices grows, such as finding appropriate services, composing, and invoking them
correctly. But the mechanisms used to enable this magic require formal, logical
specifications of user goals and the web services that can satisfy them.

We are currently working with biomechanics researchers who have chosen
semantic web services as the best platform to support their work. In this con-
text, we faced the problem of capturing the users’ notions of their goals, and
translating them to formal representations. These formalisations, for the static
Semantic Web as well as Semantic Web Services, are far from intuitive. Indeed,
the ‘call for papers’ for this very conference offered this gem:

Authors of accepted papers will be required to provide semantic an-
notations for the abstract of their submission for the Semantic Web (help
will be provided for this task).

which would fairly entitle our medical colleagues to demand of us “Physician,
heal thyself!”. In our case, we have tried to bridge the chasm with a methodology
where domain experts can express their requirements in natural language and,

2 D Lambert, S Galizia, J Domingue

through interaction with a semantic web expert mediated by a wiki, progressively
refine their goal into one expressible in a formalism suitable for use by semantic
web services.

We review the context of the work in the next section, then examine the
problem of goal conception and description for users in section 3. In sections 4
and 5 we present our solution and a worked example of the method, respectively.
Section 6 outlines the future direction of the work. Related research is discussed
in section 7, and we conclude in section 8.

2 Background

In this section, we recount a short history of the two sides of our problem, as well
as the source of our solution. First, we introduce our application domain, an on-
going programme to develop web services for use in a biomechanics application.
Section 2.2 reviews semantic web services, noting why they have been selected as
the most promising solution for our application. Finally, in section 2.3 we look at
the existing software process for LHDL, with which they were comfortable and
wished to use to develop semantic web services goals.

2.1 The Living Human Digital Library

The creation of in-silico models of entire organisms has been identified as a
‘Grand Challenge’ problem [1] for informatics, and several projects have be-
gun working towards the construction of multi-domain, multi-scale models. Our
work concerns one such project, the ‘Living Human Digital Library’ (LHDL) [2],
which intends to lay a technical foundation for virtual physiomes by first devel-
oping techniques and infrastructure for distributed modelling and analysis of the
human musculoskeletal system.

For the immediate purposes of supporting LHDL, web services are appropri-
ate: they address the need for distributed, autonomous provision and invoca-
tion of computational services and data storage facilities that the web services
approach provides. Longer term, simulations of entire physiomes will require
integration across scales and between disciplines (e.g. chemistry, biomechanics,
clinical) and sub-systems (e.g. neurological, renal, cardiac). These programmes
are about coordination: the intention is not to create a single federation of ser-
vices that define a single virtual physiome, but rather a framework to enable
the integration of services to suit particular requirements—even to the point
of modelling individuals for clinical purposes. As the number of services avail-
able for use, and the number engaged in any one simulation, increase, it will
become infeasible to manage them manually. With the future in mind, LHDL is
investigating semantic web services as the most promising technological solution.

2.2 Web services and semantics

Service-oriented computing [3], and especially web services [4], have forced a
paradigm shift in computing provision. They enable computation to be dis-

Agile elicitation of semantic goal definitions using wikis 3

tributed, and easily invoked over the internet. ‘Virtual organisations’ of services
can be constructed for tasks the component services were not designed for. How-
ever, as services become more complex, and their numbers increase, it becomes
more difficult to comprehend and manage their use. Tasks such as service dis-
covery, composition, invocation, process monitoring and fault repair cannot be
successfully automated for web services, because the descriptions involved are
only syntactic, and require human engineers to interpret them. Semantic web ser-
vices [5] add rich, formal semantics to enable this automation. By modelling the
purpose and interfaces of the services in logical formalisms such as description
logics [6] or abstract state machines, we allow machines to reason in powerful
ways about the services in ways that otherwise must be done by humans, or are
simply too expensive to be done at all.

The Web Services Modelling Ontology (WSMO) [7] is a leading framework for
semantic web services. Its four key concepts of domain ontologies, goals, web ser-
vices, and mediators evidence its commitment to separation of concerns. WSMO
insists on a clear distinction between user goals and their realisation by web ser-
vices, thus enabling capability-based invocation. The user’s needs and context are
given first-class status in the modelling process, while intelligent middleware can
determine how to satisfy a user’s goal with the services available to it. Similarly,
the necessary loose-coupling of services, goals, and ontologies is handled by the
systematics use of mediators, which intervene in several places where otherwise
heterogeneity would cause incompatibility. Between ontologies, OO-mediators
perform ontology mapping wherever necessary; WW-mediators allow web ser-
vices to interact correctly, primarily addressing choreography mismatches; user
goals are mapped to web services by WG-mediators; and GG-mediators allow
the creation of new goals by composing others.

Our WSMO implementation is the Internet Reasoning Service (IRS) [8], a
general-purpose semantic services platform which has been used in several do-
mains including business process management, e-learning, and e-government. In
its current implementation, it adopts and extends the epistemological commit-
ments of WSMO. Its internal representation format is OCML [9], a frame based
knowledge modelling language. The IRS can invoke web services exposed via
SOAP or XML-RPC, and export legacy Java and Common Lisp code as web
services by automatically generating wrappers. Goals can be executed by send-
ing SOAP messages or making HTTP GET requests, thus supporting the REST
paradigm. A process of ‘elevation’ deals with mapping the XML messages of
services to internal ontological representations expressed in OCML.

2.3 LHDL’s existing software development process

Even as LHDL moves towards a web-based infrastructure, the project must con-
tinue to support the development of the legacy client software. For some time the
LHDL members responsible for the LhpBuilder software (covered in section 3.1)
had been successfully using agile development methods, and wanted to retain
them.

4 D Lambert, S Galizia, J Domingue

Agile development [10] is a software development philosophy which empha-
sises people and communication over (usually heavy-weight) processes. There
are several flavours of agile development, but they agree on the following ‘agile
manifesto’ (http://agilemanifesto.org/):

— individuals and interactions over processes and tools
— working software over comprehensive documentation
— customer collaboration over contract negotiation

— responding to change over following a plan

These principles are typically realised in the following ways:

— the writing of use-case ‘stories” which capture a facet of functionality that
the customer describes in their own terms, and that become specifications
for the software developers

— rapid turnaround, where users see their requirements implemented within
weeks, fostering trust between customer and engineers

— emphasis on working, executable code instead of design documents

— simple solutions, which should never be more complicated than the current
requirements necessitate

— continuous improvement, including refactoring, lessens the cost of future
development

— test-driven development, applying automated tests to code

In this paper, we are particularly interested in the first two points, since
these are the aspects of agile development most concerned with requirements
specification.

In LHDL, domain experts and software developers used wikis to develop and
record the use-cases. Wikis [11] are websites where the content is user-editable.
Wikis lower the bar for generating web content by both providing a simplified
language for data entry, and sidestepping bureaucratic control of websites. The
wiki engines which drive them often provide additional functionality such as
versioning and notification. They are frequently used to support community
websites, like BiomedTown, since they support a very collaborative workflow.
Users can add their own material and edit the work of others, and the iterative,
distributed efforts of many users—often experts—can quickly lead to impressive
content.

3 What is involved in creating goals?

Having established that semantic web services are an appropriate way to attack
the problems LHDL has set out to tackle, we face a new inconvenience: how can
users who are not IT-experts construct the formal goal definitions? In this sec-
tion, we examine the user’s and then the middleware’s perspectives on semantic
web services, and then present criteria for reconciling the two in the context of
LHDL project.

Agile elicitation of semantic goal definitions using wikis 5

3.1 The user’s view

The user experience in LHDL is mediated by the LhpBuilder and a community
website, BiomedTown (www.biomedtown.org). The community services include fo-
rums, wikis, mailing lists and file storage, and are accessed via a web browser.
The principle desktop tool is LhpBuilder [12], a legacy application which en-
ables a user to create, store, and manipulate Virtual Medical Entities (VMES).
VMEs are collections of data such as MRI images, gait analysis data or finite
element analysis results. LhpBuilder can perform operations such as extract-
ing two-dimensional slices from volume data, virtual palpations, or combining
motion-capture data with bone images.

Some of the tasks a user may wish to carry out include: registering as a
member of BiomedTown (for any of several projects hosted there); searching
and retrieving data resources; using data resources within LhpBuilder; creating
new data resources by editing existing ones, or by defining processing pipelines
on existing data; importing and exporting data resources from LhpBuilder; up-
loading data objects to the repository; and adding meta-data to stored data
objects. These tasks are defined as ‘stories’, written by the users, and stored at
BiomedTown.

There are different classes of users, who have different relationships with the
goal generation processes. Most users will simply use existing goals, often without
realising that they are goals: for example, by submitting a normal web form, or by
invoking some functionality through LhpBuilder which is implemented through
semantic services. Another class of users will go to the lengths of suggesting
or requesting new goals, but will not take part in seeing them through the
specification process. Those who actively participate in the generation of goals
will be a small minority. Even these practitioners, who are technically savvy and
familiar with particular computational tools of their trade, do not typically write
Perl programs, as may bioinformaticians working in genetics or proteomics, nor
are they familiar with the logical languages used on the semantic web.

3.2 The machine’s view

Semantic web services require several components, which in the case of the
WSMO framework, include the following:

— wuser goal description

— domain ontologies

— web service description description of web services

— mapping goals to web services either directly or using composition

— identifying mediator requirements mismatches between ontologies, goals, and
web services identified and dealt with

of which only the first two should be of interest to the typical user, and we
will only consider the first here. WSMO, and hence IRS, impose a strict division
between goal and service. This allows us to explicitly model the user’s needs,

6 D Lambert, S Galizia, J Domingue

without regard to how it might be implemented. This allows the middleware
to better understand the context of a goal invocation, and flexibility in how to
satisfy it. An IRS goal consists of several components:

name which identifies the goal

superclasses which may anchor the goal in a goal taxonomy
inputs the parameters passed to the goal

output the returned value

capability which is a context in which the goal is applicable

Goals may have several superclasses, so the taxonomy is a graph, not a tree.
Inputs and outputs are named parameters, and each is typed by association
with a concept from an appropriate domain ontology. The capability in turn is
expressed by four kinds of axioms:

— preconditions conditions on the inputs that must be met for the goal to
execute

— postconditions conditions on the output that must be met for the goal to
complete

— assumptions conditions in the world which should hold true before invoking
the goal

— effects conditions in the world which should be true after the goal completes

Preconditions and postconditions can be verified at invocation time by the
middleware or the services themselves. Assumptions and effects are predicates
on a world state which cannot be easily verified by the middleware or services
at run time, and which may be unverifiable in principle. All four are sentences
in restricted predicate logic, and all are optional (or true by default, whichever
interpretation suits).

A goal definition in IRS’s internal representation language of OCML, and a
corresponding graphical representation are shown in figures 2 and 3 respectively.

3.3 Requirements for a goal formalisation process

Given the discrepancy between users who can describe their goals informally and
perhaps imprecisely, and the representation required by semantic middleware,
we required a process that meets the following criteria:

1. Perform requirements capture We are concerned not just with generating the
formal goal, but with the very act of discovering what the user wants.

2. Generate formal goal descriptions Identification and description of seman-
tic goals using requirements docs. necessary domain ontologies created or
reused.

3. Generate natural-language documentation Not only are formal descriptions
hard to write for non-specialists: they are not much easier to read.

4. Fasy to use Users must be comfortable with the process itself.

Agile elicitation of semantic goal definitions using wikis 7

5. Fit well with current practice. The users have a methodology which worked
well for the non-web services version of the software and which they intend
to use as they move to web services. They are happy with the results, and
comfortable with the process.

6. Support distributed development. The teams responsible for LhpBuilder and
the semantics are geographically separated, so collaboration must work at
a distance. This will often be the case in SOC environments, since one of
SOC’s key features is its distributed nature.

4 A lifecycle for agile goal specification

Our solution is iterative collaborative refinement of goals, mediated by a wiki.
Just as wikis simplify the HTML notation of websites, so we use a wiki to simplify
the entry of goals. Where the wiki engine turns simplified markup into HTML, we
use the intervention of ontology engineers to refine the informally stated, natural
language requirements into OCML ones. The lifecycle then looks like this:

. User conceives task and develops story

. User enters natural language goal definition in wiki

. Knowledge engineer clarifies the natural language

. User agrees or refines this new definition

5. Knowledge engineer creates the formal goals, retaining the natural language
as documentation

=W N =

In actual use, the process will involve more iteration, sometimes a substantial
amount, depending on circumstances.

The user’s initial goal descriptions are lodged in terms of natural language de-
scriptions. For instance, a user might say that they want to search for VMEs. We
use a template to structure the definition (see figure 1 for a completed example).
The distinction between precondition/postcondition versus assumption /effect is
not only often subtle and difficult for domain experts to comprehend, it can also
be an arbitrary distinction, since it depends on how the interface develops. This
requires input from the engineer as well as the user, and emerges in the process.
Initially, we just ask for ‘before’ and ‘after’ conditions.

Following submission, a semantic web services expert reviews the goal, refin-
ing it by making the types and conditions more concrete (i.e. aligning it with
the current ontology). The goal may suggest a class of goals which are best
separated, in which case the engineer can split the goal into several pages and
proceed with each.

The domain ontology (or ontologies) may also require extension or revision in
the light of the developing goal. The domain ontology can usefully be inspected
in a graphical format by the domain expert, to ensure the correct terms are
being used.

At this point, the engineer has essentially formalised the goal, but checks
with the user via the formalised natural language. If this is correct, the engineer

8 D Lambert, S Galizia, J Domingue

proceeds to a fully formal representation but retains the natural language def-
initions as comments. This provides documentation, which can be hyperlinked
to other pages in the wiki. This can also be used as a ‘cookbook’ by semantic
engineers when they construct other goals.

5 Example

In this section, we illustrate the process of requirements elicitation and goal
formalisation for an LHDL project goal. We use the example of a user requirement
to find the URLs of VMEs which match given search criteria.

The user begins by filling the template form: figure 1 is a goal showing
the use-case story. The ontology engineer begins by creating a new goal class,
search-goal. The user seems to want several kinds of goal, searching by one of
several criteria such as donor attributes, data type, or VME attributes, or cre-
ation attributes. The engineer divides them out into separate pages, linked from
the general search-goal superclass’s page. Common to all, however, is that every
goal returns a list of URLs: this can be recorded on the top-level goal’s page. We
will focus here on searching by acquisition attributes.

File Edit View History Bookmarks Tools Help

-@ {4 | wn.org/biomed_town/LHDL/Ihdl-management/ Consortium~—room/Ihp—goals /SearchAndRetrieveDataResources |~| | [~ rar password linux &

3 Create new data resou.. 2 Computer models can 2 search and retrieve da. 5 template — Biomed T... 3 Search and retrieve da.

e] [news | [members] [skeman] [whet
Relmbert Sy folder Sy prefersncas fiunda
oure el Horussblomeehouins i bl ding il prject gt o Corss e Yoo guser g als s searc andl e éve dacaesacrees

Smy profile % lsgaut

[contents | [Twiewy | [ear | [Fistory | [backinks | [properties ‘H_mm | [metadata |

20 new tem = | _swte vE0E
‘); Q@frontPage >>

Fil ‘\\)}» Search and retrieve data resources

navigation « fnputs: A list of @YME instances . @VME entities can be @VME Atiributes or @acauisition parameters

Wikl seareh Wikl contents recent changes

250
s ded @2 mantc o b galiase

With this service the user locates the data resources, called @ VIE he or she is Iooking for. The general structure is:

By search and rexrieve = Output list of URIS®?
= damresaurces
= Before if the search is a drill-down, then the search is limitect to the @ VIE that were found in the previous search

searchbox = After the URI of the @VME that satisfy that search criterion. The list or URI returned by the search are store into a temporary space, form where they can be
visualised to the users, copied in the Basket, or further searched for drill-down searches.
Asearch Types of search
It is possible to search using the following criteria:
messages

Search by donor attributes
(3 LHDL Ternplate (abandieri)
2007-02-18 17:12 Example: Find all data relative to 30 to 50 years-old males with no known skeletal diseases and with a bady mass index greater than &
(2 [BiormedTown] New Portal
Developmer Search by data type - chosen from the list of [data] @7 type

ortal_scminy
2007-03-16 16:17 Example: Find all CT scans; or find all tests to failure
(=3 [BlomedTown] Service
(communication (portal_admin) Search by acquisition parameters - list of @ accuis

2007-04-0212:48
Example: Find all scans with slice spacing smaller than 2 mm, generated with an axial scan

search by location/relation [[
@ |@ o026
=

Fig. 1. Wiki page with a goal in development. Note that some parameters have been
given types and are hyperlinked to the relevant pages.

The user’s story for this particular goal type says the following:

Agile elicitation of semantic goal definitions using wikis 9

Example: Find all scans with slice spacing smaller than 2mm, gener-
ated with an axial scan.

The search is expressed by a list of criteria which must be true of each URL
returned. Again, another page is built where the engineer can develop and explain
the a search filter for acquisition data:

(defclass acquisition-filter ()
((slice-spacing-max :type float)
(slice-spacing-min :type float)
(scan-type :type scan-type)))

But this is explained to the user in the following terms:

The user creates a search filter object with field which reflect maxi-
mum or minimum values that are acceptable for VMEs.

At this point, or perhaps after some iterations in which the user and engineer
reach agreement via English, the OCML descriptions are in place. The result is
fully formalised:

(defclass search-goal (lhdl-goal) 7goal
(output-role :type (list-of vme-url)))

(defclass search-by-acquisition (search-goal) ?goal
((input-role acquisition-filter :type acquisition-filter)
(has-postcondition
(kappa (7goal)
(and (has-value 7goal acquisition-filter 7filter)
(has-value ?7filter slice-spacing-max
?slice-spacing-min)
(has-value ?filter slice-spacing-min
?slice-spacing-max)
(has-value ?filter scan-type ?scan-type)
(has-value ?goal output-role ?7urls)
(forall ?7url ?7urls
(and (<= (value 7url slice-spacing)
?slice-spacing-max)
(>= (value 7?url slice-spacing)
?slice-spacing-min)
(= (value ?7url scan-type)
?scan-type))))))))

Fig. 2. The search goal in OCML.

10 D Lambert, S Galizia, J Domingue

hasdnput

requests capability has-output

has assumption. | has posteonclition | hag effect

Fig. 3. An intermediate depiction of the search goal as UML.

6 Future development

We have used this method successfully to produce real goal definitions and built
services to support them, but there is obviously scope for enhancement.

Most conspicuous is the absence of semantics, the use of which would open
several options. The process could be partially automated and brought within the
semantic web services umbrella. An obvious integration would be with semantic
wikis, in which the final ontological goal descriptions are stored in a knowledge
base and intelligently extracted into the wiki as required, instead of being merely
presented as text in the wiki [13]. Goals could be categorised simultaneously goals
at the wiki and semantic levels.

The larger granularity of web services makes it likely that case-based reason-
ing and computer-aided software engineering (CASE) might be more applicable.

If we reexamine the agile manifesto in section 2, we see that we have not
addressed all the points. Without pushing the analogy too far, we can ask what it
would mean to have ‘working code’: this might correspond to having the formal
definitions stored in a reasoner which would continually check for consistency
(and refactoring could be partially addressed by checking for redundancy).

Similar problems confront those creating service descriptions. Although ser-
vice builders are likely to be software engineers and therefore might be expected
to be more familiar with formal notations, they may still need help with particu-
lar formalisms like WSMO. Wikis provide a convenient meeting place for software
engineers and semantic web services ‘consultants’.

Agile elicitation of semantic goal definitions using wikis 11
7 Related work

The semantic services literature is replete with work on service descriptions and
useful, machine-reasonable semantics [14,15] and how to attach them to directory
services [16,17], but the question of where the semantics themselves come from
is largely ignored. Most of the talk is of describing services, or discovering them,
not defining users’ intent.

The IRS was previously used in MiAKT [18], brokering the invocation of
services for medical imaging. The two best-known bioinformatics projects using
web services are ™ Grid and BioMOBY. ™Y Grid [19] is an on-going project which
provides bioinformaticians with workflow tools which can alleviate the chores of
manually discovering genome-related web services and data stores, and the sub-
sequent programming to invoke them. They essentially worked backwards from
already implemented services, annotating them and then using the annotations
to constrain (by reasoning over input/output types) and suggest workflow con-
struction (services were also (coarsely) categorised by task type). In the ™Y Grid
project, DAML+OIL was initially used [20], but moved to using an extended
RDF [21]. In particular, they note that DAML-S does not intrinsically support
task typing. This is a disadvantage, because users think more along the lines of
tasks they must complete, and not about the inputs and outputs to them. They
have also looked at the question of workflow discovery [22]. Where ™ Grid has
generated third party annotations of existing, non-semantic web services, the
BioMOBY [23] project set out to create a unified ontology, with services strictly
adhering to the standard terminology and XML message structures. Despite the
ontology itself being developed collaboratively, in an ‘open source’ way, this ap-
proach precludes incorporation of legacy services and third-party annotation.

™Y Grid and BioMOBY are targeted at the genetics and molecular biology
communities where practitioners had long used scripting languages to call web
services. They are thus not addressing the goal formulation problem to the same
extent, since the users have already mostly formulated them, and have prac-
tice in refining them to an executable form, as well as being more conscious of
what services are available. Even then, in both projects, familiarity of the prac-
titioners with the ontology languages was considered more important than their
expressivity. LHDL has a commitment to applying a comprehensive semantic
web services framework in a domain where there has previously been little use
of web or grid technologies. The goals and practises for the new computational
environment are naturally less developed, and requirements elicitation plays a
more prominent role.

8 Conclusions

The LHDL project is driven by researchers in biomechanics who have opted to
use semantic web services technologies to simplify the provision and use of their
computational and data services. They must specify semantic web services goals,
but are not experts in the relevant formalisms. This problem has been largely

12 D Lambert, S Galizia, J Domingue

ignored in the literature, but threatens to be a bottleneck as demand for semantic
web services increases from the small number currently built by semantic web
researchers. The pragmatics of collecting these goals is not well explored in the
semantic web, and ours is just one solution of what will surely be many.

In our approach, we closed the gap by using a wiki to mediate communica-
tion between domain experts and knowledge engineers, allowing the progressive
formalisation of goals initially expressed in natural language. Since the Biomed-
Town citizens were already using the wiki to record use-cases for their agile
development process, it was a natural step to adopt the wiki for goal require-
ments recording, and then further to perform the ‘agile development’ in the wiki.
The wiki’s normal function as a communal blackboard means the final definitions
can be annotated by the users.

The point of the semantic web, of course, is to give the machine a greater
understanding so that it can reason about our problems and provide intelligent
assistance. We plan to implement this technique as a workflow within our web
services platform, and offer more hints from the middleware, both to the domain
experts and engineers.

Acknowledgements

This work was supported by the Living Human Digital Library project, European
Union programme FP6-026932.

References

1. Sleep, R.: in Vivo in Silico: First Steps. In: Grand Challenges in Computing
(GCC ’04) Conference. (March 2004)

2. Viceconti, M., Taddei, F., Van Sint Jan, S., Leardini, A., Clapworthy, G., Galizia,
S., Quadrani, P.: Towards the multiscale modelling of musculoskeletal system. In:
Bioengineering modeling and computer simulation. (2007)

3. Papazoglou, M.P.: Service-Oriented Computing: Concepts, Characteristics and
Directions. In: Proceedings of the Fourth International Conference on Web Infor-
mation Systems Engineering (WISE 03). (2003)

4. Christensen, E., Curbera, F., Meredith, G., Weerawarana, S.: Web Services De-
scription Language (WSDL) 1.1 (2001)

5. Mecllraith, S., Son, T., Zeng, H.: Semantic web services. IEEE Intelligent Systems
(2001)

6. Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., Mcllraith, S.,
Narayanan, S., Paolucci, M., Parsia, B., Payne, T., Sirin, E., Srinivasan, N., Sycara,
K.: OWL-S: Semantic markup for web services (2004)

7. Fensel, D., Lausen, H., Polleres, A., de Bruijn, J., Stollberg, M., Roman, D.,
Domingue, J.: Enabling Semantic Web Services. Springer (2006)

8. Cabral, L., Domingue, J., Galizia, S., Gugliotta, A., Norton, B., Tanasescu, V.,
Pedrinaci, C.: IRS-III: A Broker for Semantic Web Services based Applications.
In: Proceedings of the 5th International Semantic Web Conference (ISWC2006),
Athens, Georgia, USA (2006)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Agile elicitation of semantic goal definitions using wikis 13

Motta, E.: An Overview of the OCML Modelling Language. In: 8 th Workshop
on Knowledge Engineering: Methods & Languages KEML 98. (1998)

Highsmith, J., Cockburn, A.: Agile software development: the business of innova-
tion. Computer 34 (September 2001) 120-127

Leuf, B., Cunningham, W.: The Wiki Way: Quick Collaboration on the Web.
Addison-Wesley Longmann (2001)

Van Sint Jan, S., Viceconti, M., Clapworthy, G.: Modern visualisation tools for
research and education in biomechanics. iv 00 (2004) 9 14

Fischer, J., Ganter, Z., Rendle, S., Stritt, M., Schmidt-Thieme, L.: Ideas and
Improvements for Semantic Wikis. (2006)

Paolucci, M., Soudry, J., Srinivasan, N., Sycara, K.: A Broker for OWL-S Services.
In: Proceedings of the 2004 AAAI Spring Symposium on Semantic Web Services.
(2004)

Li, L., Horrocks, I.: A software framework for matchmaking based on semantic
web technology (2003)

Miles, S., Papay, J., Payne, T., Decker, K., Moreau, L.: Towards a Protocol for
the Attachment of Semantic Descriptions to Grid Services. In: Proceedings of The
Second European across Grids Conference, Nicosia, Cyprus. (2004)

Paolucci, M., Kawamura, T., Payne, T., Sycara, K.: Importing the semantic web
in UDDI (2002)

Shadbolt, N., Lewis, P., Dasmahapatra, S., Dupplaw, D., Hu, B., Lewis, H.: Mi-
AKT: Combining Grid and Web Services for Collaborative Medical Decision Mak-
ing. In: Proceedings of The UK e-Science All Hands Meeting 2004. (2004)
Stevens, R.D., Robinson, A.J., Goble, C.A.: myGrid: personalised bioinformatics
on the information grid. Bioinformatics 19 Suppl. 1 (2003) i302-1304

Wroe, C., Stevens, R., Goble, C., A.; R., Greenwood, M.: A Suite of DAML+OIL
Ontologies to Describe Bioinformatics Web Services and Data. International Jour-
nal of Cooperative Information Systems 12(2) (2003) 197224

Lord, P., Bechhofer, S., Wilkinson, M., Schiltz, G., Gessler, D., Hull, D., Stein,
C.G.L.: Applying semantic web services to bioinformatics: Experiences gained,
lessons learned. In Mcllraith, S.A., Plexousakis, D., van Harmelen, F., eds.: The
Semantic Web ISWC 2004. Volume 3298 of Lecture Notes in Computer Science.,
Springer (November 2004) 350-364

Goderis, A., Li, P., Goble, C.: Workflow discovery: the problem, a case study from
e-science and a graph-based solution. In: International Conference on Web Services
(ICWS ’06). (September 2006) 312-319

Wilkinson, M.D., Links, M.: BioMOBY: An open source biological web services
proposal. Briefings in bioinformatics 3(4) (2002) 331 341

