Skip to main content

Area Localization Algorithm for Mobile Nodes in Wireless Sensor Networks Based on Support Vector Machines

  • Conference paper
Mobile Ad-Hoc and Sensor Networks (MSN 2007)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 4864))

Included in the following conference series:

Abstract

Many applications in wireless sensor networks require sensor nodes to obtain their absolute or relative positions. Although various localization algorithms have been proposed recently, most of them require nodes to be equipped with range measurement hardware to obtain distance information. In this paper, an area localization method based on Support Vector Machines (SVM) for mobile nodes in wireless sensor networks is presented. Area localization is introduced as an evaluation metric. The area localization procedure contains two phases. Firstly, the RF-based method is used to determine whether the nodes have moved, which only utilizes the value change of RSSI value rather than range measurement. Secondly, connectivity information and SVM algorithm are used for area localization of mobile nodes. The area localization is introduced to trade off the accuracy and precision. And area localization, as a new metric, is used to evaluate our method. The simulation experiments achieve good results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hofmann, W.B., Lichtenegger, H., Collins, J.: Global Positioning System: Theory and Practice, 2nd edn. Springer, New York (1993)

    Google Scholar 

  2. Lance, D., Kristofer, P., Laurent, E.G.: Convex Position Estimation in wireless Sensor Networks. In: Proceedings of IEEE INFOCOM, pp. 1655–1663. IEEE, USA (2001)

    Google Scholar 

  3. Paramvir, B., Venkata, N.: RADAR: An In-Building RF-Based User Location and Tracking System. In: IEEE InfoCom 2000, vol. 2, pp. 775–784 (2000)

    Google Scholar 

  4. Harter, A., Hopper, A., Steggles, P.: The anatomy of a context-aware application. In: Proceedings of MOBICOM 1999, Seattle, Washington, pp. 59–68 (1999)

    Google Scholar 

  5. Girod, L., Bychovskiy, V., Elson, J., Estrin, D.: Locating tiny sensors in time and space: A case study. In: Werner, B. (ed.) Proceeding of 2002 IEEE International Conference on Comoyter Design: VLSI in Computers and Processors, pp. 214–219. IEEE Computer Society, Freiburg, Germany (2002)

    Chapter  Google Scholar 

  6. Girod, L., Estrin, D.: Robust range estimation using acoustic and multimodal sensing. In: IROS 2001. Proceeding of the IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 3, pp. 1312–1320. IEEE Robotics and Automation Society, Maui (2001)

    Google Scholar 

  7. Priyantha, N.B., Chakraborty, A., Balakrishnan, H.: The cricket location-support system. In: Proceedings of the 6th ACM MOBICOM, pp. 32–43. ACM, New York, USA (2000)

    Google Scholar 

  8. Niculescu, D., Nath, B.: Ad hoc positioning system (APS) using AoA. In: Proceedings of IEEE INFOCOM 2003, pp. 1734–1743 (2003)

    Google Scholar 

  9. He, T., Huang, C., Blum, B.M., Stankovic, J.A.: Range-free localization schemes in large scale sensor networks. In: Proceedings of the Ninth Annual International Conference on Mobile Computing and Networking, pp. 81–95 (2003)

    Google Scholar 

  10. Niculescu, D., Nath, B.: Dv based positioning in ad hoc networks. J. Journal of Telecommunication Systems 22, 267–280 (2003)

    Article  Google Scholar 

  11. Nagpal, R., Shrobe, H., Bachrach, J.: Organizing a global coordinate system from local information on an ad hoc sensor network. In: Zhao, F., Guibas, L.J. (eds.) IPSN 2003. LNCS, vol. 2634, pp. 333–348. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  12. Duc, A., Nguyen, T.: Localization in Wireless Sensor Networks based on Support Vector Machines. Submitted to IEEE Transactions on Parallel and Distributed Systems (2007)

    Google Scholar 

  13. Hsu, C.W., Lin, C.J.: A comparison of methods for multi-class Support Vector Machines. IEEE Transactions on Neural Networks 13, 415–425 (2002)

    Article  Google Scholar 

  14. Chang, C., Lin, C.: LIBSVM – A library for Support Vector Machines, National Taiwan University, http://www.csie.ntu.edu.tw/cjlin/libsvm

Download references

Author information

Authors and Affiliations

Authors

Editor information

Hongke Zhang Stephan Olariu Jiannong Cao David B. Johnson

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yang, B., Yang, J., Xu, J., Yang, D. (2007). Area Localization Algorithm for Mobile Nodes in Wireless Sensor Networks Based on Support Vector Machines. In: Zhang, H., Olariu, S., Cao, J., Johnson, D.B. (eds) Mobile Ad-Hoc and Sensor Networks. MSN 2007. Lecture Notes in Computer Science, vol 4864. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77024-4_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77024-4_51

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77023-7

  • Online ISBN: 978-3-540-77024-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics