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Abstract. The notion of bisimulation has been used in various fields including
Modal Logic, Set theory, Formal Verification, and XML indexing. In this paper
we present the first algorithm for incremental maintenance of maximum bisim-
ulation relation of a graph with respect to changes in the graph. Given a graph,
its maximum bisimulation relation, and the changes in the graph, we determine
the maximum bisimulation relation with respect to the changed graph by com-
puting the changes in the given bisimulation relation. When the change in the
graph induces small changes in the maximum bisimulation relation, our incre-
mental algorithm is able to update the bisimulation relation on average an order
of magnitude faster than the fastest available non-incremental algorithm. Prelim-
inary experiments demonstrate the effectiveness of our algorithm. Our algorithm
finds extensive use in verification where the specification changes over time, and
XML indexing in database where the index structure, obtained by bisimulation
on XML graph structure, needs to be maintained with respect to changes in the
XML documents.

1 Introduction

The notion of bisimulation equivalence is important in many fields such as Modal Logic,
Concurrency Theory, Set Theory, Formal Verification, XML Indexing, and Game The-
ory. Informally, a pair of automata M, M’ are said to be bisimilar if for every transition
in M there exists a corresponding transition in M/’ and vice versa. Milner and Park
introduced this notion in Concurrency theory for testing observational equivalence in
CCS. Van Benthem [3] used it as an equivalence principal between Kripke Structures.
Bisimulation in its various forms like strong or weak has also been used for check-
ing equivalence between finite and infinite transition systems [9]. Verification systems
such as the Spin [[I1]], Concurrency Workbench of the New Century (CWB-NC) [53]] and
CADP incorporate bisimulation checkers in their tool sets. In the area of formal
verification, the notion of bisimulation has been primarily used to minimize the state
space of the system’s description which serves as an important factor in compositional
and non-compositional model checking.

Many systems where bisimulation is used are dynamic in nature. For example, XML
documents are indexed by its minimum bisimilar equivalent graph. As XML documents
are updated in the database, their indices need to be updated too. In the area of verifi-
cation, software systems undergoing verification evolve as a result of bug fixes and re-
quirement changes. Similarly, specifications of security protocols and hardware designs
required for verification are also changed over time. However, most of the verification
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systems use their techniques as a whole on the changed input. They do not consider the
changes in the input, although in many cases the changes in the specification or soft-
ware have small effect to the output. In these cases, incremental algorithms are a way
to efficiently recompute the output with respect to the changes in the input.

In this paper, we present an incremental bisimulation algorithm which, given a graph
G, its maximum bisimulation relation P, and the changes (AG) in the graph, updates
the old bisimulation relation to compute the maximum bisimulation relation with re-
spect to graph (G U AG). To the best of our knowledge, this is the first algorithm which
incrementally recomputes the maximum bisimulation relation.

Our algorithm is based on two algorithms for finding maximum bisimulation rela-
tion of a graph, viz. Paige Tarjan’s algorithm [[16] (abbreviated as PTA) and its recent
improvement by Dovier et. al. [6] known as fast bisimulation algorithm or FBA. PTA
and FBA solve relational coarsest partition problem which is equivalent to finding max-
imum bisimulation relation of a graph. We assume that the initial bisimulation relation
(P) is computed by FBA. After the changes to the graph G, our algorithm tries to con-
fine the over-approximation that can occur while recomputing P.

The rest of the paper is organized as follows. We formally define the notion of bisim-
ulation and present an overview of PTA and FBA in Section [2l We present our incre-
mental bisimulation algorithm in Section[3l Section[d] demonstrates the effectiveness of
the incremental algorithms. We compare the various strategies used by our algorithm
with other incremental algorithms in Section 5l We conclude with some direction of
future work in Section[6l

2 Preliminaries

In this section we formally describe the notion of bisimulation equivalence and its rela-
tion to the relational coarsest partition problem (abbreviated as RCPP). We also discuss
an algorithm which is closest to our algorithm. Below we define the notion of bisimu-
lation using a graph theoretic view.

Definition 1. Given two graphs G1 = (N1, E1) and Go = (Na, Es), a bisimulation
between G and Gy is a relation b C Ny x Ny such that:

(]) Ul bUQ N <U1,1}1> (S E1 = 3’02 S NQ(Ul b’Uz N <UQ,U2> S EQ)
(2) u1 bug A <'LL2,'U2> € By = Ju, € NQ('Ul b vy A <’U,17’Ul> S El)

Given a graph G there can be many bisimulation relations between G and G. However,
we are interested in the maximum bisimulation relation which is unique and always
exists. Also the problem of recognizing if two graphs are bisimilar and the problem of
determining the maximal bisimulation on a graph are equivalent.

The problem of our interest is that of finding minimum graph bisimilar to a given
graph G(N, E). This problem was studied by Kanellakis and Smolka in connec-
tion with testing congruence of finite state processes in the calculus of communicat-
ing systems (CCS) [[14]. They presented an algorithm requiring O(| E|.|N|) time and
O(|E| + |N|) space. In [16] Paige and Tarjan solved the relational coarsest partition
problem which is equivalent to the maximum bisimulation equivalence problem.
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RCPP is described in terms of set theory. Let U be a finite set. A partition P of U is
a set of pairwise disjoint subsets of U whose union is all of U. The elements of P are
called its blocks. If P and @ are partitions of U, @ is a refinement of P if every block
of @ is contained in a block of P. The RCPP is defined as follows: given a partition P
of U and a binary relation E on U, find the coarsest partition refinement () of P such
that for each pair of blocks By, Bs of @), either B; C E-'Byor BiNE"'By = ¢ (in
this case B is called stable with respect to B2).

Given a graph G = (N, E), if @) is a partition of its nodes N, we can obtain a
bisimulation relation b as w b v iff 3B € Q,{u,v} C B. Also given a bisimulation
relation (an equivalence relation) of G, the blocks of the stable partition () are the
equivalence classes. Finding maximum bisimulation of a graph thus corresponds to
the finding coarsest partition of the set of nodes in the graph with respect to its edge
relation [[13].

Our incremental bisimulation algorithm is based on Paige-Tarjan’s algorithm and its
subsequent improvement by Dovier et. al in [6]. Below we give a brief overview of the
algorithms presented in [16] and [6].

Paige Tarjan’s Algorithm (PTA). PTA is motivated from the algorithm presented by
Hopcroft [10] for solving the problem of minimization of the number of states in a given
finite automaton which is equivalent to that of determining the coarsest partition prob-
lem stable with respect to a set of functions. Hopcroft’s solution is based on negative
strategy where in each step the blocks of the partition are split if they are not stable. Fol-
lowing this negative strategy which is normal in greatest fixed-point computation, PTA
uses a primitive refinement operation called split which generalizes the split operation
used in Hopcroft’s algorithm. For any partition () and subset S C U, the split(S, Q) is
refinement of () obtained by replacing each block B € @ such that BN E~1S # ¢ and
B — E~1S # ¢ by the two blocks BN E~!Sand B — E~'S.

However, a straightforward use of splitting strategy where in each step union of some
of the blocks of the current partition is used as splitter, yields an algorithm whose time
complexity is O(|E|.|N|). Thus the refined algorithm exploits the idea of Hopcroft’s
“process of smaller half” for better way to find splitters to attain worst-case time com-
plexity O(| Ellog(|N1)).

Algorithm. Given an initial partition P of U, the algorithm finds a coarsest stable par-
tition () of P. In addition to the current partition @), another partition X is maintained
such that ) is a partition of X, and () is stable with respect to every block of X . Initially
@ = P, and X is the partition containing U as its single block. The algorithm consists
of repeating the following steps until @ = X.

Step 1: Find a block S € X that is not a block of Q.
Step 2: Find a block B € @ such that B C S and |B| < |S|/2. Replace S within X by
the two sets B and S — B; replace @ by split(S — B, split(B, Q)).

Fast Bisimulation Algorithm. In [6] Dovier et. al. showed improvement over PTA.
Their algorithm, known as FBA, reaches a linear worst case complexity for acyclic
graph. They also showed the effectiveness of the algorithm for model checking pack-
ages. In the paper the authors proposed a strategy which uses positive ([17]) and
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negative strategies ([16]) to obtain algorithmic solution to RCPP. The algorithm has
the same worst-case complexity as PTA. The initial partition is generated based on a
notion of rank where if two nodes are bisimilar, their ranks must be the same (converse
is not true). Thus using rank, the algorithm divides the graph to an over-approximate of
the desired coarsest partition.

In the general case when the graph is not well-founded the ranking is done by SCC
decomposition ([6]) of the graph using Kosaraju and Sharir’s SCC computation algo-
rithm [22]. To find SCCs in a graph G, the algorithm first traverses G 1, the transpose
of G, and gives post-order numbers to the vertices in G. Then it traverses G, starting
from the vertex with the highest post-order number; this traversal builds a spanning tree
for one SCC of G. Whenever the traversal ends, the algorithm begins a new traversal
from the unvisited vertex with the highest post-order number, thereby building a span-
ning tree for another SCC. This process continues until all vertices have been visited,
enumerating all SCCs of G.

For each node n, let ¢(n) denote the SCC containing node n. The idea is to separate
the graph into well-founded and non well-founded parts. The boolean flag WFlag(u)
denotes whether the node u is well-founded. The well-founded part (WF(G)) is defined
as the collection of nodes in G whose transitive closure is acyclic. The other nodes
in graph form the non-well-founded part of the graph. Then ranking of each node is
defined below.

Definition 2. Let G = (N, E) and its SCC decomposition graph is given by G*°¢ =
(¢, E5¢¢). The rank for each node is defined as follows:

r(n) = 0whennis aleafin G [Case 1]

r(n) = —1 when ¢(n) is a leaf in G*° and n is not a leaf of G [Case 2]

r(n) = max({1 4+ r(m) : {c(n),c(m)) € E*¢,;m € WF(G) [Case3.1]}
U{r(m) : {c(n),c(m)) € E*¢,m ¢ WF(G) [Case 3.2]})

At each stratum defined by the ranking strategy, the algorithm uses PTA or Paige-
Tarjan-Bonic algorithm ([17]) to refine the stratum. Then it uses the blocks of this
stratum to refine the blocks of higher ranked strata using split operation.

We now present an existing work in incremental bisimulation where an incremental
algorithm for maintaining XML structural indices is presented ([25]]). The initial index
graph is computed using PTA applied to the data graph (XML structure). When addi-
tion/deletion of edges are done in the data graph an incremental algorithm which consist
of a Split phase followed by a Merge phase is applied to update the index graph. Our in-
cremental algorithm has similar Split and Merge phases. However, one of disadvantage
of their incremental algorithm is that it does not compute the coarsest partition when the
data graph is cyclic. Thus in a general sense the algorithm is not an incremental bisim-
ulation algorithm as it does not maintain maximum bisimulation. Instead it maintains a
partition called maximal bisimulation which coincides with the maximum bisimulation
when the data graph is acyclic. The authors have mentioned that in case of maintain-
ing XML structural indices, where most XML structures are acyclic, their algorithm
produces the minimum index. Another drawback of their algorithm is that they do not
take advantage of FBA when the graph is acyclic which is almost the case for XML
data graph.
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3 Incremental Bisimulation Algorithm

In this section we present our Split-Merge-Split (SMS) algorithms for incremental
maintenance of relational coarsest partition. A non-incremental strategy can incorpo-
rate any changes in the graph by recomputing its coarsest partition again using the FBA
[6] (from-scratch algorithm). However, such re-computation is often wasteful as small
changes to the graph can potentially result into small changes to its coarsest partition.
As a result, the entire coarsest partition need not be recomputed. The aim of our incre-
mental algorithms is to identify the parts of the existing coarsest partition that need to
be changed, and recompute them.

As the name suggests, the SMS algorithms have three phases, although in some
cases the last split phase is not required. Let GG be the initial input graph and G’ be the
new graph after the changes and their corresponding relational coarsest partitions are
given as X and X'. Also after Split, Merge, and Split phases of the SMS algorithm, the
corresponding partitions obtained be X, X5, and X3. We use small letters to denote
nodes and capital letters to denote blocks, block(u) to denote the block which has the
node u, — to denote the edge relation among nodes, and = is the edge relation among
blocks where an U = V iff Ju — v, block(u) = U, and block(v) = V. We use the
notation U = V' to denote that no block edge exists from U to V.

Our single edge addition algorithm SMS-ADD is shown in Figure [I(e). Initially
the algorithm checks whether there already exists a block edge between block(u) and
block(v) in which case the addition of « — v has no effect. The first Split phase of our
algorithm is realized using the function RankedSplit (Lines 6, 66-74). The algo-
rithm is same as the iterative split strategy of PTA, the only difference being the blocks
for splits are chosen in increasing order of ranks. The partition X; obtained after the
split phase is characterized using the following Lemma.

Lemma 1. If two nodes are not bisimilar in G’ i.e. they belong to different blocks in
X', then they belong to the different blocks of X;.

The Merge phase performs two operations. Firstly, it incrementally recomputes the
ranks and well-founded flags of the nodes. Secondly, it merges the blocks of partition
X to obtain the partition X» which is characterized using the following Lemma.

Lemma 2. If two nodes are bisimilar in G’ i.e. they belong to same block in X', then
they are in the same block of X.

The 7/(u) and WFlag' (u) represent the new values of the rank and well-founded flag
of node u, respectively. When an edge is added between a non well-founded node
and a well-founded node (Lines 9-11), the new rank of w is given by the expression
in Line 9. Any changes in the rank of the non well-founded node is propagated to
the non well-founded parts of the graph by the function propagate nwf (u) which
uses Sharir’s SCC decomposition algorithm starting from node w. In contrast, the func-
tion propagate wf (u) propagates the change in rank of a well-founded node u to
the well-founded parts of the graph in a bottom-up fashion (using topological order of
non-updated ranks) and if necessary propagates any changes to the ranks of non-well
founded nodes by calling function propagate nwf. The details of these two func-
tions are not provided in this paper.
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1SMS-ADD(node u, node v)

2
3

if (block(u) = block(v))
return;

4Add the edge u— v to G

5
6 RankedSplit (block(v))

7
8

39
40
41
2
43
44
45
46

if —WFlag(u) and WFlag(v)
r’(u) = max {r(u),r(v) +1}
if ' (u) # r(u)
propagate nwf(u)
MergePhase(block(u) ,block(v))
else
if r(u) > r(v)
MergePhase (block(u) ,block(v))
else
B, = block(u), B, = block(v)
Visit blocks starting from u in
G~! between blocks of ranks
r(u) and r(v). Mark each block
B as visited(B). Note whether
it reaches B, to form a cycle.
if cycle formed
WFlag' (u) = false
r’(u) = re — compute rank
propagate nwf(u)
MergeAndSplitPhase ()
else
if WFlag(u) = true
if WFlag(v) = true
r'(u) =r(v) +1
propagate wf(u)
else
7' (u) = maz{r(u),r(v)}
propagate nwf(u)
else
' (u) = r(v)
if v (u) # r(u)
propagate nwf(w)
MergePhase(B, ,B,)

propagate wf(u)
Recompute ranks of successor
of v based on priority of their
old ranks [in bottom—up order]
and propagate recursively
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48 MergePhase(block U, block V)
49 VUL,ULl =V

50 if MergeCond(U1,U)

51 rec merge(U1,U)

52

s3rec merge(B1l, B2)
54 merge the blocks Bl and B2
55 vC1,C1 = B1, VC2,C2 = B2

56 if (MergeCond(C1,C2))
57 rec merge(C1,C2)
58

59 MergeCond(B1,B2)

60 Bl and B2 are not mergeable

61 if label(B1) # label(B2)

62 V Bl= B2

6V r(Bl) # r(B2)

64 V 3 a causal—splitter of Bl and B2

66 RankedSplit (block B)

67 X=P, Q=P

68 % P is the current partition
69 split (B,Q);

70 Until Q=X

71 Perform two steps of PTA

72 with Step 1: choosing S

73 with minimum rank from X that
74 is not a block of Q

75
76 MergeAndSplitPhase ()

77 % Merge phase

78 Perform DFS on G in order of
79 decreasing finishing times of
so the last DFS.

81 During the DFS Merge the blocks
82 visited using the non—merging
83 condition as MergeCond and

84 recursively propagate merge as
85 shown in function rec merge

86 All the blocks in traversed

87 are put in one X partition

88 % Split Phase

89 Perform PTA in X partition

90 and propagate any split using
91  RankedSplit

92

93 propagate nwf(u)

94 Perform SCC finding algorithm from
95 node u to re—compute non

96 Well-Founded ranks

©)]

Fig. 1. Example 1 (a, b, ¢, d); (e) Incremental Addition Algorithm
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Note that, the case in Lines 11-13 is the only case where only well-founded flags
determine that a new SCC creation is not possible due to addition of the edge, which is
also true when 7(u) > r(v) (Line 15). In all other cases, the algorithm performs a DFS
traversal (Lines 17-22) on G~ to know whether an SCC is formed due to addition of
the edge. If the SCC is formed, the algorithm recomputes the rank of the node u based
on well-founded flags and ranks of its predecessors using Definition 2l Otherwise, the
ranks of the nodes are updated as shown in Lines 29-40. For example, if v and v are
both well-founded and r(u) < r(v), then u — v addition increases the r(u) to r(v) +
1 (follows from Case 3.1 of Definition ). The change is propagated using function
propagate wf (u). The other two cases follow from the Case 3.2 of Definition 2]

The aim of finding new SCC is based on two important reasons, (i) two different
merge algorithms are needed based on whether a new SCC is created, and (ii) the last
split phase is not required when no new SCC is formed.

When no new SCC is formed, the Merge phase (Function MergePhase) of the
algorithm considers each of the predecessor blocks of block(v) to merge with block(u).
The intuition of this merge is as follows: due to the absence of u — v, a predecessor
block of block(v), say U1, which contained u got splitinto V1 = U1NE~!{block(v)}
and block(u) using block(v) as splitter. Thus after addition of v — v, the algorithm
needs to reform U1 by merging V'1 and block(u). Due to this merge, their predecessor
blocks may also get merged. However, it is not always possible to merge two blocks B
and B’ as the blocks need to have the same labels and ranks (in the updated graph). Also
if there exists a block C' which has a predecessor block same as exactly one of blocks B
and B’ then blocks B and B’ should not be merged (see Function MergeCond). The
block C'is called causal-splitter of the blocks B and B’, and is formally defined below.

Definition 3 (Candidates for causal-splitter). A block C' is called a causal-splitter of
block B and B', if

- B=Cand-B" = C,or B' = Cand -B = C.
— C'is a block in the partition X'.

When no new SCC is created due to the addition of the edge, the second condition of the
causal-splitter trivially holds as the blocks are merged from lower ranked strata to higher
ranked strata, and causal splitters are chosen from already stabled lower ranked strata.
However, in general, the causal-splitter block may get affected due to the transitive
effect of merging blocks B and B’. If due to the propagation of merging of B and B’,
C' gets merged with C”, then the condition of having predecessor block edge to exactly
one B and B’ may no longer hold. This is only possible when addition of edge creates
anew SCC in the updated graph, in which case judicious selection of causal-splitters is
required, a case explained in more detail with the following example.

Consider the graph in Figure[T(a) with labeling set {{no}, {n1,n3,n5}, {na,na}},
initial partition in Figure[[(b), and addition of a new edge ny — ns. As the rank of ny
is 1 and that of ng is 4, an SCC can be potentially formed because of the addition.

In the first split phase, as block B4 only contains a single node, it is not split.
The split phase ends here as no further splits are possible. The first DFS traversal
of blocks from block(u) in G~ till the ranked stratum containing block(v) (in this
case blocks B1, Bs, B3, B4) confirms creation of a new SCC. Next, the ranks of the
nodes n1,n9,n3,ny are updated to 1. Then the function MergeAndSplitPhase
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determines the new SCC in the second DFS on G. At the finish time of second DFS of
each block, it is tried to merge it with other visited blocks of the SCC. For each label
a list of blocks with that label is maintained where the blocks cannot be merged with
each other. Firstly, B is put to label-1 list. Then, By is put to the label-2 list. Next, Bs
is considered for merging with B; as it has the same label as B;. Note that, B; = B»
and -B3 = Bs, and By = By and -B3 = Bj. But as By and By are marked during
the first DFS visit, each of them can be potentially merged to some other visited blocks
and thus can be potentially changed. For example, blocks By and B4 can be potentially
merged and in that case none of them should be used as a causal-splitter. Thus B3 and
B are merged to obtain a block Bgs. However, as there exist blocks that can be potential
causal-splitters, we are introducing over-approximation in the merge phase.

The above discussion hints at a strategy for selecting a causal splitter which preserves
the second condition of causal-splitter. A block is selected as causal-splitter if it is not
visited in the first DFS as it is not going to be affected because of the addition. This
is the case when the next block B, is considered for merging. Although it has same
label as By, due to the existence of the causal-splitter B it is not merged with Bs. The
resultant partition is shown in Figure [[c). Although not shown in this example, the
effect of merging two blocks may lead to merging of their predecessors blocks in
the unvisited region of first DFS.

It can be proved that in case where an addition of an edge to a graph does not create
a cycle, we do not require the last split phase of SMS algorithm. The reason is that the
merging done in merge phase is not an over-approximation. In general, the merge phase
can cause over-approximation of merging whichisrectifiedin thelast split phase. The PTA
is run on those visited blocks and propagate the splits strata-by-strata. The final partition
is shown in Figure[I{d). The below theorem expresses the correctness of the algorithm.

Theorem 1. The partitions X3 and X' are equal.

Single Edge Deletion: The single edge deletion algorithm (SMS-DEL) has the similar
Split, Merge, Split phases like the SMS-ADD algorithm. They differ only in the rank re-
computation part and in the merging phase where after recomputing ranks if a block’s
rank is changed to 0, it is merged with the other block of rank 0.

Consider deletion of the edge ny — njs after addition of edge ny — n3 in example
in Figure [[(a). The first split phase is ineffective. In the merge phase, Sharir’s SCC
computation algorithm is performed to update any rank, and merge all the blocks in the
same rank as v and reachable to u. Note that unlike in the case of addition, the blocks
of nodes n; and ns, ne and ny are merged as the connection to the causal-splitter block
is deleted. This also serves as an example where the resultant partition of the merging
phase is the final partition.

Our SMS algorithm can be adapted to multiple edge addition and deletion, subgraph
addition and deletion, and update. These algorithms have the same three phases and
DEFS traversal where each phase and DFS traversal need to be done for all changes
before starting processing of other phases. The main difference lies in the computation
of ranks. Due to want of space we do not discuss these algorithms here.

Complexity. The complexity of the first split phase, rank re-computation, merge phase,
last split phase are O (| E1|log(|N1|), O(|Aw rllog(|Aw r|) + (| Enws| + | Nnwyl)), and
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O(|E"||N']), and O(|E'|log(|N'|)) respectively. In the above expressions Ay is the
set of well-founded nodes whose ranks got changed, (N1, E1) and (N', E’) are the sub-
graph of the initial graph G = (N, E') whose blocks got split and merged respectively,
and (Npw ¢, Enwy) is the non-well founded subgraph of G.

4 Experimental Results

We measured the performance of our algorithms by implementing those on top of the
source code available from one of the author’s website of [[6]. The data structures used
in their implementation was not changed. We ran our algorithms on benchmarks men-
tioned in various works for measuring effectiveness of bisimulation problems. Perfor-
mance measurements were taken on a PC with 1.4Ghz Intel Core Duo processor with
512MB of physical memory running Windows XP.

We present the performance result of our insertion and deletion algorithm on the
synthetic benchmarks described below. Each benchmark has different characteristics
which have different effects on our algorithm. In these two benchmarks, we noted the
average (over all edges) incremental deletion and insertion time as percentage of from-
scratch time to be 10%. The results below will highlight the range of these timing results
and reason for such distribution. We used an extra priority queue data structure apart
from the data structure of FBA implementation, but it uses the memory of FBA. So our
algorithm does not incur any extra memory overhead compared to FBA.

Benchmark 1. Simple Binary Tree. This benchmark (Benchmark 2 of [6]) consists of a
binary tree with 262143 nodes and has two different labels for left and right subtree as
shown in Figure 2l a) with node numbers and initial blocks. The initial FBA time is 0.3s.
The height of each node gives the ranks. We added one edge and took the incremental
time, and compared it with the time taken by FBA for the changed graph. We also
show the time for SMS-DEL to delete the added edge. Thus SMS-DEL was not tried
on Benchmark 1 but on a graph that results after an added edge to the benchmark. We
provide the edges which showed the minimum and maximum time taken by SMS-ADD
for three different cases based on relation of ranks and whether the added edge produces

Edge r(u) >r(v) r(u) <r(v)[nocycle] r(u) <r(v)lcycle]
Addition Min Max Min Max Min Max
u— v 0.01 7.87 0.01 8.22 1.00 20.13
(u,v)  (1,5) (98302,196607) (1,2) (196606, 98303) (4,1) (196606,1)
Deletion 1.52 7.10 1.48 2.96 1.44 4.69
/’ (b)
;)}2767 4915(C : ?49151 %65534 Edge 7(u) > r(v) r(u) < r(v)[nocycle] r(u) < r(v)[cycle]
Addition Min Max  Min Max Min Max
(o535 9830 )(@9%303 @300 T T 054 0.54 025 12.66 100 20.00
O131071 - ()180003 (wv) Any Any (42)  (32767.2)  (62) (655342)
(a) Deletion 0.54 0.54 16.00 1.07 27.00 28.00

()

Fig. 2. (a) Benchmark 1. Tree; (b) & (c) Incremental times as % or From-scratch times for Bench-
mark 1 and 2 respectively
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a new cycle or not. The result is shown in Figure 2b). As expected SMS-ADD takes
maximum time in case the addition of edge creates cycles. Most of time in this case is
attributed to the Merge phase. Note that localized addition yields lesser time than the
non-local changes.

Benchmark 2. This benchmark is a downward closed tree (Test 2 of [7]]) of 65535 nodes
obtained by closing downward a binary tree using the rule: if (m, n) and (n, p) are edges
then add a new edge (n, p) and two different labels are put to the alternate nodes in each
ranked strata of the tree. The initial FBA time is 0.5s. The result for this benchmark is
shown in the Figure Di(c). Note that addition of edge (65534 — 2) takes 20% of from-
scratch time and this time is spent on MergeCond function which checks for causal
splitter which in turn is due to large number of out-degree of each node. When deletion
occurs for the same edge, it takes 28% times of the from-scratch time. Deletion of
edge (65534,2) will first merge the block of node 65534 with the blocks which consists
of rest of even numbered nodes in rank 0. To propagate the effect of this merging the
rec merge function checks all nodes which are predecessors of the nodes in the block
of rank 0. As there are large number of such edges to be considered the Merge phase
takes large amount of time. This high overhead of Merge phase is attributed to the data
structure selection in our implementation. If we keep block edges in our implementation
then merge time is reduced; however, in that case Split phase time is increased. We use
memoization technique to reduce some overhead for not having the block edges.

The above benchmark in-fact serves as an extreme case of overhead of the merge
phase for single change. In most of VLTS benchmarks ([4]) the in-degree and out-
degree of nodes are comparably less than this benchmark. On average the SMS algo-
rithm took 3.94% of from-scratch time for VLTS benchmark vasy 386 1171 on 400
random deletion of edges. For 400 random insertion of edges (for each case one edge
was not loaded initially and has been incrementally added), the SMS algorithm took
6.93% of from-scratch time for the same benchmark.

We note that for multiple changes in the graph which affect independent parts of the
initial partition, the overhead of the merge phase can accumulate to exceed the from-
scratch time. Thus it is not possible for our incremental algorithms to perform always
better than the from-scratch algorithm when multiple changes are present.

5 Related Work

An important characteristic of incremental bisimulation problem is that adding or delet-
ing an edge in the input graph can potentially result in splitting and merging of blocks
in the partition. Thus incremental bisimulation problem is non-monotonic in nature.
This is in contrast to the incremental algorithms in many works in view maintenance
([81), logic programming ([18]]), model checking ([23]]), where the effect of addition and
deletion is monotonic in nature. The problem is also different in nature to incremental
functional programming ([[1]]) where changes can be propagated using in-place updates.
Also incremental bisimulation problem cannot be reduced to incremental evaluation of
logic programs with stratified negation as the nature of non-monotonism in incremental
bisimulation resembles to non-stratified negation in logic programming. The only work
we are aware of incremental evaluation of logic programs with non-stratified negation
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is in [20]. The logic program encoding ([2]) of bisimulation involves a builtin findall
and with our earlier experience showed that the incremental algorithms do not produce
great efficiency when builtins exist.

The idea of having different phases to overapproximate or underapproximate fixpoint
before converging to the new fixpoint is not new. Generally in incremental least fix-
point (positive strategy) computation, the first phase is a deletion phase (or negative
strategy) which is used to bring the incrementally computed fix-point equal or below
the final fixpoint, and second phase is used to converge to the final fixpoint ([8/18123]]).
For incremental greatest fixpoint computation (negative strategy) the first phase uses the
positive phase which is used to bring the current fixpoint above the final fixpoint point
([24])) in the fix-point lattice. In our case, as the from-scratch algorithm (FBA) uses split
which is a negative strategy; a positive (merge) followed by a negative strategy (split)
will suffice. However, we have incorporated a split phase before the merge-split phase
to reduce the size of the blocks that are merged as merge operation is expensive.

We have used several strategies like labels, ranks, and causal splitter to reduce the
overapproximation done in the merge phase. The ranks define regions such that blocks
can only be merged within each region. The idea of regions is used in other incremental
algorithms ([21]]) where it is typically used to nullify effect of additions and deletions in
each region before propagating the effect to other regions. The idea of finding causal-
splitter which is not cyclically dependent on the blocks to be merged to restrict merge
propagation is similar to the idea of primary and acyclic support used for restricting
deletion propagation in incremental pointer analysis ([19]).

6 Conclusion

In this paper we presented an incremental algorithm to recompute maximum bisimula-
tion relation. We demonstrated the effectiveness of the algorithm on several graph ex-
amples. In future we will incorporate our implementation to model checkers and XML
database management system. The SMS algorithm presented here globally recomputes
bisimulation relation. We plan to extend our solution to local bisimulation computation,
and to infinite and symbolic graph structure.
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