
Secretive Birds:

Privacy in Population Protocols

Carole Delporte-Gallet1, Hugues Fauconnier1,
Rachid Guerraoui2, and Eric Ruppert3

1 LIAFA, University Paris 7-Denis Diderot
2 School of Computer and Communication Sciences, EPFL

3 Department of Computer Science and Engineering, York University

Abstract. We study private computations in a system of tiny mobile
agents. We consider the mobile population protocol model of Angluin et

al. [2] and ask what can be computed without ever revealing any input
to a curious adversary. We show that any computable predicate of the
original population model can be made private through an obfuscation
procedure that exploits the inherent non-determinism of the mobility
pattern. In short, the idea is for every mobile agent to generate, besides
its actual input value, a set of wrong input values to confuse the curious
adversary. To converge to the correct result, the procedure has the agents
eventually eliminate the wrong values; however, the moment when this
happens is hidden from the adversary. This is achieved without jeopar-
dizing the tiny nature of the agents: they still have very small storage size
that is independent of the cardinality of the system. We present three
variants of this obfuscation procedure that help compute respectively,
remainder, threshold, and or predicates which, when composed, cover all
those that can be computed in the population protocol model.

A little bird has whispered a secret to me. [10]

1 Introduction

Despite the large amount of recent work on mobile systems, very little theo-
retical research has been devoted to modelling such systems. A notable excep-
tion is the work of Angluin et al. [2]: they introduced the population protocol
model to describe systems of very simple mobile agents. The model has totally
asynchronous agents, only a constant amount of memory per agent, no system
infrastructure, and no assumptions about the mobility patterns of the agents,
except for a fairness guarantee that ensures (for example) that agents cannot be
forever disconnected from the others. The model was illustrated with a set of
sensors, each strapped to a bird. Pairs of sensors could communicate when their
host birds were close together, and the sensor network would provide aggregated
information about the flock.

The population protocol model, along with some variations, has been studied
in a series of papers [1–6, 8]. In particular, the class of decision problems that

can be solved by the population protocol model has been characterized precisely.
Angluin et al. [2] gave several examples of predicates that can be computed in the
population protocol model, and it was later shown that no others are computable
[4]. This gave a characterization of computable predicates in the model: those
that can be expressed in Presburger arithmetic [11]. This is essentially first-order
arithmetic, using the symbols +, 0, 1,∧,∨,¬, ∀, ∃, =, <, (,) and variables.

Computability in the population protocol model is defined in terms of even-
tually stabilizing to the correct output value. This is an essential property of the
model, since there are no assumptions about the mobility pattern of the agents,
beyond the weak fairness guarantee. In particular, an individual agent may have
no interactions at all for an arbitrarily long prefix of a computation, so in general,
one can never be certain that the final output value has been computed.

A key aspect of the population model is anonymity: there is no way to dis-
tinguish any two agents. One motivation for such an assumption is the lack of
infrastructure and the mass production that might render it difficult to assign
unique identifiers to agents or to programme them individually. Another motiva-
tion is for the agents to preserve their privacy. An agent might simply not want
to reveal who it is, when it met which other agent or where it was. The first
motivation underlying anonymity is sometimes questionable. Indeed, it takes
only a small number of bits to store a huge collection of agent identifiers and
a simple randomized procedure can generate distinct identifiers with very high
probability. The second motivation seems generally more relevant, for there are
many reasons a mobile agent might not like to leave its identifier wherever it
goes or share it with whomever it meets.

In this work, we explore the privacy aspect of these anonymous mobile sys-
tems. That is, not only do we consider algorithms where agents never reveal their
identifiers but we also seek for them to hide their input values from one another
while computing some function of those inputs. In general, we say an algorithm
is private if an honest but curious agent cannot learn any information about the
inputs to the system (including even the number of inputs) beyond what can be
deduced from its own input and the output value that must be computed. (This
requirement would enforce anonymity, even if the agents had identifiers: other-
wise one could deduce a lower bound on the number of participating agents.)
Here, we focus on ensuring privacy in any finite prefix of a computation. This,
together with the fact that population protocols are only required to eventu-
ally stabilize to the correct output value, allows us to strengthen the notion of
privacy: we require that an honest but curious agent cannot definitively learn
anything about the inputs of agents at any point in the computation, yet the
algorithm must still correctly stabilize to the correct output value.

Consider a simple example of determining which of two candidates is the
winner of an election by the agents. Assume each agent has input value 1 if it
votes for the first candidate and 2 if it votes for the second candidate. There is a
simple protocol to achieve this computation [2]: when two agents with different
votes meet, they cancel each other. Once an agent has had its vote cancelled, it
remembers the last non-cancelled vote that it has seen to determine its output.

(Some extra care must be taken to deal with the possibility of a tie vote.) This
protocol, however, provides no privacy. In fact, the unpredictability of the mobil-
ity pattern might allow a single curious agent to meet all others in their initial
state and deduce the exact input vector of the entire population, discovering
exactly how many agents voted for each candidate. In this paper, we ask what
predicates can be computed without letting any curious agent, at any point of
its computation, determine any information about the input (or output) values
of any other agent. Following the specific example above, this means we would
like a curious agent to be unable to determine at any point of its computation
how many agents voted for a candidate, the width of the margin by which one
candidate won, whether the number of voters was even or odd, and so on.

In a sense, we study a variant of secure multi-party computations [9] in the
context of population protocols. We consider a passive adversary that can read
the state of one agent but cannot corrupt it. However, there are several ways in
which our work differs from the usual notion of secure multi-party computation.
The tiny nature of the devices we consider precludes the use of expensive cryp-
tographic protocols. The anonymity of the system means that signature schemes
cannot be used. Our algorithms do not use randomization, instead relying on the
inherent non-determinism of the mobility pattern. Interestingly, in our model,
the curious agent can see the entire state of any other agent it interacts with, so
no secret keys can be used to achieve privacy.

We prove that any predicate that can be computed in the original popula-
tion protocol model, namely any predicate that can be expressed in Presburger
arithmetic, can be computed privately. Our result holds even if the curious agent
can store an unbounded amount of information, namely the states of all agents
it has interacted with from the beginning of the computation to the present. At
the heart of our result lies the idea of an obfuscation procedure which heavily
relies on the non-determinism of the mobility pattern. We use this procedure in
different forms, according to whether we compute a remainder, a threshold or
an or predicate. (The composition of these covers all predicates computable by
population protocols.) Basically, we make agents change their input values with-
out changing the overall output, in a way designed to confuse any curious agent.
In the context of the voting example, this would, roughly speaking, mean that
every agent would generate, besides its own vote several votes that cancel each
other. The procedure is devised such that (a) the confusing values are eventually
cancelled, without any curious agent knowing when that happens, and (b) the
correct result is indeed computed, while making sure that the size of the memory
of every agent is fixed, independent of the size of the system.

The rest of the paper is organized as follows. We first recall the original
population protocol model and introduce our definition of private computation
in this context. Then we show how to compute any remainder or threshold
predicate, and then how to compute Boolean combinations of such predicates,
deriving our general result about what can be computed in a private way. We
conclude by discussing several research directions for private mobile computing.

2 Private Population Protocols

Our formalization of the population protocol model is based on the work of
Angluin et al. [2]. For a population of n agents, Pn = {p0, . . . , pn−1} denotes the
set of agents. (The subscripts are for convenience only, and are not visible to the
agents themselves: they do not have any effect on an execution.) Each agent in
the system is modelled as a finite state machine, and algorithms must be uniform:
each finite state machine is “programmed” identically and the programming
does not depend on the number of agents in the system. This makes the model
strongly anonymous, since there is not enough space in the state to give each
agent a unique identifier.

Let Σ be a finite input alphabet and Y be a finite output alphabet. Each
agent pi has an input drawn from Σ. The input for a population protocol for n

agents is a vector I = (σ0, . . . , σn−1) of elements of Σ, where σi is the input of
agent pi. Let D be the set of all vectors on Σ of length at least two. The goal of
an algorithm is to compute a function f : D → Y . Each agent must eventually
output the value of this function for the input that was initially provided to
the agents. Here we restrict ourselves to compute only predicates : the output
alphabet is the set {0, 1}.

We now describe how to specify a population protocol. A population protocol
is defined by a finite set Q of possible agent states, an input assignment ι : Σ →
Q, a transition relation δ ⊆ Q×Q×Q×Q, and an output assignment ω : Q → Y .
If two agents in states q1 and q2 encounter each other, they can change into states
q′1 and q′2, respectively, where (q1, q2, q

′

1, q
′

2) ∈ δ. We sometimes use the notation
q1, q2 → q′1, q

′

2 to describe the elements of δ.
A configuration is a mapping C : Pn → Q specifying the state of each agent.

Let C and C′ be configurations, u, v be distinct agents and t be a transition. We
say that C goes to C′ with interaction e = ((u, v), t), denoted C

e
→ C′, if t =

(C(u), C(v), C′(u), C′(v)) belongs to δ and C′(w) = C(w) for all w ∈ Pn−{u, v}.

We say that C goes to C′ in one step, denoted C → C′, if C
e

−→ C′ for some
interaction e = ((u, v), t); in this case e is called the interaction associated with
this step, t is the transition of this step and agent u and agent v are involved in
this step.

An execution of the protocol on input I ∈ D is an infinite sequence of con-
figurations, C0, C1, C2, . . . such that (1) C0 is the initial assignment for I: if
I = (σ0, . . . , σn−1) then, for all i such that 0 ≤ i ≤ n − 1, C0(pi) = ι(σi) and
(2) Ci → Ci+1 for all i. An execution fragment is a contiguous portion of an
execution. The output of an agent in state q is ω(q). We say that the execution
stably outputs v ∈ Y if every agent eventually outputs v and never changes its
output thereafter. Formally, this means that there is an i such that for all agents
p and for all j > i, ω(Cj(p)) = v.

If every sequence of interactions were considered to be a possible execution
in the model, then isolated agents might never interact with one another. Thus,
the model must incorporate a fairness guarantee. In a fair execution, if a con-
figuration C occurs infinitely often and C → C′, then C′ occurs infinitely often.
If, for example, we associate probabilities with different interactions, then an

execution will be fair with probability 1. A protocol stably computes a function
f : D → Y if, for every input I ∈ D, every fair execution on input I stably
outputs f(I). In the following, all executions are assumed to be fair.

Given an execution E = C0, C1, C2, . . . and an agent u, the history of interac-
tions for agent u in E, denoted Hu(E) is the sequence of states and transitions of
interactions associated with each step of E in which u is involved. More precisely
Hu(E) = (q0, t0), . . . (qi, ti) . . . where ti is the transition of the i-th interaction in
which pi is involved and qi is the state of agent u when this interaction occurs.
The history of interactions for agent u in E up to T is the initial segment of
length T of Hu(E) if T is greater than the length of Hu(E) and Hu(E) otherwise.

We now define the notion of privacy for a population protocol. If some agent
encounters another agent, we assume that it learns both the current state of the
other one and what transition is chosen. Then, intuitively, the protocol has the
privacy property if no agent can learn anything about the current input from
any initial sequence of the history of interactions in which it is involved. Let I1

and I2 be two inputs in D where some agent p gets the same input value. The
agent p is able to distinguish I1 from I2 if, for at least one execution E1 on input
I1, the history of interactions for p in E1 up to some T cannot be an initial
segment of a history of interactions of agent p for any execution on input I2. A
population protocol has the output-independent privacy property if no agent is
able to distinguish any pair of sufficiently large input vectors in which it has the
same input value. More formally, a population protocol has this property if and
only if there is a constant n0 such that for any agent p and any inputs I1 and I2

of size at least n0 in which p has the same input, and any execution E1 on input
I1, and any T , there exists an execution E2 on input I2, such that the histories
of p’s interactions up to T are identical in E1 and E2. Thus, if the protocol is
private, at no time in the execution E1 on input I1 can an agent p deduce with
certainty that the input vector of the execution was not I2. In other words, there
is no time when p can rule out any possible input vector (of size at least n0).

3 Computing Predicates Privately

Our goal is to show that all predicates computable in the population protocol
model are computable privately. We shall show that all computable predicates
can be computed by a protocol satisfying several properties, and that those prop-
erties are sufficient for output-independent privacy. We label the curious agent
p0. (Since the identities of agents cannot be used in the protocols themselves,
the arguments below are not affected by this convention.)

Consider a population protocol with state set Q. Fix some collection G
of system configurations, which we shall call good configurations. A transition
q, r → s, t of the protocol is called G-imitable if, from any configuration C0 ∈ G
with p0 in state q or r, there exists an execution fragment C0 → C1 → · · · → Cm

such that Cm ∈ G and agent p0 participates in exactly one interaction during the
fragment and that interaction’s transition is q, r → s, t. (This property should

hold both for the case where p0 is playing the role of the agent that changes
from state q to s and for the case where p0 changes from r to t.)

The following theorem, which will be proved in Sections 3.1, 3.2 and 3.3, will
yield protocols that have output-independent privacy.

Theorem 1. Let P be any predicate that is computable in the population pro-
tocol model (without privacy). Then there exist a protocol A that computes P , a
constant n0 and a set G of configurations of A such that

1. for any initial configuration with at least n0 agents, there is an execution
fragment of A that contains no interactions involving p0 and ends in a con-
figuration of G,

2. every transition of A is G-imitable,
3. for any states q1 and q2, there is a sequence of interactions between two

agents that start in states q1 and q2 and end in states q2 and q1, respectively,
and

4. for any states q1 and q2, the “null” transition q1, q2 → q1, q2 is permitted.

We now show that the first two properties of the preceding theorem are
sufficient for privacy.

Theorem 2. Any population protocol that satisfies Properties 1 and 2 of Theo-
rem 1 has output-independent privacy.

Proof. Consider any execution prefix E, starting from an initial configuration
C0. Let C′

0 be any initial configuration that has at least n0 agents. We must con-
struct an execution prefix E′, starting from C′

0, such that p0 undergoes the same
sequence of interactions in E and E′. We begin E′ with the execution fragment
that satisfies Property 1, which does not include any interactions involving p0

and leaves the system in a good configuration.
Then, for each interaction involving p0 in E, we append an execution frag-

ment to the end of the constructed execution using the definition of G-imitability.
Each fragment includes exactly one interaction that involves p0, and that inter-
action’s transition is the same as in p0’s next interaction in E, and the fragment
leaves the system in a good configuration. The existence of such a fragment is
guaranteed by Property 2.

When all of these fragments have been appended, we obtain the required
execution E′. The history of interactions for p0 is the same in E and E′, by
construction. ⊓⊔

The following corollary follows immediately from Theorems 1 and 2.

Corollary 3. Every predicate that can be computed in the population protocol
model (without privacy) can be computed with output-independent privacy.

Although Properties 3 and 4 of Theorem 1 are not required for privacy, they
are crucial for our proof, in Sect. 3.3, that Boolean combinations of privately
computable predicates are also privately computable.

3.1 Computing Remainder Predicates

Let Σ be an input alphabet. Let cσ be an integer constant for each σ ∈ Σ and
let m and r be integer constants such that 0 ≤ r < m. The predicate P (I) that

is 1 on input I = (σ0, . . . , σn−1) if and only if
n−1
∑

i=0

cσi
≡ r(mod m) is called a

remainder predicate. In this section, we show that any remainder predicate can
be computed in a way that satisfies the properties of Theorem 1.

There is a fairly straightforward way to compute the predicate P (I) if there
is no need for privacy [2]. Each agent stores a value, initially cσ, where σ is the
input symbol of the agent. When two agents with values v1 and v2 meet, one
agent gives its value to the other: they change their values to 0 and v1 + v2. All
arithmetic is done modulo m. The algorithm maintains the sum of the values of
all agents as an invariant. Eventually, the sum is stored in a single agent, which
can then determine the output value and disseminate it to all other agents.

To ensure privacy, we must add transitions that allow agents to disguise their
input values. When agents in states v1 and v2 meet, one can give the other part
of its value: the agents change their values to v1 + 1 and v2 − 1. This preserves
the sum of the agents’ values as an invariant. However, this modification, by it-
self, would prevent the protocol from converging to the correct output. To avoid
this problem, we introduce a mechanism that ensures that this transition is only
applied a finite (but unbounded) number of times. This will be sufficient to
obscure the inputs from the adversary, while still ensuring that the sum is even-
tually gathered into a single agent to produce the output value. This mechanism
is implemented by giving each agent a flag that is initially 1 and is eventually
changed to 0. The transitions in which one agent shifts part of its value to the
other are enabled only while the flags are 1. The algorithm is described more
precisely in the following proof.

Proposition 4. Any remainder predicate can be computed by a protocol satis-
fying the properties of Theorem 1.

Proof. We give the protocol that computes the predicate
n−1
∑

i=0

cσi
≡ r(mod m).

The state of each agent is a pair (v, f) comprised of a value v ∈ {⊥0,⊥1, 0, 1, . . . ,

m−1} and a Boolean flag f . Let Q be the set of all such pairs (v, f). The values
⊥0 and ⊥1 are used to indicate that the agent has given its value to another
agent and is no longer active in exchanging values; the subscript indicates the
agent’s output value. The initial state of an agent with input σ is (cσ mod m, 1).
The output for states (r, 0) and (⊥1, 0) is 1. The output for all other states is
0. The transitions M1 to M10 are given below, where v1 and v2 are any values
in {0, 1, . . . , m − 1}, i is any value in {0, 1} and q1 and q2 are any states. All
arithmetic is done modulo m. An asterisk (∗) is used as a wildcard to match any
value, and indicates that part of the state is not changed by the transition.

(v1, 1), (v2, 1) → (v1 + 1, 1), (v2 − 1, 1) (M1)

(∗, 1), (∗, ∗) → (∗, 0), (∗, ∗) (M2)

(∗, 0), (∗, 1) → (∗, 1), (∗, 1) (M3)

(v1, 0), (v2, 0) → (v1 + v2, 0), (0, 0) (M4)

(v1, 0), (0, 0) → (v1, 0), (⊥0, 0) (M5)

(⊥i, ∗), (∗, 1) → (0, 0), (∗, 1) (M6)

(r, 0), (⊥i, 0) → (r, 0), (⊥1, 0) (M7)

(v1, 0), (⊥i, 0) → (v1, 0), (⊥0, 0), if v1 6= r (M8)

q1, q2 → q2, q1 (M9)

q1, q2 → q1, q2 (M10)

Transition M1 is the crucial one for privacy: it conceals inputs by shifting part
of an agent’s value to another agent, and can be invoked as long as the agents’
flags are 1. Transitions M2 and M3 control the flags. Transition M4 gathers
the sum into a single agent once the flags are 0, and Transition M5 ensures that
exactly one agent ends up with a non-⊥ value. Transition M6 allows the ⊥ values
to be turned back to 0, reversing the effect of Transition M5 as long as flags are
1. Transitions M7 and M8 spread the output value from the (eventually unique)
agent with a non-⊥ value to all other agents. Finally, Transitions M9 and M10
are included to satisfy Properties 3 and 4 of Theorem 1.

We first argue that this protocol correctly computes the predicate P (I).
Transition M2 ensures that, from any configuration, there is always a reachable
configuration in which all flags are 0. Thus, any fair execution will eventually
enter a configuration in which all flags are 0. After that point, all flags will remain
0 forever. Then, Transition M4 ensures that every agent except one will have a
value that is either 0 or ⊥. Transition M5 ensures that, eventually, exactly one
agent will have a value different from ⊥. (Transition M6 cannot be applied since
all flags are 0.) Since the sum of the non-⊥ values stored in all agents (modulo
m) is left invariant by all of the transitions, the one remaining non-⊥ value will

be

(

n−1
∑

i=0

cσi

)

mod m, so it will have the correct output value. Transitions M7

and M8 ensure that all other agents eventually stabilize with output P (I) also.

We now show that the protocol satisfies the properties of Theorem 1. We
choose n0 = 5 and we define a configuration to be in G if and only if it has at
least five agents, and agents p1, . . . , p4 each have flag 1 and non-⊥ values. Any
initial configuration with at least n0 agents is good, so Property 1 of Theorem
1 is trivially satisfied. Property 3 is satisfied, since the protocol includes Transi-
tion M9, which allows any pair of agents to swap states in a single interaction.
Property 4 is also satisfied, since the protocol includes Transition M10.

It remains to show that every transition of the protocol is G-imitable. Con-
sider any transition to be imitated. Suppose the curious agent interacts with an
agent in state (v, f) in this transition. Let C0 ∈ G. We show how to drive agent
p1 into state (v, f), starting from configuration C0. We consider two cases.

If v is a non-⊥ value, p1 and p2 meet repeatedly using Transition M1 until
p1 has value v. Then, if f = 0, p1 sets its flag to 0 using Transition M2. At this
point, p1 has state (v, f).

If v is ⊥0 or ⊥1, p1 and p2 meet repeatedly using Transition M1 until p1

has value 0. Then agents p1 and p2 set their flags to 0 using Transition M2, and
meet once more using Transition M5 to set p1’s state to (⊥0, 0). If v = ⊥1, p3

and p4 meet using Transition M1 until p3’s state is (r, 1), p3 sets its flag to 0
using Transition M2, and then p3 meets p1 using Transition M7 to set p1’s state
to (⊥1, 0). At this point, p1’s state is (v, 0). If f = 1, then p1 meets p4 using
Transition M3 to set its flag to 1. Then, p1 will be in state (v, f).

Once the agent p1 has been driven into state (v, f), it has the necessary inter-
action with p0. After that, the system can be returned to a good configuration as
follows. The above procedure leaves p4 with a non-⊥ value and flag 1. Thus any
of p1, p2, p3 that have values ⊥0 or ⊥1 can meet p4 using Transition M6 to enter
state (0, 1). Then any of p1, p2, p3 that have flag 0 can meet p4 using Transition
M3 to set their flags to 1. The resulting configuration is good. ⊓⊔

3.2 Computing Threshold Predicates

Let Σ be an input alphabet. Let cσ be an integer constant for each σ ∈ Σ and let
k be an integer constant. The predicate P (I) that is 1 on input I = (σ0, . . . , σn−1)

if and only if
n−1
∑

i=0

cσi
≥ k is called a threshold predicate. In this section, we show

that any threshold predicate can be computed privately. We begin with the
special case where the threshold k is positive.

Proposition 5. Any threshold predicate with a positive threshold k can be com-
puted by a protocol satisfying the properties of Theorem 1.

Proof. The general approach used to construct this algorithm is similar to the
one used in Sect. 3.1 to compute remainder predicates privately. Each agent
stores a value and a flag bit, and while flags are 1, the agents can shift parts
of their values to each other. Eventually, the flags will all be set to 0, and the
algorithm will compute the sum.

For remainder predicates, the sum (modulo m) could be stored in a single
agent. For threshold predicates, we cannot use modular arithmetic, so the sum
may end up spread across several agents. Let m = 2 · max({|cσ| : σ ∈ Σ} ∪
{k}). Each agent will store a value between −m and m. If the sum is positive,
eventually, some number of agents (possibly 0) have the value m, at most one
other agent has a positive value, and the remaining agents have value 0. On the
other hand, if the sum is negative, all agents eventually have non-positive values.

Because the sum is not collected into a single agent, distributing the output
value to all agents is more complicated than in Sect. 3.1. Each agent stores an
output bit. As long as the agent’s flag is 1, its output bit is meaningless, so by
convention we require it to be 0. Once an agent’s flag is 0, the value of the output
bit behaves as follows. If an agent’s value is at least k, its output bit must be 1.

If an agent’s value is negative, its output bit must be 0. Otherwise, an agent’s
output bit can be either 0 or 1: in this case, the agent will determine its output
bit from its interactions.

We now give a full description of the algorithm. The state of each agent is a
triple (v, o, f) where −m ≤ v ≤ m, and o and f are Boolean values representing
the output bit and flag bit, respectively. As described above, not all triples
are legal states: the output bit can take values 0 and 1 only when f = 0 and
0 ≤ v < k. Initially, the state of an agent with input symbol σ is (cσ, 0, 1). The
transitions T1 to T8 are given below, where v1 and v2 are any values between
−m and m and q1 and q2 are any states. (The notation [v1 ≥ k] in Transition
T2 indicates that the output bit should be set to 1 if and only if v1 ≥ k.)

(v1, 0, 1), (v2, 0, 1) → (v1 + 1, 0, 1), (v2 − 1, 0, 1), if v1 < m and v2 > −m (T1)

(v1, 0, 1), (∗, ∗, ∗) → (v1, [v1 ≥ k], 0), (∗, ∗, ∗) (T2)

(∗, ∗, 0), (∗, 0, 1) → (∗, 0, 1), (∗, 0, 1) (T3)

(v1, ∗, 0), (v2, ∗, 0) →







(m, 1, 0), (v1 + v2 − m, 1, 0) if m ≤ v1 + v2 ≤ 2m

(v1 + v2, 1, 0), (0, 1, 0) if k ≤ v1 + v2 < m

(v1 + v2, 0, 0), (0, 0, 0) if − m ≤ v1 + v2 < k







,

if v1 · v2 6= 0

(T4)

(v1, 1, 0), (v2, 0, 0) → (v1, 1, 0), (v2, 1, 0), if v1 ≥ k and 0 ≤ v2 < k (T5)

(v1, 0, 0), (v2, 1, 0) → (v1, 0, 0), (v2, 0, 0), if v1 < k and 0 ≤ v2 < k (T6)

q1, q2 → q2, q1 (T7)

q1, q2 → q1, q2 (T8)

Transitions T1, T2 and T3 play the same role as Transitions M1, M2 and M3
in Sect. 3.1. Values are collected into a smaller number of agents using Transition
T4. The output value is distributed using Transitions T5 and T6. Transitions
T7 and T8 are included to satisfy Properties 3 and 4 of Theorem 1.

The proof that this protocol correctly computes P (I) is similar to the proof
of Proposition 4 but a little more complicated. The details can be found in [7].

We now show that the protocol satisfies the properties of Theorem 1, which
are sufficient for privacy. We choose n0 to be 12. We define a configuration to
be in G if and only if it has at least 6 agents, the flags of agents p1, . . . , p5 are
all 1, and the sum of the values of agents p0, . . . , p5 is equal to 0.

First we establish Property 1 of Theorem 1. Consider any initial configuration
that has at least 12 agents. We describe how to drive the system into a good
configuration without using any interactions involving p0. For i = 1, 2, 3, 4, 5,
agents pi and pi+5 interact using Transition T1 until each of the agents p1, . . . , p5

have value 0. Then, p5 interacts with p11 using Transition T1 until its value is
the negation of p0’s value. The resulting configuration is good.

Next, we show that the protocol satisfies Property 2 of Theorem 1. Consider
any transition to be imitated. Suppose the curious agent interacts with an agent
in state (v, o, f) in this transition. Let C0 be any good configuration. We show

how to drive agent p1 into state (v, o, f), starting from C0. First, p1, . . . , p5 meet
using Transition T1 until p1, p2, p3 and p4 each have value 0. (This is possible,
since the sum of values of p1, . . . , p5 in configuration C0 is equal to the opposite
of the value of p0, so the sum is between −m and m.) Next, p1 and p2 meet
repeatedly, using Transition T1 until p1 has value v. If f = 0, p1 and p2 meet
again, this time using Transition T2, to change p1’s flag to 0. If, at this point,
p1’s output bit differs from o, we must have 0 ≤ v < k and o = 1. In this case,
p3 and p4 meet repeatedly using Transition T1 until p3’s value is k, then once
more to change p3’s flag to 0 using Transition T2, and then p3 and p1 meet using
Transition T5 to change p1’s output bit to 1. When all of these interactions have
occurred, p1 is in state (v, o, f).

Next, p0 and p1 have their interaction. Now, we must restore the system to
a good configuration. In C0, the sum of the values of p0, . . . , p5 was 0, since
C0 ∈ G. All interactions since C0 have been among agents p0, . . . , p5 and every
transition preserves the sum of the values of the two interacting agents. Thus,
the sum of the values of agents p0, . . . , p5 is still 0. The interactions since C0 may
have changed at most three agents’ flags from 1 to 0. Since p1, . . . , p5 all had
flag 1 in C0, there is at least one agent whose flag is still 1. If any of p1, . . . , p5

have flag 0, those agents meet an agent whose flag is 1 using Transition T3 to
set their flags back to 1. The resulting configuration is good.

Properties 3 and 4 of Theorem 1 are trivial, since the protocol has Transitions
T7 and T8. ⊓⊔

Corollary 6. Any threshold predicate can be computed by a protocol satisfying
the properties of Theorem 1.

Proof. We have already described how to compute any threshold predicate with
a positive threshold k. To compute a threshold predicate with a threshold k ≤ 0,

notice that
n−1
∑

i=0

cσi
≥ k if and only if

n−1
∑

i=0

(−cσi
) 6≥ −k + 1. Since −k + 1 > 0,

we can compute the threshold predicate
n−1
∑

i=0

(−cσi
) ≥ −k + 1 as described in the

proof of Proposition 5 and negate the result. ⊓⊔

3.3 Computing All Semilinear Predicates

To complete the proof of Theorem 1, we show that the properties of the theorem
can be preserved when computing Boolean combinations of predicates.

Theorem 7. If predicates P 1 and P 2 can be computed by population protocols
which satisfy the properties of Theorem 1, then there are population protocols
that compute ¬P 1 and P 1 ∨ P 2, also satisfying the properties of Theorem 1.

Proof. The required population protocol for ¬P 1 is obtained by simply negating
the output map of the protocol for P 1.

We now construct a population protocol for computing P 1 ∨ P 2. Let A1 =
(Q1, δ1, ι1, ω1) and A2 = (Q2, δ2, ι2, ω2) be the population protocols for P 1 and

P 2, respectively. The protocol for P 1 ∨ P 2 is quite straightforward: it simply
runs the algorithms A1 and A2 in parallel. Each agent’s state will contain two
components, one representing the state of the agent in each of the two algorithms.
Whenever two agents meet, they have an interaction from the first algorithm,
using the first components of their states, and an interaction from the second
algorithm, using the second components of their states.

More formally, this protocol has the form A = (Q, δ, ι, ω), where:

Q = Q1 × Q2,

ι(σ) = (ι1(σ), ι2(σ)),

ω(q) = ω1(q) ∨ ω2(q), and

δ = {((q1, q2), (r1, r2), (s1, s2), (t1, t2)) : (q1, r1, s1, t1) ∈ δ1 and

(q2, r2, s2, t2) ∈ δ2}.

Since A1 and A2 satisfy Property 4 of Theorem 1, this definition of δ al-
lows two agents who have an interaction to update the first or second halves
of their states according to the transition relation of A1 or A2, respectively,
while leaving the other halves of their states unchanged. Similarly, because A1

and A2 satisfy Property 3, this definition of δ allows two agents to swap the
first halves or the second halves of their states while leaving the other halves
unchanged. These facts are useful in some of the constructions we give below.
If C = ((q1

1 , q2
1), (q

1
2 , q2

2), . . . , (q
1
n, q2

n)) is a configuration of algorithm A, we use
the notation C1 for (q1

1 , q1
2 , . . . , q

1
n) and C2 for (q2

1 , q
2
2 , . . . , q

2
n). Also, we write

C = (C1, C2).
We first argue that this algorithm A stably computes the predicate P 1 ∨P 2.

Consider any fair execution E = (C1
0 , C2

0), (C1
1 , C2

1), (C1
2 , C2

2), . . . of A on some
input I of size n. We show that E1 = C1

0 , C1
1 , C1

2 , . . . is a fair execution of A1.
By the definition of A, C1

0 is the initial configuration of A1 on input I, and for
all i, C1

i → C1
i+1, according to the transition relation of A1. To see that E1 is

fair, suppose some configuration C1 appears infinitely often in the execution and
C1 → D1 is a possible transition of A1. Since there are only a finite number of
possible configurations of A2 with n agents, some configuration (C1, C2) must
appear infinitely often in E. Because A2 satisfies Property 4 of Theorem 1,
(C1, C2) → (D1, C2) is a possible transition of A. Since E is fair, (D1, C2) must
appear infinitely often in E. Thus, D1 appears infinitely often in E1, as required.
A symmetric argument proves that C2

0 , C2
1 , C2

2 , . . . is a fair execution of A2. Thus,
after some point, if any agent is in state (q1, q2), we must have ω1(q1) = P 1(I)
and ω2(q2) = P 2(I), so ω(q1, q2) = ω1(q1) ∨ ω2(q2) = P 1(I) ∨ P 2(I).

In the remainder of this proof, we show that A satisfies the properties of The-
orem 1. Choose n1

0 and G1 to satisfy the properties of Theorem 1 for A1. Choose
n2

0 and G2 to satisfy the properties of Theorem 1 for A2. Let n0 = max(n1
0, n

2
0).

Let G be the set of configurations C where the first components of the elements
of C form a configuration in G1 and the second components of elements of C

form a configuration in G2. (I.e., G = {(C1, C2) : C1 ∈ G1 and C2 ∈ G2}.) We
shall show that n0 and G satisfy the properties of Theorem 1 for A.

First, we show that A has Property 1. Consider any initial configuration
C0 = (C1

0 , C2
0) for algorithm A that has size at least n0. Then, C1

0 is an initial
configuration of A1 with at least n0 ≥ n1

0 agents. There exists an execution
fragment of A1 that starts from C1

0 and leads to a configuration C1 ∈ G1.
Thus, there is an execution fragment of A that starts from (C1

0 , C2
0) and leads to

(C1, C2
0). Since C2

0 is an initial configuration of A2 with at least n0 ≥ n2
0 agents,

there is also an execution fragment of A2 that starts from C2
0 and leads to a

configuration C2 ∈ G2. Thus, there is an execution fragment of A that starts
from (C1, C2

0) and leads to (C1, C2) ∈ G. Concatenating the two execution
fragments of A establishes Property 1 of Theorem 1 for protocol A.

Next, we show that A has Property 2. Consider any transition (q1, q2), (r1, r2)
→ (s1, s2), (t1, t2). Let C = (C1, C2) be any good configuration of A in which p0

has state (q1, q2). Then, C1 ∈ G1 and C2 ∈ G2.

Since p0 is in state q1 in C1, there is an execution fragment of A1 starting
from C1 and ending in a good configuration G1 during which p0 has just one
interaction, which has transition q1, r1 → s1, t1. Let pi be the agent that p0

interacts with. Let D1 and F 1 be the configurations immediately before and
after p0’s interaction. Then, there is an execution fragment α1 of A starting
from (C1, C2) and ending in (D1, C2) during which p0 has no interactions. (In
α1, interactions affect only the first components of agents’ states.)

Since p0 is in state q2 in C2, there is an execution fragment of A2 starting
from C2 and ending in a good configuration G2 during which p0 has just one
interaction of the form q2, r2 → s2, t2. Let pj be the agent that p0 interacts
with. Let D2 and F 2 be the configurations immediately before and after p0’s
interaction.Then, there is an execution fragment α2 of A starting from (D1, C2)
and ending in (D1, D2) during which p0 has no interactions. (In α2, interactions
affect only the second components of agents’ states.)

If i 6= j, let β1 be an execution fragment starting from (D1, D2) in which
pi and pj swap the second components of their states. (Otherwise, let β1 be
an empty execution fragment.) At the end of β1, agent pi is in state (r1, r2).
Let β2 be an execution fragment starting from the end of β1 consisting of a
single interaction between p0 and pi, applying the transition (q1, q2), (r1, r2) →
(s1, s2), (t1, t2). If i 6= j, let β3 be an execution fragment starting from the final
configuration of β2 in which pi and pj swap the second components of their
states. (Otherwise, let β3 be an empty execution fragment.) Then, at the end of
β1 · β2 · β3, the configuration of the system is (F 1, F 2).

There is an execution fragment γ1 of A starting from (F 1, F 2) and ending
in (G1, F 2) during which p0 has no interactions. (The interactions in γ1 affect
only the first halves of agents’ states.) There is also an execution fragment γ2

of A starting from (G1, F 2) and ending in (G1, G2) during which p0 has no
interactions. (The interactions in γ2 affect only the second halves of agents’
states.)

Putting these fragments together, we obtain the fragment α1 ·α2 ·β1 ·β2 ·β3 ·γ1 ·
γ2 of A, which starts from configuration (C1, C2), ends in (G1, G2) ∈ G, and dur-
ing which p0 has exactly one interaction, which has transition (q1, q2), (r1, r2) →
(s1, s2), (t1, t2). Thus, this transition is G-imitable. This completes the proof of
Property 2 for A.

Next, we establish Property 3 for A. Let (q1
1 , q

2
1) and (q1

2 , q2
2) be any two

states of Q. There is a sequence of interactions of A1 between two agents that
start in states q1

1 and q1
2 and end in states q1

2 and q1
1 , respectively. Thus, there is

a sequence of interactions of A between two agents that start in states (q1
1 , q

2
1)

and (q1
2 , q

2
2) and end in states (q1

2 , q2
1) and (q1

1 , q2
2), respectively. Also, there is a

sequence of interactions of A2 between two agents that start in states q2
1 and

q2
2 and end in states q2

2 and q2
1 , respectively. So there is a sequence of inter-

actions of A between two agents that start in states (q1
2 , q

2
1) and (q1

1 , q2
2) and

end in states (q1
2 , q

2
2) and (q1

1 , q2
1), respectively. Concatenating the two sequences

of interactions of A yields the required sequence that starts with two agents in
states (q1

1 , q2
1) and (q1

2 , q
2
2) and ends with the agents in states (q1

2 , q2
2) and (q1

1 , q
2
1),

respectively. Thus, A satisfies Property 3 of Theorem 1.
Finally, Property 4 of Theorem 1 for A follows trivially from the definition

of δ and the fact that both A1 and A2 have this property. ⊓⊔

Putting together all of the preceding results yields a proof of Theorem 1. It is
known that every predicate computable in the population protocol model can be
expressed as a Boolean combination of remainder and threshold predicates [4]. It
follows from Proposition 4, Corollary 6 and Theorem 7 that all such predicates
can be computed by a protocol that satisfies the properties of Theorem 1. (Notice
that in no case do we ever choose a value of n0 that is greater than 12, so the
choice of n0 does not depend on the predicate to be computed.)

4 Concluding Remarks

Although we restricted attention to computing predicates, the techniques can be
applied to any function. Let f : D → Y be any function that is computable by
a population protocol without privacy. Then, for each y ∈ Y , define a predicate
Py(x) to be 1 if and only if f(x) = y. This predicate can be computed, and can
therefore be computed privately. All of the (finitely many) predicates Py can be
computed in parallel using the same approach as in Sect. 3.3 to yield a private
protocol for computing f .

This work is a first step toward studying private mobile computing. Several
directions for future research are appealing. Some seem fairly accessible. For
instance, one could show that our obfuscation procedure can also be effective
against a dynamic adversary that can control several agents on the fly. None of
these agents will be able to determine the input values of the other agents, either
individually or collectively. Other problems appear more difficult. It is not clear
whether it is possible to devise an obfuscation procedure that would work if the
adversary need only eventually converge toward gaining knowledge of the inputs

of other agents, without necessarily knowing when the correct input values have
been discovered. We restricted attention to problems where all agents produce
the same output, but one could also consider problems that require agents to
output different values. Some papers have altered the basic model of population
protocols by putting a probability distribution on the possible transitions. Can
we design protocols that would protect privacy with high probability, even if
the adversary knows the probability distribution? It would also be intriguing to
see how the agents should be strengthened to hide their inputs from an active
adversary, who can cause agents to diverge from the protocol.

Acknowledgements This research was supported in part by the Natural Sciences
and Engineering Research Council of Canada.

References

1. D. Angluin, J. Aspnes, M. Chan, M. J. Fischer, H. Jiang, and R. Peralta. Stably
computable properties of network graphs. In Proc. 1st IEEE International Con-

ference on Distributed Computing in Sensor Systems, volume 3560 of LNCS, pages
63–74, 2005.

2. D. Angluin, J. Aspnes, Z. Diamadi, M. J. Fischer, and R. Peralta. Computation in
networks of passively mobile finite-state sensors. Distributed Computing, 18(4):235–
253, Mar. 2006.

3. D. Angluin, J. Aspnes, and D. Eisenstat. Fast computation by population protocols
with a leader. In Proc. 20th International Symposium on Distributed Computing,
volume 4167 of LNCS, pages 61–75, 2006.

4. D. Angluin, J. Aspnes, D. Eisenstat, and E. Ruppert. The computational power
of population protocols. Distributed Computing. To appear.

5. D. Angluin, J. Aspnes, M. J. Fischer, and H. Jiang. Self-stabilizing behavior in
networks of nondeterministically interacting sensors. In Proc. 9th International

Conference on Principles of Distributed Systems, 2005.
6. C. Delporte-Gallet, H. Fauconnier, R. Guerraoui, and E. Ruppert. When birds

die: Making population protocols fault-tolerant. In Proc. 2nd IEEE International

Conference on Distributed Computing in Sensor Systems, pages 51–66, 2006.
7. C. Delporte-Gallet, H. Fauconnier, R. Guerraoui, and E. Ruppert. Secretive birds:

Privacy in population protocols. Technical Report hal-00175536, CNRS, France,
2007.

8. M. Fischer and H. Jiang. Self-stabilizing leader election in networks of finite-
state anonymous agents. In Proc. 10th International Conference on Principles of

Distributed Systems, number 4305 in LNCS, pages 395–409, 2006.
9. O. Goldreich. Foundations of Cryptography, volume 2, chapter 7. Cambridge

University Press, 2004.
10. F. Marryat. Peter Simple, volume 3, chapter I. Saunders and Otley, 1834.
11. M. Presburger. Über die Vollständigkeit eines gewissen Systems der Arithmetik

ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt. In
Comptes-Rendus du I Congrès de Mathématiciens des Pays Slaves, pages 92–101,
Warszawa, 1929.

