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Incentive-Compatible Interdomain
Routing with Linear Utilities
Alexander Hall, Evdokia Nikolova, and Christos Papadimitriou

Abstract. We revisit the problem of incentive-compatible interdomain routing, examin-
ing the quite realistic special case in which the utilities of autonomous systems (ASes)
are linear functions of the traffic in the incident links and the traffic leaving each AS.
We show that incentive-compatibility toward maximizing total welfare is achievable
efficiently, and in the uncapacitated case, by an algorithm that can be easily imple-
mented by the border gateway protocol (BGP), the standard protocol for interdomain
routing.

1. Introduction

The Internet is in many ways a mysterious object, a complex wonder that we
must approach with the same puzzled humility with which neuroscientists ap-
proach the brain and biologists the cell. Even at the most basic level of routing,
for example, it is not clear at all how and why the approximately twenty thousand
independent, and presumably selfish, autonomous systems (ASes) cooperate to
provide connectivity between any two of them. The problem is quintessentially
economic. ASes are known to have confidential financial agreements on how traf-
fic between them is to be handled and paid for, and such agreements are reflected
in the ways in which each AS routes traffic. We can think of the ASes as nodes
of an undirected graph, with edges signifying the existence of such an agree-
ment between the two endpoints (equivalently, the possibility of traffic routed
directly, in either direction, between the two). In particular, ASes communicate
in terms of the border gateway protocol (BGP), a flexible protocol allowing them
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to implement routing decisions of arbitrary complexity, by “advertising” paths to
adjacent (in the graph) ASes, and selecting among the paths advertised by their
neighbors. Hence, the Internet is in essence an economy, a game, an arena where
agents act selfishly and are affected by everybody’s decisions; consequently, one
can ask of it the questions we usually ask of such systems, for example the price
of anarchy, or the possibility of incentive-compatible maximization of social wel-
fare (questions typically studied by algorithmic mechanism design [Nisan and
Ronen 99]); in this paper we address the latter.

Indeed, starting with [Feigenbaum et al. 02], BGP has been studied in the past
under the lens of algorithmic mechanism design, and in particular in terms of
the Vickrey–Clarke–Groves (VCG) mechanism (see, for example, [Mas-Colell et
al. 95] for an introduction to mechanism design). It was noticed [Feigenbaum
et al. 02] that social welfare can be optimized in routing if one assumes that each
AS has a fixed per-packet cost via the VCG mechanism with payments, and in
fact, that this can be achieved in a way that is very “BGP-friendly,” i.e., can be
implemented by minimal disruption of BGP’s ordinary operation. Furthermore,
it was observed that in the real Internet, VCG would result in relatively very
small overpayments.

In a subsequent paper [Feigenbaum et al. 06b], the problem of more realis-
tic BGP routing was addressed in the same spirit. Each AS was assumed to
have a utility for each path to the destination (assumed in this literature to
be a fixed node 0), and the goal was to maximize total utility. It was shown
that the problem is too hard to solve in general even with no consideration to
incentive compatibility, while a special case, in which the utility of a path de-
pends only on the next hop, is easy to solve in an incentive-compatible way,
but hard to implement in BGP. To establish this latter negative result, the au-
thors of [Feigenbaum et al. 06b] formalize what it means for an algorithm to
be “BGP-friendly”: roughly speaking, a local distributed algorithm with quick
convergence, small storage needs, and no rippling updates in case of small pa-
rameter changes. All said, the message of [Feigenbaum et al. 06b] was that if one
models BGP routing a little more realistically, incentive compatibility becomes
problematic. This negative message was ameliorated in [Feigenbaum et al. 06a],
where it was pointed out that if one further restricts the special case of next-hop
utilities so that paths are required to be of a particular kind mandated by the
kinds of inter-AS agreements seen in practice, called valley-free in this paper,
BGP-friendly incentive compatibility is restored.

There is an extensive literature on BGP (see, for example, [Feamster 04,
Gao 01, Griffin and Wilfong 99, Rekhter and Li 95, Stewart 98, Subramanian
et al. 02]). The protocol has also been examined within other game-theoretic
contexts, such as with respect to network creation games, e.g., [Anshelevich et
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al. 06, Fabrikant et al. 03], cooperative game theory [Papadimitriou 01], and
BGP oscillation prediction [Fabrikant and Papadimitriou 07].

In this paper we present an elementary model of BGP routing. The key feature
of our model is that path preferences are based exclusively on per-packet costs and
per-packet agreed-upon compensation between adjacent nodes. In other words,
we look into the utilities of each path to each AS, taken as raw data in previous
literature, and postulate that they are linear functions of the traffic, depending on
two factors: objective per-packet costs to each AS for each incoming or outgoing
link, and agreed per-packet payment, positive or negative, to the AS for this link
and direction.

As a result, social welfare optimization becomes a min-cost flow problem, and
incentive-compatibility can always be achieved (via VCG) in polynomial time.
If there are no capacity constraints, we show (Theorem 4.1) that the result-
ing algorithm is BGP-friendly, essentially because the BGP-friendly version of
the Bellman–Ford algorithm in [Feigenbaum et al. 02] can be extended to cover
this case. When capacities are present, the algorithm becomes a more generic
min-cost flow computation (Theorem 4.2), and, as we show by a counterexam-
ple, does not adhere to the criteria of BGP-friendliness (it may not converge
fast enough), even though it is still a local, distributed algorithm with modest
memory requirements and no need for global data.

If, on top of this, we also require that the paths be of the “valley-free” kind
suggested by the kinds of agreements between ASes one sees in practice (that
is, the kind of restriction that led to tractability in [Feigenbaum et al. 06a]), the
resulting algorithm solves a rather generic linear program (Theorem 4.3), and so
local, distributed computation appears to be impossible.

2. Basic Model and the VCG Mechanism

We model interdomain routing as a symmetric directed network with node set
V = {0, 1, . . . , n} and edges E, where node 0 is assumed to be a fixed sink (the
destination of all packages, assumed unique, as is common in this literature). We
postulate that the network is symmetric, in that if (i, j) ∈ E then also (j, i) ∈ E.
There are no self-loops. Each node i has a demand of ki packets it wants to send
to the sink. In addition, each node i has a per-packet value vi,e (sometimes also
denoted by vi(e)) for each of its incident edges e, and a value πi for each of its
packets that gets delivered. The cost of an edge e = (i, j) ∈ E is the negative of
the sum of values of i and j for it, pe = −(vi,e + vj,e).

We denote by θi the type of node i, that is, the collection of values for its
incident edges and its per-packet delivery value. Denote by θ the vector of all
node types and by θ−i the vector of all node types except that of node i.
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If F is an integer-valued flow through this network, with sink 0 and sources
at all other nodes with the given demands, then the welfare of each node i �= 0
from this flow is

wi(F, θi) =
∑

e: i∈e

vi(e)F (e) + πiFi,

where by Fi =
∑

j F (i, j) − ∑
j F (j, i) we denote the flow out of i, assumed to

be at most ki. The total welfare of all nodes under flow F is

W (F ) =
∑

i∈V \{0}
πiFi −

∑
e∈E

peF (e).

Let F ∗(θ) be the welfare-maximizing flow for types θ, and let F ∗
−i(θ

−i) be the
welfare of the optimum flow when node i is deleted from the network. We assume
initially that all capacities are infinite, which implies that the optimum flow is the
union of n or fewer flow-weighted source-to-sink shortest paths; this assumption
is reconsidered in Section 2.2.

2.1. VCG Mechanism

Notice that in order to compute the optimum flow we need to know the types
of all players; the difficulty is, of course, that the type of player i > 0 is known
only to player i, who is not inclined to publicize it in the absence of appropriate
incentives. The VCG mechanism for this problem incentivizes the players to
reveal their true types, and thus participate in a socially optimum flow, by
making payments to them. Consider in particular the following transfers for
each node (negative for payments made by the node and positive for payments
received by the node):

ti(θ) =
[∑

j �=i

wj(F ∗(θ), θj)
]
−

[∑
j �=i

wj(F ∗
−i(θ−i), θj)

]

=
[ ∑

j �=i
πj≥Pj

kj · (πj − P−i
j )

]
−

[ ∑
j �=i

πj≥Pj,−i

kj · (πj − Pj,−i)
]
, (2.1)

where Pj is the cost of the cheapest path from j to 0; Pj,−i is the cost of the
cheapest path from j to 0 that does not go through node i; P−i

j is the cost of
the cheapest path pathj from j to 0 without taking costs potentially incurred by
i into account: if i �∈ pathj , then P−i

j = Pj ; otherwise, P−i
j = Pj + (vi,e1 + vi,e2),

where e1, e2 ∈ pathj denote the edges incident to i.
Note that nodes send their own packets only if they have a nonnegative welfare

for doing so, namely if the per-packet delivery value πj is at least as big as the
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path cost Pj to the destination. Thus, they send either none of their packets or
all kj of them.

The proof that these transfers lead to truthful reporting is analogous to the
corresponding proof about the Groves mechanism in [Mas-Colell et al. 95] spe-
cialized to the current situation. We include it here for completeness:

Theorem 2.1. When the nodes are selfish agents and have values for adjacent edges
and for the delivery of their own packets, there is a strategy-proof pricing mech-
anism under which the lowest-cost paths are chosen, and the payments are of the
form given in (2.1).

Proof. Suppose truth is not a dominant strategy for some node i, i.e., the node
gets higher utility by reporting a collection of values θ̂i different from its true
values θi when the other nodes report θ−i. The utility of the node is its welfare
plus the payment to the node by the mechanism:

wi(F ∗(θ̂i, θ−i), θi) + ti(θ̂i, θ−i) > wi(F ∗(θ), θi) + ti(θi, θ−i).

Substituting the form of the transfer on both sides and canceling identical terms,
we get

wi(F ∗(θ̂i, θ−i), θi) +
[∑

j �=i

wj(F ∗(θ̂i, θ−i), θj)
]

> wi(F ∗(θ), θi) +
[∑

j �=i

wj(F ∗(θ), θj)
]
⇔ W (F ∗(θ̂i, θ−i), θ) > W (F ∗(θ), θ).

The last inequality contradicts the fact that F ∗(θ) is the welfare-maximizing
choice of paths (i.e., the least-cost paths) for node types θ.

2.2. The Model with Capacities

In this subsection we consider the same basic model, with the addition that
each edge e has a corresponding capacity ce. We would like to find a min-cost
(multicommodity) flow from all nodes to the sink 0, satisfying the demands of
the nodes. We can transform the problem to an equivalent one by adding a new
node—a supersource, which is connected to each node j via an edge of cost −πj

and capacity equal to the demand kj at node j (see Figure 1).
Denote by F ∗(θ) the resulting min-cost flow with known types θ, and by

F ∗
−i(θ−i) the min-cost flow in the graph with node i removed. We can now get

a VCG mechanism similar to the one in the basic model. As before, the total
welfare is

W (F ∗(θ), θ) =
∑

i

wi(F ∗(θ), θi),
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value = 

kj

 jπ

i

j

source

capacity =

0

Figure 1. In a model with capacities, we add a supersource and edges from it to
each node j, of capacity kj and cost −πj (equivalently, value πj). The socially
optimal solution corresponds to the min-cost flow on the induced graph.

where wi(F ∗(θ), θi) is the welfare of the flow from i (more precisely, from the
supersource through i) to 0. Similarly, the VCG mechanism is specified by the
transfers

ti(θ) =
[∑

j �=i

wj(F ∗(θ), θj)
]
−

[∑
j �=i

wj(F ∗
−i(θ−i), θj)

]
,

and a proof of correctness (truthfulness) of the mechanism follows as before.

3. Economic Relationships

The economic relationships between individual ASes in the Internet severely
influence the paths that can be taken in the BGP graph. So far, we have assumed
that all paths that are present in the underlying undirected graph (there is an
edge between two ASes if they are connected by a physical link) are valid. In
reality, this is not the case. Routing policies that are based on the economic
relationships between ASes forbid many paths that theoretically exist. Inferring
these economic relationships and investigating the resulting consequences for
the connectivity of the BGP graph have attracted a large amount of scientific
interest recently; see, e.g., [Achlioptas et al. 05, Barford et al. 01, Di Battista
et al. 07, Erlebach et al. 04, Gao 01, Govindan and Reddy 97, Subramanian et
al. 02].

Below we will give a detailed description of the valley-free path model that
classifies the prohibited paths in the BGP graph.
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The Valley-Free Path Model. In this model there are basically three different types of re-
lationships in which a pair of connected ASes can find itself: customer–provider,
in which the customer pays the provider to obtain access to the Internet; peer–
peer, in which both peers agree on mutually routing traffic of their customers for
each other free of charge; and sibling, in which both siblings agree on mutually
routing any traffic for each other free of charge. Note that an individual AS
may take several roles—as customer, provider, sibling, or peer—simultaneously;
it can, for instance, be a customer of one AS and at the same time a provider
for another AS.

In the following, for ease of exposition we will focus on customer–provider
relationships only. The other types of relationships (peer–peer, sibling) can be
incorporated easily, as we will note in Section 4.3.

We call a directed graph G = (V, E) a ToR graph if it contains no self-loops
and the edge directions describe the economic relationships. If the AS i is a
customer of a provider AS j, we direct the edge between i and j toward j. This
follows the terminology of [Subramanian et al. 02].

In practice, routing is done in the following way. If AS j is a provider of i (i.e.,
(i, j) ∈ E), it announces all its routes to i, but AS i on the other hand announces
its own routes and the routes of its customers only to j. The idea behind this is
that i pays j for the connection and thus is not inclined to take over “work” for
j. This would happen if i also announced the routes it has from other providers.
Then it would potentially have to donate bandwidth to packets that arrive from
the provider j, only to proceed to another provider. This clearly is of no benefit
to i itself or to any of its customers. From its point of view, j should find a
different route for the corresponding packets.

This leads to the model proposed in [Subramanian et al. 02] that a path is
valid if and only if it consists of a sequence of customer–provider edges ( )
followed by a sequence of provider–customer edges ( ). The first part,
containing only customer–provider edges, is called the forward part of the path.
The last part, containing only provider–customer edges, is called the backward
part of the path. It is easy to see that the following is an equivalent definition
of the validity of a path:

A path with edges {e1, e2, . . . , er} in the ToR graph G is a valid path
in G if and only if there is no inner node in the path for which its
incident edges ei−1 and ei are both outgoing from the node.

If such an inner node—one that has this property—exists, it is called a valley.
The intuition behind this name is that outgoing edges point “upward,” out of
the valley. In the literature the situation that a path contains a valley is also
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called an anomaly. We shall call a flow that uses only valley-free paths a valid
or valley-free flow.

The VCG mechanism. The transfers can be specified as in Section 2.2 for the model
with capacities. The only difference is that all flows (i.e., F ∗ and F ∗

−i for all i)
must be valley-free (and may be fractional).

4. Distributed Computation of VCG Payments

It is of great interest to determine to what extent the payments ti(θ) can be com-
puted not only efficiently, but in a distributed manner that is “BGP-friendly,”
that is, compatible with current usage of the BGP protocol. In [Feigenbaum et
al. 06b] this concept of “BGP-friendliness” was formalized as three requirements:

(1) The algorithm should converge in a number of rounds that is proportional
to the diameter of the graph, and not its size.

(2) Only local data should be needed.

(3) No rippling updates should be needed as data changes.

Here we relax requirement (1) to a number of rounds that is proportional to
the diameter times R, where R is the ratio between the largest and smallest edge
costs. This is necessary (also in [Feigenbaum et al. 06b], where the stricter version
is used by oversight) because the computed shortest path, whose length is the
upper bound on convergence time, may be longer than the diameter. We do not
bother to formalize here the second and third requirements (the reader is referred
to [Feigenbaum et al. 06b]) because our algorithms either trivially satisfy any
conceivable version, or fail to satisfy (1). As it turns out, this important aspect
of BGP-friendliness sets the basic model apart from the model with capacities.
In both cases the implementation is quite simple and makes only modest use
of local resources. But only in the former case are the strict conditions on the
convergence time fulfilled.

4.1. Basic Model

For the basic model it is easy to adapt the approach presented in [Feigenbaum
et al. 02]. BGP is a path-vector protocol that computes the lowest-cost paths
(LCPs) in a sequence of stages. In a stage each node in the network sends all the
LCPs it knows of to its neighbors. It also receives LCPs from its neighbors. If
these contain shorter paths than the ones it has currently stored, it updates the
list of its own LCPs. This basically corresponds to a distributed computation of
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all shortest paths via the Bellman–Ford algorithm. The computation terminates
after d stages and involves O(nd) communication on any edge, where d denotes
the maximum number of edges on an LCP.

Let diam′(G) denote the maximum diameter of G \ {i} over all nodes i for
which G \ {i} is still connected.

Theorem 4.1. In the basic per-packet utility model without capacity constraints
(described in Section 2), the Vickrey–Clarke–Groves allocation and payments can
be computed in a distributed, BGP-friendly manner. The computation converges
in O(diam′(G) · R) rounds of communication, where R is the ratio between the
largest and smallest edge costs.

Proof. Our proof follows analogously to that of [Feigenbaum et al. 02, Theo-
rem 2]. The authors there propose an extension of the path-vector protocol that
computes not only the lowest-cost paths, but at the same time the lowest-cost
paths that do not traverse a given node i. These two quantities are then used
to compute the payments for node i. The computation of paths avoiding node
i increases the number of stages and communication needed to d′ and O(nd′),
respectively. Here d′ denotes the maximum number of edges on an LCP avoiding
node i, over all nodes i for which G \ {i} is still connected. Feigenbaum et al.
argue that this is still an acceptable convergence time.

The only difference of the approach in [Feigenbaum et al. 02] to ours is that
the per-packet values in our model are given individually for each edge and node,
i.e., as vi,e, and not only as one total value per node.1 Hence, it is easy to adapt
their method to compute the values Pj and Pj,−i, for j, i ∈ {1, . . . , n}, which is
all we need to compute the VCG payments

ti(θ) =
[ ∑

j �=i
πj≥Pj

kj · (πj − P−i
j )

]
−

[ ∑
j �=i

πj≥Pj,−i

kj · (πj − Pj,−i)
]
.

Note that the partial path cost P−i
j can be easily derived from the cost Pj of

the cheapest path from j to the sink.
Since d′ ≤ diam′(G) · R, we get the desired running time.

4.2. Model with Capacities

Instead of lowest-cost paths and lowest-cost paths avoiding node i, we now need
to know a min-cost flow F (θ) and a min-cost flow F−i(θ) avoiding node i for each
of the payments ti(θ), i ∈ {1, . . . , n}. In the following we will explain how to

1This allows for more fine-grained and thus more realistic modeling.
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compute F (θ) in a distributed fashion. The flow F−i(θ) can be computed corre-
spondingly by blocking node i. Therefore, altogether (n + 1) flow computations
are performed, one for F (θ) and n for the F−i(θ), i ∈ V \ {0}.

We assume that the sink 0 controls all the computations: it chooses which
node is blocked (in the F−i(θ) case), it selects paths along which to send flow
together with the corresponding amounts, and it recognizes when a min-cost
flow computation is finished. These all are computationally simple tasks. The
only intensive computations needed will be those to obtain the shortest paths
with respect to certain costs and those in which certain edges may be blocked.
These will be done in a distributed manner applying the standard distributed
Bellman–Ford algorithm, which is used by BGP as mentioned above.

Distributed Computation of F (θ). We start with a description of a simple Ford–Fulkerson
approach [Ford and Fulkerson 58] of computing a min-cost flow from the super-
source to the sink via augmenting shortest paths. Then we explain how to modify
it to use the Edmonds–Karp scaling technique [Edmonds and Karp 72].

A virtual residual graph is overlayed on the given network. The residual edge
capacities and costs are derived from the original graph. The residual capacities
depend on the flow present on the corresponding residual edges and thus may
change during the computation of the flow. Each node keeps track of flow values
on residual edges incident to it.

Consider an original pair of directed edges (i, j) and (j, i) with costs p(i,j) and
p(j,i). We assume the costs to be greater than or equal to 0. Let f(i,j) and f(j,i)

denote the flow amounts on these edges, only one of which may be greater than
0. Otherwise, a circular flow of min(f(i,j), f(j,i)) is subtracted from both without
increasing the costs. The residual capacities are set to c′(i,j) = c(i,j) − f(i,j)

and c′(j,i) = c(j,i) − f(j,i). Additionally, we add the virtual edges (i, j) and (j, i)
with capacities c(i,j) = f(j,i) and c(j,i) = f(i,j) and costs p(i,j) = −p(i,j) and
p(j,i) = −p(j,i). Flow sent onto these edges is subtracted from the corresponding
flow on the edge in the opposite direction. Finally, for each i ∈ V \ {0} a virtual
edge is added from the supersource to node i with cost −πi.

The algorithm now proceeds as follows; steps 2–4 constitute a phase.

1. For each node i ∈ V initialize the flow values f(i,j) = f(j,i) = 0 of all
incident residual edges. Update the local capacities as described above.

2. Compute the shortest paths in the current residual graph considering only
edges with capacities greater than 0. Do this with the distributed Bellman–
Ford algorithm, adapting the BGP implementation. Modify the algorithm
so that it also forwards the bottleneck capacity of each path.
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3. The sink checks the min-cost path to the supersource. If the cost is greater
than or equal to 0, we are done. Otherwise, send a flow corresponding to
the bottleneck capacity along the path. This is done by sending a message
along the path that notifies the contained nodes to update their local flow
values (and thus capacities).

4. Continue at step 2 with the updated residual graph.

Theorem 4.2. In the per-packet utility model with capacity constraints (described
in Section 2.2), the Vickrey–Clarke–Groves allocation and payments can be com-
puted in a distributed manner. The computation converges in O(n3 ·log C) rounds
of communication, where C = max{ce|e ∈ E} is the maximum edge capacity.

Proof. Each phase consists in a (re)computation of the shortest paths in step 2.
Note that in the capacitated case, the rounds of communication for a shortest-
paths computation is no longer bounded by d or d′. It may actually take up to
n rounds of communication, as the example in the paragraph below shows.

The algorithm finishes in O(|E| · C) phases. This can be improved to O(|E| ·
log C) by applying the well-known scaling technique. To this end, a variable Δ
is introduced and initialized to 2�log C�−1 in step 1. In step 2, only edges with
capacity at least Δ are considered. In step 3, Δ is updated to Δ/2 if no more
negative-cost paths are found (unless Δ = 1, in which case we are done). The
updated Δ is broadcast to all nodes.

As mentioned, with (n + 1) such flow computations we can compute all node
payments ti(θ), which yields the desired number of rounds O(n3 · log C).

Shortest-Paths Computation. With capacities, the number of rounds of communication
to compute the shortest paths can no longer be bounded by d (or d′). Figure 2
shows a counterexample in which the shortest path in the residual graph has

node 2

l nodes
node 1

cap: l + 1
node 0 (sink)

cost: 1

Figure 2. All edges have capacity 1, except the top edge with capacity l + 1. The
edge costs are all 0, except the rightmost edge with cost 1. All nodes have a
demand of 1 to be sent to node 0.
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length n − 2, whereas the number of hops in the corresponding LCP in the
original graph is 2. Assume that each node has already (virtually) sent its flow
through the residual graph except node 1, which is selected last. Since the nodes
are indistinguishable, we may assume this. The only path remaining in the
residual graph is the one at the bottom of length n−2, since the capacities of all
other edges (except (1, 2)) are fully saturated by flow sent to the sink via node 2.
This compares to the LCP with only two edges from node 1 over node 2 directly
to node 0.

4.3. Model with Economic Relationships

In the following we will explain the two-layer graph, a helpful notion that was
originally suggested in [Erlebach et al. 04]. With the help of the two-layer graph
it will be easy to see that one can compute min-cost valley-free flows as needed
in our model with capacities introduced in Section 2.2.

The Two-Layer Model. From a ToR graph G = (V, E) with source and sink s, t ∈ V we
construct a directed two-layer graph H in the following way (see Figure 3 for an
example): Two copies of the graph G are made, called the lower and the upper
layers. In the upper layer, all edge-directions are reversed. In addition, every
node i in the lower layer is connected by an edge to the corresponding copy of
i, denoted by i′, in the upper layer. The edge is directed from i to i′. Finally,
we obtain the two-layer graph H by merging the two s-nodes (of the lower and
upper layers) and also the two t-nodes, and by removing the incoming edges of
s and the outgoing edges of t.

A valid path pathG = {i1 . . . ir} in G with i1 = s and ir = t is equivalent to a
directed path in H in the following way. The forward part of pathG, which is the
part containing all edges (iq, iq+1) ∈ pathG, is routed in the lower layer. Then
there is a possible switch to the upper layer with a (i, i′)-type edge (there can be
at most one such switch for each path). The backward part of pathG is routed
in the upper layer. In other words, for each original edge (iq+1, iq) ∈ pathG, the
corresponding edge (i′q, i

′
q+1) of the upper layer is traversed. If there is only a

forward (respectively backward) part of pathG, then the corresponding path in
H is in only the lower (respectively upper) layer.

This definition of the two-layer graph can easily be extended to the case of
multiple sources. Note that a peer–peer relationship between two nodes i, j ∈ V

can be incorporated by adding the edges (i, j′) and (j, i′) from the lower to the
upper layer (reflecting that at most one peer–peer edge is allowed between the
forward and the backward parts of a path). Similarly, a sibling relationship
between two nodes i, j ∈ V can be incorporated by adding the symmetric edges
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s s tt

forward part

backward part

G′

reverse(G′)

G′

upper layer

lower layer

H

Figure 3. A path in the ToR graph G and the corresponding path in the two-layer
graph H . (G′ is G, excluding s and t.)

(i, j), (j, i), (i′, j′), and (j′, i′) in both layers (reflecting that sibling edges are
allowed at arbitrary points in a path).

Min-Cost Valley-Free Flows. By simply computing a min-cost flow in the two-layer graph
it is easy to derive a valley-free flow that will have at most the cost of an optimum
min-cost valley-free flow. The edge capacities may be violated by at most a factor
of two, though, since each edge may be used twice: once in the upper and once
in the lower layer. Note that such a min-cost flow could be computed in a
distributed fashion by slightly modifying the approach described in Section 4.2.
Unfortunately, this approximate solution cannot be used to compute the VCG
allocation and payments, because the truthfulness of the mechanism holds only
for the exact form of payments from the optimal solution. Thus, we need to
compute the optimal solution.

Theorem 4.3. In the per-packet utility model with capacity constraints and eco-
nomic relationships (see Section 3), the Vickrey–Clarke–Groves allocation and
payments can be computed in polynomial time with an approach based on linear
programming.

Proof. For a given graph, consider its corresponding two-layer graph described
above. Then the exact allocation and payments in the original graph can be
computed with the help of a standard linear programming flow formulation on
the two-layer graph, with added constraints to bound the joint flow on the edges
of the upper and lower layers. In particular, for each edge (i, j) ∈ E in the
original ToR graph, we add a joint capacity constraint for (i, j) and (j′, i′) in the
two-layer graph.
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Note that the existence of an exact algorithm based on augmenting paths seems
unlikely. Usually, for integral capacities such algorithms aim at computing an
optimal integral solution, i.e., for unit capacities a solution would consist of edge-
disjoint paths. However, computing the maximum number of disjoint valley-free
paths between two nodes s and t is inapproximable within a factor of (2 − ε),
unless P = NP [Erlebach et al. 04].

5. Conclusions and Open Problems

Despite the fact that incentive compatibility for BGP routing has been known to
be problematic in general, as well as for several apparently realistic special cases,
we have identified one important special case of practical importance, namely the
one in which path utilities depend on local per-packet costs as well as delivery
values. In this case, incentive compatibility is achievable through payments that
can be computed efficiently and in a BGP-compatible way; adding capacities
and the “valley-free” constraint for paths makes incentives harder to compute in
a BGP-compatible way, but still tractable.

Regarding the latter point, in this work we have simply pointed out that the
algorithms we devised for VCG incentive computation are not implementable
in a BGP-compatible way; it would be interesting to actually prove that this is
inherent to the problem, that is, to prove a lower bound on the convergence time
of any algorithm solving the min-cost flow problem and its valley-free constrained
case.

Our model for path utilities is suggestive of a more general project for un-
derstanding BGP routing: We postulate that each directed edge in and out of
every node has a value for this node, depending on the cost to this node, as
well as agreed-upon payments to or from its neighbors, for each packet sent or
received along this edge. Suppose that the graph, as well as the demand and
per-packet cost and delivery value of each node, is given. A game is thus defined
in which strategies are payment agreements between neighbors, and the utility
to each node is that obtained by our model of BGP min-cost routing. This game
is thus a very realistic network-creation game, with special emphasis on BGP
routing. The quality of equilibria compared to the social optimum (i.e., the price
of anarchy and its variants) for this game would be a most interesting research
direction. The social optimum is, of course, the min-cost flow with only costs
and delivery values taken into account. Further, such a model would allow one
to study how inter-AS agreements can depend on the underlying fundamentals
of each AS, such as costs, delivery value, demand, and position in the network.
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