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Abstract

We study the problem of hiring a team of selfish agents to perform a task.
Each agent is assumed to own one or more elements of a set system, and
the auctioneer is trying to purchase a feasible solution by conducting an
auction. Our goal is to design auctions that are truthful and false-name-
proof, meaning that it is in the agents’ best interest to reveal ownership of
all elements (which may not be known to the auctioneer a priori) as well as
their true incurred costs.

We first propose and analyze a false-name-proof mechanism for the special
case where each agent owns only one element in reality, but may pretend that
this element is in fact a set of multiple elements. We prove that its frugality
ratio is bounded by 2n, which, up to constants, matches a lower bound of
Ω(2n) for all false-name-proof mechanisms in this scenario. We then propose
a second mechanism for the general case in which agents may own multiple
elements. It requires the auctioneer to choose a reserve cost a priori, and thus
does not always purchase a solution. In return, it is false-name-proof even
when agents own multiple elements. We experimentally evaluate the payment
(as well as social surplus) of the second mechanism through simulation.
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1. Introduction

One of the important challenges of electronic commerce, in particular in
large-scale settings such as the Internet, is to design protocols for dealing with
parties having diverse and selfish interests. Frequently, one of the most con-
venient ways of structuring these interactions is via auctions: based on bids
submitted by the participants, the auctioneer chooses whom to sell items to
or purchase items from, and decides on appropriate payments. The analytical
study of auctions for e-commerce has recently led to very fruitful interactions
between the fields of economics, game theory, theoretical computer science,
and artificial intelligence.

While single-item auctions have a long history of study in economics
(see, e.g., [1, 2]), the problem is significantly more complex when there are
combinatorial dependencies between items. In a combinatorial auction [3],
the auctioneer has a set of items for sale, and agents submit bids for different
subsets. Each item can only be assigned to one agent.

In contrast to combinatorial auctions, where an auctioneer is trying to
sell a set of items, we study the problem of hiring a team of agents [4, 5, 6],
In that problem, an auctioneer knows which subsets of agents can perform a
complex task together, and needs to hire such a team. (called a feasible set
of agents.) Since the auctioneer does not know the true costs incurred by
agents, we assume that the auctioneer will use an auction to elicit bids. A
particularly well-studied special case of this problem is that of a path auction
[4, 7, 8, 9]: the agents own edges of a known graph, and the auctioneer wants
to purchase an s-t path.

Selfish agents will try to maximize their profit, even if it requires misrep-
resenting their incurred cost or their identity. The field of mechanism design
focuses on the design of the interaction between agents and computation to
mitigate the effects of such selfish behavior [9, 10, 11]. In particular, there
has been a lot of recent focus on the design of truthful auctions, in which it
is in the agents’ best interest to reveal their true costs to the auctioneer.

While the concept of truthfulness addresses the concern that agents may
misrepresent their true costs, there is a second way in which agents could
cheat: an agent owning multiple elements of a set system (such as multi-
ple edges in a graph) may choose different identities for interacting with
the auctioneer, to obtain higher payments. Similarly, an agent owning one
element may be able to pretend that this element is in fact a set of multi-
ple elements, owned by different agents, to obtain payments for all of these
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“pseudo-agents”. Such behavior is called false-name manipulation, and was
recently studied by Yokoo et al. in the context of combinatorial auctions
[12, 13], where it was shown that for any Pareto efficient auction, agents can
profit by submitting bids as two identities.

1.1. Our contributions

We introduce a model of false-name manipulation in auctions for hiring
a team, such as s-t path auctions. In this model, the set system structure
and element ownership are not completely known to the auctioneer. Thus,
in order to increase profit, an agent who owns an element can pretend that
the element is in fact a set consisting of multiple elements owned by different
agents. Similarly, an agent owning multiple elements can submit bids for
these elements under different identities. We call a mechanism false-name-
proof if it is truthful, and a dominant strategy is for each agent to reveal
ownership of all elements.

Our first main contribution is a false-name-proof mechanism MP for the
special case in which each agent owns exactly one element. Thus, the mech-
anism only needs to guard against an agent pretending that a single element
is a set of elements, owned by distinct agents. This mechanism introduces an
exponential multiplicative penalty against sets in the number of participating
agents. We show that its frugality ratio (according to the definition of Karlin
et al. [8]) is at most 2n for all set systems of n elements, which matches —
up to constants — a worst-case lower bound of Ω(2n) we establish for every
false-name-proof mechanism.

When agents may own multiple elements, designing either a false-name
proof mechanism with bounded frugality ratio or proving an impossibility re-
sult appears challening. The main reason is that we currently do not have a
good characterization of incentive-compatible mechanisms with a sufficiently
complex action space for the agents. Instead, we present an alternative mech-
anism AP, based on an a priori chosen reserve cost r and additive penalties.
The mechanism is false-name-proof in the general setting, but depends cru-
cially on the choice of r, as it will not purchase a solution unless there is
one whose cost (including the penalty) is at most r. We investigate the AP
mechanism experimentally for s-t path auctions on random graphs, observ-
ing that AP provides social surplus not too far from a Pareto efficient one
at an appropriate reserve cost. Also, the payments of APare smaller than
those of the Vickrey-Clarke-Groves (VCG) mechanism when the reserve cost
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is small, while they become higher than VCG’s when the reserve cost is high.
However, the payment never exceeds the reserve cost.

1.2. Related Work

Motivated by the need to deal with selfish users, there has been a large
body of recent work at the intersection of game theory, economic theory and
theoretical computer science (see, e.g., [14, 11]). For instance, the seminal
paper of Nisan and Ronen [9], which introduced mechanism design to the the-
oretical computer science community, studied the tradeoffs between agents’
incentives and computational complexity. The loss of efficiency in network
games due to selfish user behavior has been studied under the names of “price
of anarchy” (see, e.g., [11, 15]), and “price of stability” (see [16]).

The problem of hiring a team of agents in complex settings, at minimum
total cost, has been shown to have many practical economic applications
(see [17, 18, 19, 20] for examples). In particular, the path auction problem
has been the subject of a significant amount of prior research. The traditional
economics approach to payment minimization (or profit maximization) is to
construct the optimal Bayesian auction given the prior distributions from
which agents’ private values are drawn. Indeed, path auctions and similar
problems have been studied recently from the Bayesian perspective in [7, 21].
Here, we instead follow the approach pioneered by Archer, Tardos, Talwar
and others [4, 22, 8, 6], and study the problem from a worst-case perspec-
tive. Significant insight can be gained from an understanding of worst-case
performance, and it enables an uninformed or only partially informed auc-
tioneer to evaluate the trade-off between an auction tailored to assumptions
about bidder valuations (which may or may not be correct) versus an auction
designed to work as well as possible under unknown and worst-case market
conditions.

If false-name bids are not a concern, then it has long been known that the
VCG mechanism [23, 24, 25] gives a truthful mechanism and identifies the
Pareto optimal solution. It is based on Vickrey’s second-price auction [23],
which is truthful for single-item auctions. As the payments of VCG can
be significantly higher than the cheapest alternative solution, several papers
[4, 6, 7, 8] have investigated the frugality of mechanisms: the overpayment
compared to a natural lower bound. In particular, Karlin et al. [8] present a
mechanism — called the

√
mechanism — achieving a frugality ratio within

a constant factor of optimal for s-t path auctions in graphs. Traditionally,
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for “hiring a team” auctions, incentive compatibility has only encompassed
making the revelation of true costs a dominant strategy for each bidder.

The issue of false-name bids has been previously studied in several cases
of combinatorial auctions and procurement auctions by Yokoo et al. [26,
27, 28, 29, 12], who developed false-name-proof mechanisms in those sce-
narios, but also proved that no mechanism can be both false-name-proof
and Pareto efficient. Notice that the false-name-proof mechanisms for com-
binatorial procurement auctions given in [27, 28] cannot be applied in our
setting, as they assume additive valuations on the part of the auctioneer,
i.e., that the auctioneer derives partial utility from partial solutions. A
somewhat similar scenario arises in job scheduling, where users may split
or merge jobs to obtain earlier assignments. Moulin [30] gives a mechanism
that is truthful/strategy-proof against both merges and splits and achieves
efficiency within a constant factor of optimum. However, when agents can
exchange money, no such mechanism is possible [30].

For the specific case of path auctions, the impact of false-name bids was
studied by Du et al. [31]. They showed that if agents can own multiple edges,
then there is no false-name-proof and efficient mechanism. Furthermore, if
bids are anonymous, i.e., agents do not report any identity for edge owner-
ship, then no mechanism can be truthful/strategy-proof. Notice that this
does not preclude false-name-proof and truthful mechanisms in which the
auctioneer takes ownership of multiple edge by the same agent into account,
and rewards the agent accordingly.

2. Preliminaries

We begin by defining formally the framework for auctions to hire a team.
Our framework is based on that of [4, 22, 8, 6]. A set system (E,F) is
specified by a set E of n elements and a collection F ⊆ 2E of feasible sets.
For instance, in the important special case of an s-t path auction, S ∈ F if
and only if S is an s-t path. We are only interested in set systems that are
monopoly-free, in the sense that

⋂

S∈F S = ∅, i.e., no agent is in all feasible
sets.

In previous work on “hiring a team” auctions, each element e was asso-
ciated with a different selfish agent. Here, we depart from this assumption,
in that an agent may own multiple elements. Ai denotes the set of elements
owned by agent i, which is an element of a partition A of E. An owned set
system, i.e., a set system with ownership structure, is specified by ((E,F),A).
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We use o(e) to denote the owner of element e, i.e., the unique i such that
e ∈ Ai. Each element e has an associated cost ce, the true cost that its owner
o(e) will incur if e is selected by the mechanism.1 This cost is private, i.e.,
known only to o(e). An auction consists of two steps:

1. Each agent i submits sealed bids (be, õ(e)) for elements e, where õ(e)
denotes the identifier of e’s purported owner which need not be the
actual owner. (However, no agent i can claim ownership of an element
e owned by another agent i′ 6= i.)

2. Based on the bids, the auctioneer uses an algorithm that is common
knowledge among the agents in order to select a feasible set S∗ ∈ F as
the winner and compute a payment pi for each agent i with an element
e such that i = õ(e). We say that the elements e ∈ S∗ win, and all
other elements lose.

The profit of an agent i is the sum of all payments she receives, minus the
incurred cost c(S∗ ∩ Ai). Each agent is only interested in maximizing her
profit, and might choose to misrepresent ownership or costs to this end.
However, we assume that agents do not collude. Past work on incentive
compatible mechanisms has focused on truthful mechanisms. That is, the
assumption was that each agent i submits bids only for elements e ∈ Ai she
actually owns, and reports correct ownership o(e) = i for all of them. If
agents report correct ownership for all e ∈ Ai, then a mechanism is truthful
by definition if for any fixed vector b−i of bids by all agents other than i, it
is in agents i’s best interest to bid be = ce for all e ∈ Ai, i.e., agent e’s profit
is maximized by bidding be = ce for all these elements e.

In this paper, we extend the study of truthful mechanisms to take into
account false-name manipulation: agents claiming ownership of non-existent
elements (which we call self-division) or choosing not to disclose ownership
of elements (which we call identifier splitting). Identifier Splitting is the
most natural form of false-name bidding on the part of an agent, and the
one studied in the past for combinatorial auctions, by Yokoo et al. [12, 13].
The notion of self-division is motivated by graph-theoretic problems (such
as shortest paths), when there is uncertainty on the part of the auctioneer
about the underlying set system.

1For costs, bids, etc., we extend the notation by writing c(S) =
∑

e∈S
ce, b(S) =

∑

e∈S
be, etc.
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Definition 1 (Identifier Splitting [12, 13]). An agent i owning a set Ai

may choose to use different identifiers in her bid for some or all of the ele-
ments. Formally, the owned set system ((E,F),A) is replaced by ((E,F),A′),
where A

′

= A \ {Ai} ∪ {Ai′} ∪ {Ai′′}, and Ai = Ai′ ∪ Ai′′ when agent i uses
two identifiers i′ and i′′.

Definition 2 (Self-Division). An agent i owning element e is said to self-
divide e if e is replaced by two or more elements e1, . . . , ek, and different
owners are reported for the ei. Formally, the owned set system ((E,F),A)
is replaced by ((E ′,F ′),A′), whose elements are E ′ = E \ {e} ∪ {e1, . . . , ek},
such that the feasible sets F ′ are exactly those sets S not containing e, as
well as sets S \ {e} ∪ {e1, . . . , ek} for all feasible sets S ∈ F containing e.
The ownership structure is Aij = {ej} for j = 1, . . . , k, where each ij is a
new agent.

Intuitively, self-division allows an agent to pretend that multiple distinct
agents are involved in doing the work of element e, and that each of them
must be paid separately. For self-division to be a threat, there must be
uncertainty on the part of the auctioneer about the true set system (E,F).
In particular, it is meaningless to talk about a mechanism for an individual
set system, as the auctioneer does not know a priori what the set system
is. Hence, we define classes of set systems closed under subdivision, as the
candidate classes on which mechanisms must operate.

Definition 3. 1. For two set systems (E,F) and (E ′,F ′), we say (E ′,F ′)
is reachable from (E,F) by subdivisions if (E ′,F ′) is obtained by (re-
peatedly) replacing individual elements e ∈ E with {e1, . . . , ek}, such
that the feasible sets F ′ are exactly those sets S not containing e, as
well as sets S \ {e} ∪ {e1, . . . , ek} for all feasible sets S ∈ F containing
e.

2. A class C of set systems is closed under subdivisions iff with (E,F),
all set systems reachable from (E,F) by subdivisions are also in C.

For example, s-t path auction set systems are closed under subdivisions,
whereas minimum spanning tree set systems are not (because subdivisions
would introduce new nodes that must be spanned). On the other hand,
minimum Steiner tree set systems with a fixed set of terminals are susceptible
to false-name manipulation.
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In both identifier splitting and self-division, we will sometimes refer to the
new agents i′ whose existence i invents as pseudo-agents. A mechanism is
false-name-proof if it is a dominant strategy for each agent i to simply report
the pair (ce, i) as a bid for each element e ∈ Ai. Thus, neither identifier
splitting nor self-division nor bids be 6= ce can increase the agent’s profit.
Among other things, this allows us to use be and ce interchangeably when
discussing false-name-proof mechanisms. Notice that we explicitly define the
concept of false-name-proof mechanisms to imply that the mechanism is also
truthful when each agent i owns only one element.

2.1. Efficiency and Frugality

In designing and analyzing a mechanism for hiring a team, there are sev-
eral other desirable properties besides being false-name-proof (or at least
truthful). Two particularly important ones are efficiency and frugality. A
mechanism is Pareto efficient if it always maximizes the sum of all partic-
ipants’ utilities (including that of the auctioneer). This maximizes social
surplus. In the case of hiring a team, the auctioneer’s utility is exactly
−∑

i pi, the negative of the sum of all payments. Hence, all payments cancel
out, and a mechanism is Pareto efficient if and only if it always purchases the
cheapest team or s-t path. While it is well-known that the VCG mechanism
is truthful and Pareto efficient [23, 24, 25], Du et al. [31] show that there is no
Pareto efficient and false-name-proof mechanism, even for s-t path auctions.
Yokoo et al. [13] showed the same for combinatorial auctions.

While Pareto efficient mechanisms maximize social welfare, they can sig-
nificantly overpay compared to other mechanisms [8, 7]. In order to analyze
the overpayment, we use the definition of frugality ratio from [8]. The idea of
the frugality ratio is to compare the payments to a “natural” lower bound,
generalizing the idea of the second lowest cost. (It is easy to observe that no
meaningful ratio is possible when comparing to the actual lowest cost.)

Definition 4 ([8]). Let (E,F) be a set system, and c a cost vector for the
elements. Let S be a cheapest feasible set with respect to the ce (where ties are
broken lexicographically). We define ν(c) to be the solution to the following
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optimization problem.

Minimize
∑

e∈S xe subject to

(1) xe ≥ ce for all e

(2) x(S \ T ) ≤ c(T \ S) for all T ∈ F
(3) For every e ∈ S, there is a Te ∈ F such that

e /∈ Te and x(S \ Te) = c(Te \ S)

This definition essentially captures the payments in a “cheapest Nash
equilibrium” of a first-price auction, and gives a natural lower bound gener-
alizing second-lowest cost for comparison purposes.

Definition 5. The frugality of a mechanism M for a set system (E,F) is

φM = sup
c

pM(c)

ν(c)
,

i.e., the worst case, over all cost vectors c, of the overpayment compared to
the “first-price” payments. Here, pM(c) denotes the total payments made by
M when the cost vector is c.

3. A Multiplicative Penalty Mechanism

In this section, we focus on a mechanism MP with multiplicative penal-
ties, as well as lower bounds, for arbitrary “hiring a team” instances. The
MP mechanism always buys a solution, and so long as each agent owns one
element only, it is false-name proof.2 We analyze the frugality ratio of MP
for arbitrary instances, and prove that it is at most 2n, matching — up to
constants — a lower bound of Ω(2n) for any false-name-proof mechanism.

3.1. The Mechanism MP

The mechanism MP is based on exponential multiplicative penalties. It
is false-name-proof for arbitrary classes of set systems closed under subdivi-
sions, so long as each agent only owns one element (In other words, it guards

2In fact, MP works even if an agent owns multiple elements, so long as all of these
elements are required at the same time. In other words, if we can consider a set of
elements as a virtual single element, MP is false-name-proof.
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against self-division by agents). We can therefore identify elements e with
agents. Since we assume that each agent owns exactly one element, A is
automatically determined by E, so we can focus on set systems instead of
owned set systems.

After the agents submit bids be for elements, MP chooses the set S∗

minimizing b(S) · 2|S|−1, among all feasible sets S ∈ F . Each agent e ∈ S∗ is
then paid her threshold bid 2|S

−e|−|S∗|b(S−e)− b(S∗ \{e}), where S−e denotes
the best solution (with respect to the objective function b(S) · 2|S|−1) among
feasible sets S not containing e. Notice that while this selection may be NP-
hard in general, it can be accomplished in polynomial time for path auctions,
by using the Bellman/Ford algorithm to compute the shortest path for each
number of hops, and then choosing from the at most n such shortest paths.

Theorem 1. For all classes of set systems closed under subdivision, MP is
false-name-proof, so long as each agent only owns one element. Furthermore,
it has frugality ratio O(2n), where n = |E|.

Proof. If an agent e = e0 self-divides into k + 1 elements e0, . . . , ek, then
either all of the ei or none of them are included in any feasible set S. Thus,
we can always think of just one threshold τk(e) for the self-divided agent e:
if the sum of the bids of all the new elements ej exceeds τk(e), then e loses;
otherwise, it is paid at most (k + 1)τk(e). The original threshold of agent e
is τ(e) = τ0(e).

The definition of the MP mechanism implies that τk(e) ≤ 2−kτ(e). If e
still wins after self-division (otherwise, there clearly is no incentive to self-
divide), the total payment to e is at most (k + 1)2−kτ(e). The alternative
of not self-dividing, and submitting a bid of 0, yields a payment of τ(e) ≥
(k + 1)2−kτ(e). Thus, refraining from self-division is a dominant strategy.
Given that no agent will submit false-name bids, the monotonicity of the
selection rule implies that the mechanism is incentive compatible, and we
can assume that be = ce for all agents e.

To prove the upper bound on the frugality ratio, consider again any win-
ning agent e ∈ S∗. Her threshold bid is

τ(e) = min
T∈F :e/∈T

2|T |−|S∗|c(T )− c(S∗ \ {e}),
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and the total payment is the sum of individual thresholds for S∗,

pMP(c) =
∑

e∈S∗

min
T∈F :e/∈T

2|T |−|S∗|c(T )− c(S∗ \ {e})

≤ 2n−|S∗|
∑

e∈S∗

min
T∈F :e/∈T

c(T ).

To obtain the frugality ratio from this upper bound on the payments,
we need a lower bound on the value ν(c) (see Definition 5). Let S be the
cheapest solution with respect to the ce, i.e., without regard to the sizes
of the sets. By Definition 4, ν(c) =

∑

e∈S xe, subject to the constraints of
the mathematical program given. Focusing on any fixed agent e′, we let Te′

denote the set from the third constraint of Definition 4, and can rewrite

ν(c) =
∑

e∈S\Te′
xe +

∑

e∈S∩Te′
xe

=
∑

e∈Te′\S
ce +

∑

e∈Te′∩S
xe ≥ c(Te′).

(1)

Since this inequality holds for all e′, we have proved that ν(c) ≥ maxe∈S c(Te).
On the other hand, we can further bound the payments by

2n−|S∗|
∑

e∈S∗

min
T∈F :e/∈T

c(T ) ≤ |S∗| · 2n−|S∗| ·max
e∈S∗

min
T∈F :e/∈T

c(T )

≤ |S∗|
2|S∗|

· 2n ·max
e∈S

min
T∈F :e/∈T

c(T )

≤ 2n ·max
e∈S

c(Te).

Here, the middle inequality followed because for all e ∈ S∗ \ S, the min-
imizing set T is actually equal to S, and therefore cannot have larger cost
than c(Te) for any e ∈ S, by definition of S. Thus, the frugality ratio of MP
is

φMP = sup
c

pMP(c)

ν(c)
≤ 2nmaxe∈S c(Te)

maxe∈S c(Te)
= 2n.

3.2. An Exponential Lower Bound

An exponentially large frugality ratio is not desirable. Unfortunately, any
mechanism which is false-name-proof will have to incur such a penalty, as
shown by the following theorem.
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Theorem 2. Let C be any class of monopoly free set systems closed under
subdivisions, and M be any truthful and false-name-proof mechanism for C.
Then, the frugality ratio of M on C is Ω(2n) for set systems with |E| = n.

Proof. Let (E0,F0) ∈ C be a set system minimizing |E0|. Let S∗ ∈ F0

be the winning set under M winning when all agents e ∈ E0 bid 0, and let
e ∈ S∗ be arbitrary, but fixed. Because (E0,F0) is monopoly free, there must
be a feasible set T ∈ F0 with e /∈ T and T 6⊆ S∗. Among all such sets T ,
let Te be one minimizing |S∗ ∪ T |, and let ê in Te\S∗ be arbitrary. Define
Z = (Te ∪ S∗) \ {e, ê} (the “zero bidders”), and I = E0 \ (Te ∪ S∗) (the
“infinity bidders”). Consider the following bid vector: both e and ê bid 1,
all agents e′ ∈ Z bid 0, and all agents e′ ∈ I bid ∞. Let W be the winning
set. We claim that W must contain at least one of e and ê (w.l.o.g., assume
that e ∈ W ). For W cannot contain any of the infinity bidders. And if it
contained neither e nor ê, then W would have been a candidate for Te with
smaller |W ∪ S∗|, which would contradict the choice of Te.

Now, let (Ek,Fk) be the set system resulting if agent e self-divides into
new agents e0, . . . , ek, for k ≥ 0. Define τ(j, k), for j = 0, . . . , k, to be the
threshold bid under M for agent ej in the set system (Ek,Fk), given that all
e′ ∈ Z bid 0, all e′ ∈ I bid ∞, and all ei for i 6= j also bid 0, while ê bids
1. Above, we thus showed that 1 ≤ τ(0, 0) < ∞. We now show by induction
on d that for all d, there exists an h ≤ d such that

2−d
k

∑

i=0

τ(i, k) ≥
k+h
∑

i=h

τ(i, k + d).

The base case d = 0 is trivial. For the inductive step, assume that we
have proved the statement for d. Because M is truthful, the payment of an
agent is exactly equal to the threshold bid, so each agent i is paid τ(i, k+ d)
in the auction on the set system (Ek+d,Fk+d) with the bids as given above. If
agent i were to self-divide into two new agents, the new set system would be
(Ek+d+1,Fk+d+1), and the payment of agent i (who is now getting paid as two
pseudo-agents i and i+1) would be τ(i, k+d+1)+τ(i+1, k+d+1). Because
M was assumed to be false-name-proof, it is not in the agent’s best interest
to self-divide in such a way, i.e., τ(i, k+d) ≥ τ(i, k+d+1)+τ(i+1, k+d+1).
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Summing this inequality over all agents i = h, . . . , h+ k, we obtain

h+k
∑

i=h

τ(i, k + d) ≥
h+k
∑

i=h

(τ(i, k + d+ 1) + τ(i+ 1, k + d+ 1))

=
h+k
∑

i=h

τ(i, k + d+ 1) +
h+k+1
∑

i=h+1

τ(i, k + d+ 1).

Define ℓ = 0 if
∑h+k

i=h τ(i, k + d+ 1) ≤ ∑h+k+1
i=h+1 τ(i, k + d + 1); otherwise,

let ℓ = 1. Then, the above inequality implies that

h+k
∑

i=h

τ(i, k + d) ≥ 2
h+k+ℓ
∑

i=h+ℓ

τ(i, k + d+ 1).

Finally, setting h′ := h+ℓ, we can combine this inequality with the induction
hypothesis to obtain that

2−(d+1)
k

∑

i=0

τ(i, k) ≥
k+h′

∑

i=h′

τ(i, k + d+ 1),

which completes the inductive proof.
Applying this equation with k = 0, we obtain that for each d ≥ 0, there

exists an h ≤ d such that τ(h, d) ≤ 2−d · τ(0, 0). Thus, in the set system
(Ed,Fd), if all infinity bidders have cost ∞, agent eh has cost just above
2−dτ(0, 0), and all other agents have cost 0, then agent ê must be in the
winning set, and must be paid at least 1. But it is easy to see that in this case,
ν(c) = 2−dτ(0, 0), and the frugality ratio is thus at least 2d/τ(0, 0) = Ω(2d)
(since τ(0, 0) is a constant independent of d). Finally, |Ed| = |Z|+ |I|+d+2,
and because Z and I are constant for our class of examples, the frugality
ratio is 2−(|Z|+|I|+2) · 2n/τ(0, 0) = Ω(2n).

In this section, we presented the MP mechanism based on multiplicative
penalties. MP always buys a feasible set. However, MP is guaranteed to
be false-name-proof only when each agent owns a single element. At this
point, we do not know if there exist any false-name-proof mechanisms against
identifier splitting which always buy a set at finite cost. This is an intriguing
open question for future work.
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4. An Additive Penalty Mechanism with Reserve Cost

We next propose another false-name-proof mechanism AP based on addi-
tive penalties and a reserve cost. The mechanism requires no assumption on
whether agents have single or multiple elements in a set system, and we will
prove that it is false-name-proof even when agents own multiple elements.
However, AP does not always purchase a feasible set; it requires the auction-
eer to decide on a reserve cost, and will only purchase a solution if there is a
feasible solution whose cost (including penalties) does not exceed the reserve
cost.

We can interpret the reserve cost as an upper bound on the cost (including
penalties) the auctioneer is willing to pay. This is particularly reasonable if
we assume that the auctioneer already has a way of performing the task using
a single agent of cost r, such as a direct edge (s, t) with cost r in a network. If
the bids by agents are such that the auctioneer chooses this alternative, then
none of the agents (including the auctioneer) receives positive utility. Clearly,
the right choice of the reserve cost r will be crucial for the performance of
the mechanism.

4.1. The AP mechanism

The AP mechanism is based on adding to the reported costs of the agents
a penalty growing in the number of agents participating in a solution. For
any set S ∈ F , let w(S) denote the number of (pseudo-)agents owning one or
more elements of S, called the width of the set S. The width-based penalty
for a set S of width w(S) is Dr(w(S)) = (1− 21−w(S)) · r. Based on the
reported costs and the penalty, we define the adjusted cost of a set S to be
β(S) = b(S) +Dr(w(S)).

The AP mechanism first determines the set S∗ minimizing the adjusted
cost β(S), among all feasible sets S ∈ F . If its adjusted cost exceeds the
reserve cost r, then AP does not purchase any set, and does not pay any
agents. Otherwise, it chooses S∗, and pays each winning agent (i.e., each
agent i with S∗ ∩ Ai 6= ∅) her threshold bid

pi = min(r, β(S−i))−
(

b(S∗ \ Ai) +Dr(w(S
∗))

)

with respect to β(S). Here, S−i denotes the best solution with respect to
β(S) such that S−i contains no elements from Ai.

Notice that if we assume that the auctioneer requires an additional cost
of (1 − 21−w(S)) · r for handling a team S, then AP is identical to the VCG
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mechanism with reserve cost r, since the adjusted cost becomes the true total
cost (including the additional cost of the auctioneer). Thus, if we assume that
there exists no false-name manipulation, it is natural that AP is incentive
compatible since it is one instance of VCG.

Example 1. Consider the example in Figure 1. Assume that the reserve
cost is r = 10. If agent X does not split identifiers, the adjusted cost of the
path s-v-t is 2 (since it only involves one agent, the penalty is 0), and the
adjusted cost of the edge s-t is 8. Thus, the payment to agent X is 8.

s tv
1(X) 1(X)

8(Y )

Figure 1: An example of AP.

If agent X instead uses two different identifiers X ′ and X ′′ for the two
edges, the penalty for the path s-v-t is 10/2 = 5. Thus, while the path still
wins, the payment to each of X ′ and X ′′ is now 8− (1 + 5) = 2, so the total
payment to agent X via pseudo-agents is 4. In particular, agent X has no
incentive to split identifiers in this case.

4.2. Analysis of AP

In this section, we prove that simply submitting the pair (be, i) for each
element e ∈ Ai is a dominant strategy for each agent i under the mechanism
AP. Furthermore, we prove that the payments of the AP mechanism never
exceed r. As a first step, we prove that it never increases an agent’s profit
to engage in identifier splitting.

Lemma 1. Suppose that agent i owns elements Ai, and splits identifiers into
i′, i′′, with sets Ai′ , Ai′′, such that Ai′ ∪ Ai′′ = Ai. Then, the profit agent i
obtains after splitting is no larger than that obtained before splitting.

Proof. Let S∗ ∈ F be the winning set prior to agent i’s identifier split.
We first consider the case when the winning set does not change due to the
identifier split. If only one of the new pseudo-agents i′, i′′ wins (say, i′), then
β(S−i′) ≤ β(S−i), because every feasible set not using elements from Ai also
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does not use elements from Ai′. Hence, the payment of i could only decrease,
and we may henceforth assume that both i′ and i′′ win, which means that
the width of the winning set S∗ increases from w(S∗) to w(S∗) + 1.

For simplicity, we write B−i = min(r, β(S−i)), and similarly for i′ and i′′.
The payment to i before the split is B−i − (b(S∗ \Ai) +Dr(w)), whereas the
new payment after the split is

B−i′ − (b(S∗ \ Ai′) +Dr(w + 1)) +B−i′′ − (b(S∗ \ Ai′′) +Dr(w + 1))

= B−i′ +B−i′′ − 2b(S∗) + b(S∗ ∩Ai)− 2Dr(w + 1).

As argued above, we have that B−i′′ ≤ B−i, and by definition of B−i′ , we
also know that B−i′ ≤ r. Thus, canceling out penalty terms, the increase in
payment to agent i is bounded from above by

B−i′ +B−i′′ −B−i − b(S∗)− r ≤ r +B−i − B−i − b(S∗)− r

= −b(S∗)

≤ 0.

Hence, identifier splitting can only lower the payment of agent i. Since
the total cost incurred by agent i stays the same, this proves that there is no
benefit in identifier splitting.

Next, suppose that the winning set after the split changes to S ′∗ 6= S∗.
Clearly, if i does not win at all after the split, i.e., S ′∗ ∩ Ai = ∅, then i has
no incentive to split identifiers. Otherwise, if i does win after the split, then
i must also win before the split. For the split can only increase Dr(w(S))
for all sets S containing any of i’s elements, while not affecting Dr(w(S))
for other sets. We can assume w.l.o.g. that agent i bids ∞ on all elements
e ∈ Ai \ S ′∗. For the winning set will stay the same, because β(S ′∗) stays
the same, and β(S) can only increase for other sets S, and the payments can
only increase.

But then, S ′∗ will also be the winning set if i does not split identifiers (the
adjusted cost β(S ′∗) decreases, while all other adjusted costs stay the same).
Now, we can apply the argument from above to show that the payments to
agent i do not increase as a result of splitting identifiers. Thus, so long as an
agent can submit bids of false cost instead, it is never a dominant strategy
to split identifiers.

Lemma 1 can be extended naturally to deal with k-way identifier splitting.
Notice that the proof also shows that AP is false-name-proof against self-
division.
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Theorem 3. For all classes of set systems closed under subdivision, AP is
false-name-proof, even if agents can own multiple elements and split identi-
fiers. Thus, for each agent i, submitting bids (ce, i) for each element e ∈ Ai

is a dominant strategy.

Proof. First, notice that if an agent owns two elements in the winning
solution, AP does not treat the agent differently from if she only owned one
element. Thus, the proof of Lemma 1 also shows that self-division can never
be beneficial for an agent, and we can assume from now on that no agent
will self-divide or split identifiers. Thus, each agent i submits bids (be, i) for
all elements e ∈ Ai. If the set S∗ ∈ F wins under AP, agent i’s utility is

pi − c(S∗ ∩Ai) = B−i −
(

b(S∗ \ Ai) +Dr(w(S
∗)) + c(S∗ ∩ Ai)

)

.

Since B−i is a constant independent of the bids be by agent i, agent i’s utility
is maximized when (b(S∗ \Ai) +Dr(w(S

∗)) + c(S∗ ∩Ai)) is minimized. But
this is exactly the quantity that AP will minimize when agent i submits
truthful bids for all her elements; hence, truthfulness is a dominant strategy.

The next theorem proves that an auctioneer with a reserve cost of r faces
no loss.

Theorem 4. The sum of the payments made by AP to agents never exceeds
r.

Proof. Because we already proved that AP is false-name-proof, we can
without loss of generality identify ce and be for each element e. When w
agents are part of the winning set S∗, the payment to agent i is

pi = B−i −
(

c(S∗ \ Ai) +Dr(w)
)

≤ r −
(

c(S∗ \ Ai) + r − r

2w−1

)

≤ r

2w−1
.

Thus, the sum of all payments to agents i is at most w · r
2w−1 ≤ r.

Since the reserve cost mechanism does not always purchase a feasible
set, we cannot analyze its frugality ratio in the sense of Definition 5. (The
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definition is based on the assumption that the mechanism always purchases
a set.) Nevertheless, if the auctioneer already has a way of performing the
task using a single agent of cost r, (such as a direct edge with higher cost in a
network), we can derive bounds on the frugality ratio of the AP mechanism.
These bounds cannot be taken as actual hard guarantees, since we need to
assume that the auctioneer was “lucky” in choosing the right reserve cost.

Specifically, assume that the auctioneer chose a reserve cost r ≤ 2n ·
maxe∈S c(Te), where S is the cheapest solution, and the sets Te are defined
by the third constraint of Definition 4. Since the total payment of AP does
not exceed r by Theorem 4, and ν(c) ≥ maxe∈S c(Te) by Inequality 1, we
obtain an upper bound of O(2n) on the frugality ratio, matching that of MP.
More generally, if the auctioneer chooses an r ≤ f(n) ·maxe∈S c(Te), then the
frugality ratio of the mechanism is O(f(n)).

4.3. Experiments

We complement the analysis of the previous section with experiments for
shortest s-t path auctions on random graphs. Our simulation compares the
payments of AP with VCG, under the assumption that there is in fact no
false-name manipulation and each agent owns one edge. Thus, we evaluate
the overpayment caused by preventing false-name manipulation.

Since some of our graphs have monopolies, we modify VCG by intro-
ducing a reserve cost r. Thus, if S∗ is the cheapest solution with respect
to the cost, the reserve-cost VCG mechanism (RVCG) only purchases a
path when c(S∗) ≤ r. In that case, the payment to each edge e ∈ S∗ is
pe = min(r, c(S−e)) − c(S∗ \ {e}), where S−e is the cheapest solution not
containing e.

Our generation process for random graphs is as follows: 40 nodes are
placed independently and uniformly at random in the unit square [0, 1]2.
Then, 200 independent and uniformly random node pairs are connected with
edges.3 The cost of each edge e is its Euclidean length. We evaluate 100
random trials; in each, we seek to buy a path between two randomly chosen
nodes. While the number of nodes is rather small compared to the real-
world networks on which one would like to run auctions, it is dictated by

3We also ran simulations on random small-world networks [32]. Our results for small-
world networks are qualitatively similar, and we therefore focus on the case of uniformly
random networks here.
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the computational complexity of the mechanisms we study. Larger-scale
experiments are a fruitful direction for future work.

Figure 2 shows the average social surplus (the difference between the
reserve cost and the true cost incurred by edges on the chosen path, r −
∑

e∈S∗ ce) in AP and RVCG, as well as the ratio between the two, when
varying the reserve cost r ∈ [0, 3.5]. The social surplus for both increases
roughly linearly under both mechanisms. While the plot shows some effi-
ciency loss by using AP, the efficiency is always within a factor of about 60%
for our instances, and on average around 80%.

Figure 3 illustrates the average payments of the auctioneer. Clearly, small
reserve costs lead to small payments, and when the reserve costs are less
than 1.8, the payment of AP is in fact smaller than that of RVCG. As the
reserve cost r increases, RVCG’s payments converge, while those of AP keep
increasing almost linearly. The reason is that the winning path in AP tends
to have fewer edges than other competing paths, and is thus paid an increased
bonus as r increases. We would expect such behavior to subside as there are
more competing paths with the same number of edges.
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Figure 2: Social surplus.
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Figure 3: Payments.

5. Concluding remarks

In this paper, we initiated the investigation of false-name-proof mecha-
nisms for hiring a team of agents. In this model, the structure of the set
system may not be completely known to the auctioneer. We first presented a
mechanism MP based on exponential multiplicative penalties, which always
buys a solution, but is false-name-proof only when each agent has exactly
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one element. We proved that MP has a frugality ratio of 2n. This is within
a constant factor of optimal for all classes of set systems, as we also proved
a lower bound of Ω(2n) for all false-name-proof mechanisms.

We also presented an alternative mechanism AP with exponential addi-
tive penalties and a reserve cost, which is false-name-proof even when each
agent has multiple elements. We evaluated AP experimentally; while it has
smaller social surplus compared to VCG, the difference is bounded by small
multiplicative constants in all of our experiments. The payments of APare
smaller than those of the VCG mechanism when the reserve cost is small. Al-
though the payments increase linearly in the reserve cost, they never exceed
the reserve cost.

It remains open whether there is a mechanism which always purchases
a solution, and is false-name-proof even when each agent has multiple ele-
ments. This holds even for such seemingly simple cases as s-t path auctions.
It may be possible that no such mechanism exists, which would be an in-
teresting result in its own right. The difficulty of designing false-name-proof
mechanisms for hiring a team is mainly due to a lack of useful characteriza-
tion results for incentive-compatible mechanisms when agents have multiple
parameters. While a characterization of truthful mechanisms has been given
by Rochet [33], this condition is difficult to apply in practice.
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