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Abstract. In addition to useful Economic interpretation, auction based
algorithms are generally found to be efficient. In this note, we observe
that the auction-based mechanism can also be used to efficiently com-
pute market equilibrium for a large class of utility functions satisfying
gross substitutability, including a range of CES (constant elasticity of
substitution) and Cobb-Douglas functions.

1 Introduction

The Market Equilibrium model is a classical problem in micro-economics. In
the late nineteenth century two market models have been studied, termed the
Fisher model [2] and the more general Walrasian model [14]. Given a set of goods
and a set of buyers who have utility for the goods, the problem is to determine
prices and allocation of the goods such that no buyer is induced to switch his
allocation. An initial endowment is provided for the buyers. In the Fisher case it
is money and in the case of the Walrasian model it is a portfolio of goods (which
may include money as a special case).

The existence of such equilibrium prices has been shown by Arrow and De-
breau, under some mild assumptions. The proof is existential, however. Since
then, there has been considerable interest in the computation of market equilib-
ria in economic models. The utility of buyer i for the goods is given by ui(Xi)
where Xi is the vector of allocation {xi1, xi2 . . . xim}. A number of utility func-
tions have been used in this context, which include linear functions, the Cobb-
Douglas functions of the form ui(x) =

∏
j(xij)aij for constants aij such that∑

j aij = 1. Another class of functions which are useful is the CES function
which is ui(x) = (

∑
j(cijxij)ρ)1/ρ where −∞ ≤ ρ ≤ 1, ρ 6= 0. cij are constants.

The market equilibrium problem has been solved for a number of special
cases using a variety of algorithmic techniques. The combinatorial techniques
are : (a) primal-dual techniques algorithms based on maximum flows [4, 5] and
(b) the auction based approaches [8] (c) Other classes of iterative procedures
termed tâtonnement processes. Non-linear or convex programming techniques,
which express the equilibrium problem as a convex programming problem, may
be found in a variety of works starting from the works of Eisenberg and Gale [7, 6]
in 1959 to the works (in Russian) of Primak et al. [11–13]. . Polynomial time ap-
proximation schemes which use a tâtonnement process was recently established
in exchange economies with weak gross substitutes (WGS) utilities [3].



Auction based approaches have been shown to efficiently find (approximate)
solutions to a wide class of problems [1]. In the context of the market equilib-
rium problem, auction based approaches are a subset of tâtonnement processes
suggested in the economics literature, in fact by Walras himself. Such techniques
may be very insightful in practice. It is very desirable to design markets where
interaction of self-motivated trading agents provably leads to a market equilib-
rium in a reasonable amount of time. Auction based approaches may indeed help
in designing such markets.

The auction based approach for the market equilibrium problem presented
in [8] found an approximate solution for a market with linear utilities. Using
price-rollback, the auction approach finds an exact solution to the problem [9].
Further, path auctions improve the complexity of the algorithm to the best
known bound [9]. Auction algorithms has also been extended to non-linear case
where the utilities are separable gross substitute [10]. In this paper we show that
the basic auction mechanism of [10], can also find (1 + ε) approximate market
equilibrium for a larger class of utility function which includes CES, in the range
that CES is WGS, and Cobb-Douglas utility functions. This is significant since
this class includes functions widely used in economic models. The algorithm has
a complexity which is a function of O(1/ε).

In Section 2 we define the market model and provide a characterization of
utility functions. In Section 3 we outline our algorithm. The proof of correctness
and complexity is similar to that in [10] and is skipped.

2 Market Model

Consider a market consisting of a set of n buyers and a set of m divisible goods.
Buyer i has, initially, an amount of money equal to ei. The amount of good j
available in the market is aj . Buyer i has a utility function, Ui : RM

+ → R+ which
is non-decreasing, concave and differentiable in the range 0 ≤ Xi ≤ A where A =
(a1, a2, . . . , am). Given prices P = {p1, p2, . . . , pm} of these m goods, a buyer uses
its money to purchase goods that maximize its total utility subject to its budget
constraint. Thus a buyer i will choose an allocation Xi ≡ (xi1, xi2, . . . , xim) that
solves the following buyer program Bi(P ):

Maximize : Ui(Xi) (1)

Subject to:
∑

1≤j≤m

xijpj ≤ ei (2)

and ∀j : xij ≥ 0.
We say that the pair (X, P ), X = (X1, X2 . . . Xn) forms a market equilibrium

if (a) the vector Xi ∈ Rn
+ solves the problem Bi(P ) for all users i and (b) there

is neither a surplus or a deficiency of any good i.e., ∀j :
∑

1≤i≤n xij = aj .
The prices P are called market clearing prices and the allocation X is called

an equilibrium allocation at price P . Let vij : Rm
+ → R+ be equal to ∂Ui(Xi)

∂xij
.

Since Ui is assumed to be differentiable for all i, vij is well defined for all i, j.



Using the theory of duality it can be shown that the optimal solution Xi to
Bi(P ) will satisfy the following:

∀i :
∑

1≤j≤m

xijpj = ei (3)

∀j : αipj ≥ vij(Xi) (4)
∀j : xij > 0 ⇒ αipj = vij(Xi) (5)

and ∀i : αi ≥ 0,∀i, j : xij ≥ 0. The equations (3) imply that all the buyers have
exhausted their budget. Equations (4) and (5) imply that (a) that every buyer
has the same marginal utility per unit price on the goods it gets and (b) every
good that a buyer is not allocated provides less marginal utility.

2.1 Uniformly Separable Utilities

We say that a utility function Ui is uniformly separable iff vij ≡ ∂Ui(Xi)
∂xij

can
be factored as: vij(Xi) = fij(xij)gi(Xi) such that fij is a strictly decreasing
function. The following utility functions can be verified to be uniformly separable
and gross substitute:

– CES (constant elasticity of substitution u(Xi) = (
∑

i(wijxij)ρ)1/ρ, where
0 < ρ < 1 ;

– Cobb-Douglas utility u(Xi) = Πj(xij)aij where aij ≥ 0 and
∑

j aij = 1.

A buyer is said to have gross substitute demand for goods iff increasing the
price of a good does not decrease the buyer’s demand for other goods. Similarly,
an economy is said to have gross substitutes demand iff increasing the price of a
good does not decrease the total demand of other goods. Clearly, if every buyer
has gross substitute demand then so does the economy. The following result
characterizes the class of uniformly separable concave gross substitute utility
functions.

Lemma 1. Let Ui be a concave, strictly monotone, uniformly separable function
(∂Ui(Xi)

∂xij
= fij(xij)gi(Xi)). Ui is gross substitute iff for all j, yfij(y) is a non-

decreasing function of the scalar y.

Proof. We first prove that if Ui is a gross substitute function then yfij(y) is
non-decreasing. Assume, for contradiction, that there are scalars y and y′ such
that y′ < y and y′fij(y′) > yfij(y). Choose a price P and an optimal solution
Xi of Bi(P ) such that xij = y (it is always possible to do so because of strict
monotonicity of Ui). Let αi be the optimal dual solution of Bi(P ). The optimality
conditions (4) and (5) for the dual of the program Bi(P ) can be rewritten as:

∀j : xij > 0 ⇒ fij(xij)gi(Xi) = αipj (6)
∀j : αipj ≥ fij(xij)gi(Xi) (7)



Construct a corresponding (P ′, X ′
i, α

′
i) such that x′ik = xik, p′k = pk for all k 6= j,

x′ij = y′, p′j = pjfij(x′ij)/fij(xij) = pjfij(y′)/fij(y) and α′
i = αigi(X ′

i)/gi(Xi).
Note that the solution (X ′

i, α
′
i, P

′) satisfies (6) and (7). Now,

x′ijp
′
j = y′p′j = pjy

′fij(y′)/fij(y) > pjyfij(y)/fij(y) = ypj = xijpj

Thus,
∑m

j=1 x′ijp
′
j >

∑m
j=1 xijpj = ei, implying that the solution X ′

i violates
the optimality condition (3) of program Bi(P ′). Therefore, the optimal solution
(X ′′

i , α′′
i ) of Bi(P ′) must have x′′ij < x′ij for some j. Since (X ′

i, α
′
i) and (X ′′

i , α′′
i )

satisfy (6) and (7) for the same price P ′ and fij is strictly decreasing for all j,
we must also have x′′ij < x′ij for all j. From the definition of X ′

i, it is clear that
this violates the gross substitutability condition.

We next show that if yfij(y) is non-decreasing then the goods satisfy gross-
substitutability. Consider an optimal solution Xi of Bi(P ). If xij > 0, equation
(6) gives xijpj = xijfij(xij)gi(Xi)/αi. Consider P ′ > P . For this price vector
we construct a feasible solution X ′

i satisfying (6) and (7) as follows: If p′j = pj

then x′ij = xij ,∀i. Alternately, if fij(0)gi(Xi) < αip
′
j then set x′ij to zero, else

choose x′ij such that fij(x′ij)gi(Xi) = αip
′
j . Set α′

i = αi(gi(X ′
i)/gi(Xi)). By

definition, the solution X ′
i satisfies the complementary slackness conditions (6).

Since P ′ > P , X ′
i also satisfies (7). Also since fij is a strictly decreasing function

p′j > pj ⇒ x′ij < xij . Now, if x′ij > 0 then

x′ijp
′
j = x′ijfij(x′ij)gi(X ′

i)/α′
i ≤ xijfij(xij)gi(Xi)/αi = xijpj

If x′ij = 0 then also we have x′ijp
′
j ≤ xijpj The above equations give

m∑
j=1

x′ijp
′
j ≤

m∑
j=1

xijpj = ei

Therefore, any optimal solution (X ′′
i , α′′

i ) of the program Bi(P ′) should have
x′′ij > x′ij for some j. Since (X ′′

i , α′′
i ) and (X ′

i, α
′
i) both satisfy (6) and (7) for

the same price P ′ and fij is strictly decreasing, we must have x′′ij ≥ x′ij for all
j. Gross substitutability now follows from the definition of X ′

i.

3 An Auction Algorithm for Market Clearing

An auction algorithm similar to that in [10] solves the market equilibrium prob-
lem for the uniformly separable gross substitute utility functions. For the sake
of completeness we give a brief description of the algorithm.

The algorithm (formally presented in Figure 1) begins with assigning all the
goods to one buyer (say buyer 1) and adjusting the prices such that (a) all the
money of the buyer is exhausted and (b) the initial allocation is optimal for
the buyer. During the course of the algorithm, goods may be allocated at two
prices, pj and pj/(1 + ε). The allocation of good j to buyer i at price pj is
represented by hij and the allocation at price pij/(1 + ε) is represented by yij .
The total allocation of good j to buyer i is given by xij = hij + yij . Define



algorithm main

initialize

while ∃i : ri > εei

while (ri > 0) and

(∃j : αijpj < fij(xij)gi(Xi))
if ∃k : ykj > 0 then

outbid(i, k, j, αij)

else raise price(j)
end while

j = arg maxl αil

if ∃k : ykj > 0
outbid(i, k, j, αij/(1 + ε))
αij = fij(xij)gi(Xi)/pj

else raise price(j)
end while

end algorithm main

procedure raise price(j)

∀i : yij = hij ; hij = 0;
pj = (1 + ε)pj

end procedure raise price

procedure initialize

∀i, ∀j : hij = 0
∀i 6= 1, ∀j : yij = 0
∀j : y1j = aj ; a = (a1, . . . , an);
∀j : α1j = (

∑
j
ajf1j(aj)g1(a))/ei

∀j : pj = f1j(aj)g1(a)/α1

∀i 6= 1 : αi = fij(0)gi(0̂)/pj; ri = ei

∀i 6= 1, ∀j : αij = fij(xij)gi(Xi)/pj

r1 = 0
end procedure initialize

procedure outbid(i, k, j, α)
t1 = ykj

t2 = ri/pj

if (fij(aj)gi(Xi) ≥ αpj) then

t3 = aj (x′
ik = xik, k 6= j; x′

ij = aj)
else

t3 = min δ : fij(xij + δ)gi(Xi) = αpj

t = min(t1, t2, t3)
hij = hij + t
ri = ri − tpj

ykj = ykj − t
rk = rk + tpj/(1 + ε)

end procedure outbid

Fig. 1. The auction algorithm

the surplus of a buyer i as ri =
∑m

j=1(hijpj + yijpj/(1 + ε)). Define the total
surplus in the system as r =

∑n
i=1 ri. The parameter ε is called the minimum

bid increment and determines the accuracy of the final solution obtained. Now
buyers with unspent money try to acquire items that give them the maximum
utility per unit money, by outbidding other buyers and raising the price of items.
The bidding is carried out till all the buyers have little unspent money.

Note this algorithm is very characteristic of a typical auction market. The
bidding is asynchronous, decentralized and local. The buyers do not have to
coordinate their actions. Any buyer with surplus money can place a bid on an
item that maximizes the value of the buyer, this outbidding other buyers. The
process stops when the unspent money with every buyer is sufficiently small.

To show convergence of the algorithm, the bidding may be organized in
rounds. In each round every buyer (i) is picked once and reduces his surplus
to 0, i.e. ri = 0. Now it can be shown that in every round of bidding, the total
unspent money decreases by a factor of (1 + ε). This gives the following bound
on the time complexity of the algorithm ( vmax = maxij vij(0)) (see [10]).

Theorem 1. The auction algorithm terminates in
O((E/ε) log((evvmax)/(εeminvmin)) log n) steps,



4 Conclusions

Naive auction algorithms give approximate market equilibrium. The approxi-
mation is related to the minimum bid increment parameter ε used in the al-
gorithm. It was shown that for linear utility functions, auctions with suitable
price-rollbacks and modifications to ε lead to exact market equilibrium. It will
be interesting to see if any such approach may also work for the general class of
gross substitute utilities.
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