Skip to main content

Gradient-Based Algorithms for Finding Nash Equilibria in Extensive Form Games

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4858))

Abstract

We present a computational approach to the saddle-point formulation for the Nash equilibria of two-person, zero-sum sequential games of imperfect information. The algorithm is a first-order gradient method based on modern smoothing techniques for non-smooth convex optimization. The algorithm requires O(1/ε) iterations to compute an ε-equilibrium, and the work per iteration is extremely low. These features enable us to find approximate Nash equilibria for sequential games with a tree representation of about 1010 nodes. This is three orders of magnitude larger than what previous algorithms can handle. We present two heuristic improvements to the basic algorithm and demonstrate their efficacy on a range of real-world games. Furthermore, we demonstrate how the algorithm can be customized to a specific class of problems with enormous memory savings.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Romanovskii, I.: Reduction of a game with complete memory to a matrix game. Soviet Mathematics 3, 678–681 (1962)

    Google Scholar 

  2. Koller, D., Megiddo, N.: The complexity of two-person zero-sum games in extensive form. Games and Economic Behavior 4(4), 528–552 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  3. von Stengel, B.: Efficient computation of behavior strategies. Games and Economic Behavior 14(2), 220–246 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  4. Koller, D., Pfeffer, A.: Representations and solutions for game-theoretic problems. Artificial Intelligence 94(1), 167–215 (1997) (Early version appeared in IJCAI-95)

    Google Scholar 

  5. Shi, J., Littman, M.: Abstraction methods for game theoretic poker. In: Computers and Games, Springer-Verlag, pp. 333–345. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  6. Gilpin, A., Sandholm, T.: Lossless abstraction method for sequential games of imperfect information. Journal of the ACM (to appear) Early version appeared as Finding equilibria in large sequential games of imperfect information. In: Proceedings of the ACM Conference on Electronic Commerce (ACM-EC), Ann Arbor, MI, 2006 (2007)

    Google Scholar 

  7. Billings, D., Burch, N., Davidson, A., Holte, R., Schaeffer, J., Schauenberg, T., Szafron, D.: Approximating game-theoretic optimal strategies for full-scale poker. In: Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence (IJCAI), Acapulco, Mexico, pp. 661–668 (2003)

    Google Scholar 

  8. Gilpin, A., Sandholm, T.: A competitive Texas Hold’em poker player via automated abstraction and real-time equilibrium computation. In: Proceedings of the National Conference on Artificial Intelligence (AAAI), Boston, MA (2006)

    Google Scholar 

  9. Gilpin, A., Sandholm, T.: Better automated abstraction techniques for imperfect information games, with application to Texas Hold’em poker. In: International Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS), Honolulu, HI (2007)

    Google Scholar 

  10. Gilpin, A., Sandholm, T., Sørensen, T.B.: Potential-aware automated abstraction of sequential games, and holistic equilibrium analysis of Texas Hold’em poker. In: Proceedings of the National Conference on Artificial Intelligence (AAAI), Vancouver, BC, Canada (2007)

    Google Scholar 

  11. Lipton, R.J., Young, N.E.: Simple strategies for large zero-sum games with applications to complexity theory. In: Proceedings of the Annual Symposium on Theory of Computing (STOC), Montreal, Quebec, Canada, pp. 734–740 (1994)

    Google Scholar 

  12. Lipton, R., Markakis, E., Mehta, A.: Playing large games using simple strategies. In: Proceedings of the ACM Conference on Electronic Commerce (ACM-EC), pp. 36–41. ACM Press, New York (2003)

    Google Scholar 

  13. Daskalakis, C., Mehta, A., Papadimitriou, C.: A note on approximate Nash equilibria. In: Spirakis, P.G., Mavronicolas, M., Kontogiannis, S.C. (eds.) WINE 2006. LNCS, vol. 4286, Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Daskalakis, C., Mehta, A., Papadimitriou, C.: Progress in approximate Nash equilibria. In: Proceedings of the ACM Conference on Electronic Commerce (ACM-EC), pp. 355–358. ACM Press, New York (2007)

    Google Scholar 

  15. Feder, T., Nazerzadeh, H., Saberi, A.: Approximating Nash equilibria using small-support strategies. In: Proceedings of the ACM Conference on Electronic Commerce (ACM-EC), pp. 352–354. ACM Press, New York (2007)

    Google Scholar 

  16. Freund, Y., Schapire, R.: Adaptive game playing using multiplicative weights. Games and Economic Behavior 29, 79–103 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  17. Nesterov, Y.: Excessive gap technique in nonsmooth convex minimization. SIAM Journal of Optimization 16(1), 235–249 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Nesterov, Y.: Introductory Lectures on Convex Optimization: A Basic Course. Kluwer Academic Publishers, Dordrecht (2004)

    MATH  Google Scholar 

  19. Lu, Z., Nemirovski, A., Monteiro, R.D.C.: Large-scale semidefinite programming via a saddle point mirror-prox algorithm. Mathematical Programming, Series B 109(2–3), 211–237 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  20. Chudak, F.A., Eleutério, V.: Improved approximation schemes for linear programming relaxations of combinatorial optimization problems. In: Jünger, M., Kaibel, V. (eds.) Integer Programming and Combinatorial Optimization. LNCS, vol. 3509, pp. 81–96. Springer, Heidelberg (2005)

    Google Scholar 

  21. Hoda, S., Gilpin, A.: Peña, J.: A gradient-based approach for computing Nash equilibria of large sequential games (2007), Available at, http://www.optimization-online.org/

  22. Billings, D., Davidson, A., Schaeffer, J., Szafron, D.: The challenge of poker. Artificial Intelligence 134(1-2), 201–240 (2002)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Xiaotie Deng Fan Chung Graham

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gilpin, A., Hoda, S., Peña, J., Sandholm, T. (2007). Gradient-Based Algorithms for Finding Nash Equilibria in Extensive Form Games. In: Deng, X., Graham, F.C. (eds) Internet and Network Economics. WINE 2007. Lecture Notes in Computer Science, vol 4858. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77105-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77105-0_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77104-3

  • Online ISBN: 978-3-540-77105-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics