Skip to main content

Approximability of Packing Disjoint Cycles

  • Conference paper
Algorithms and Computation (ISAAC 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4835))

Included in the following conference series:

Abstract

Given a graph G, the edge-disjoint cycle packing problem is to find the largest set of cycles of which no two share an edge. For undirected graphs, the best known approximation algorithm has ratio \(O(\sqrt{\log n})\) [14,15]. In fact, they proved the same upper bound for the integrality gap of this problem by presenting a simple greedy algorithm. Here we show that this is almost best possible. By modifying integrality gap and hardness results for the edge-disjoint paths problem [1,9], we show that the undirected edge-disjoint cycle packing problem has an integrality gap of \(\Omega(\frac{\sqrt{\log n}}{\log\log n})\) and furthermore it is quasi-NP-hard to approximate the edge-disjoint cycle problem within ratio of \(O(\log^{\frac{1}{2}-\epsilon} n)\) for any constant ε> 0. The same results hold for the problem of packing vertex-disjoint cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrews, M., Chuzhoy, J., Khanna, S., Zhang, L.: Hardness of the undirected edge-disjoint paths problem with congestion. In: Proc. of 46th IEEE FOCS, pp. 226–244 (2005)

    Google Scholar 

  2. Andrews, M., Zhang, L.: Hardness of the undirected edge-disjoint paths problem. In: Proc. of 37th ACM STOC, pp. 276–283. ACM Press, New York (2005)

    Google Scholar 

  3. Balister, P.: Packing digraphs with directed closed trials. Combin. Probab. Comput. 12, 1–15 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Caprara, A., Panconesi, A., Rizzi, R.: Packing cuts in undirected graphs. J. Algorithms 44, 1–11 (1999)

    MathSciNet  Google Scholar 

  5. Caprara, A., Panconesi, A., Rizzi, R.: Packing cycles in undirected graphs. J. Algorithms 48, 239–256 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chekuri, C., Khanna, S.: Edge disjoint paths revisited. In: Proc. of 14th ACM-SIAM SODA, pp. 628–637 (2003)

    Google Scholar 

  7. Chekuri, C., Khanna, S., Shepherd, B.: An \(O(\sqrt{n})\) Approximation and Integrality Gap for Disjoint Paths and UFP. Theory of Computing 2, 137–146 (2006)

    Article  MathSciNet  Google Scholar 

  8. Chuzhoy, J., Guha, S., Halperin, E., Khanna, S., Kortsarz, G., Krauthgamer, R., Naor, S.: Tight lower bounds for the asymmetric k-center problem. Journal of ACM 52(4), 538–551 (2005)

    Article  MathSciNet  Google Scholar 

  9. Chuzhoy, J., Khanna, S.: New hardness results for undirected edge disjoint paths, Manuscript (2005)

    Google Scholar 

  10. Dor, D., Tarsi, M.: Graph decomposition is NPC – A complete proof of Holyer’s conjecture. In: Proc. of 20th ACM STOC, pp. 252–263. ACM Press, New York (1992)

    Google Scholar 

  11. Guruswami, V., Khanna, S., Rajaraman, R., Shepherd, B., Yannakakis, M.: Near-Optimal Hardness Results and Approximation Algorithms for Edge-Disjoint Paths and Related Problems. J. of Computer and System Sciences 67(3), 473–496 (2003) Earlier version in STOC 1999.

    Article  MATH  MathSciNet  Google Scholar 

  12. Halldorsson, M.M., Kortsarz, G., Radhakrishnan, J., Sivasubramanian, S.: Complete Partitions of Graphs. Combinatorica (to appear)

    Google Scholar 

  13. Kleinberg, J.: Approximation algorithms for disjoint paths problems, PhD. Thesis, MIT, Cambridge, MA (May 1996)

    Google Scholar 

  14. Krivelevich, M., Nutov, Z., Yuster, R.: Approximation algorithms for cycle packing problems. In: Proc. of 16th ACM-SIAM SODA, pp. 556–561 (2005)

    Google Scholar 

  15. Krivelevich, M., Nutov, Z., Salavatipour, M.R., Verstraete, J., Yuster, R.: Approximation Algorithms and Hardness Results for Cycle Packing Problems. ACM Transactions on Algorithms (to appear)

    Google Scholar 

  16. Salavatipour, M.R., Verstraete, J.: Disjoint cycles: Integrality gap, hardness, and approximation. In: Jünger, M., Kaibel, V. (eds.) Integer Programming and Combinatorial Optimization. LNCS, vol. 3509, pp. 51–65. Springer, Heidelberg (2005)

    Google Scholar 

  17. Samorodnitsky, A., Trevisan, L.: A PCP characterization of NP with optimal amortized query complexity. In: Proc. of 32nd ACM STOC, pp. 191–199. ACM Press, New York (2000)

    Google Scholar 

  18. Seymour, P.D.: Packing directed circuits fractionally. Combinatorica 15, 281–288 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  19. Varadarajan, K.R., Venkataraman, G.: Graph decomposition and a greedy algorithm for edge-disjoint paths. In: Proc. of 15 ACM-SIAM SODA, pp. 379–380 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Takeshi Tokuyama

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Friggstad, Z., Salavatipour, M.R. (2007). Approximability of Packing Disjoint Cycles. In: Tokuyama, T. (eds) Algorithms and Computation. ISAAC 2007. Lecture Notes in Computer Science, vol 4835. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77120-3_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77120-3_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77118-0

  • Online ISBN: 978-3-540-77120-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics