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Abstract. From the analysis of algorithms for probabilistic networks, it is known that a tree decomposition of
the minimum treewidth may not be optimal for these algorithms. Instead of treewidth, we consider therefore the
weighted treewidth of a weighted graph. In this paper, we present a number of heuristics for determining upper
and lower bounds on the weighted treewidth, and a branch and bound algorithm for finding the exact weighted
treewidth for weighted graphs.

1 Introduction

In many graphical models and networks, each vertex is associated with a weight. The weights of
the vertices in the graph or network play a significant role for finding an optimal solution for the
problem. Triangulation of Bayesian Networks of probabilistic networks and logical partitioning
approaches are examples of such problems.

Many decision support systems have probabilistic networks as underlying technology [10]. In
these networks, we model dependencies and independencies between statistical variables using
a directed acyclic graph. Each statistical variable is represented by a a vertex in the network. An
important problem on these networks is probabilistic inference: we want to find the probability
distribution for a variable, given a value assignment to some other variables. An efficient algo-
rithm for inference is based on a tree decomposition of the moralized graph of the network, since
this graph appears to have small treewidth for many probabilistic networks that model real-life
situation. See for details [7–9].

In order to find a tree decomposition on which the algorithm from [8, 9] for inference takes
little time, we search of a tree decomposition of smallweighted width. The time this algorithm
needs to process one bag of the tree decomposition is proportional to the product over the vari-
ables, represented by the vertices in the bag, of the number of different values that the variable
can assume. If all values in the probabilistic network can assume the same numberc of different
values (e.g., all are binary andc = 2), then the time of the Lauritzen-Spiegelhalter algorithm is
bounded byO(ck · n). However, in practice, the statistical variables in a probabilistic networks
may have different numbers of possible values, and thus the tree decomposition of minimum
width may not be optimal for this algorithm. Thus, we look for a tree decomposition with mini-
mum weighted width instead of one of minimum width.

The problem of finding the exact weighted treewidth of a weighted graph is an NP hard prob-
lem, even if all weights are equal [1]. Therefore, we introduce, in this paper, besides a weighted
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variant of the branch and bound algorithm for treewidth from [3], some heuristics for finding
lower and upper bounds on weighted treewidth.

2 Preliminaries

We denote an undirected weighted graph byG = (V, E, w) whereV is the set of vertices of the
graph,E is the set of edges of the graph andw : V → N+ is a weight function. We refer to the
weight of a vertexv in a weighted graphG aswG(v), or in shortw(v).

We denote the set of neighbors of vertexv by N(v), and the set of neighbors ofv plusv itself
by N [v]. A vertexv in G is calledsimplicial, if its set of neighborsN(v) forms a clique inG. A
vertexv in G is calledalmost simplicial, if its neighbors except one form a clique inG, i.e., if
v has a neighborw such thatN(v) − {w} is a clique. A set of verticesW for which there is an
x ∈ W with W−{x} a clique is called analmost clique, x is called theexcluding vertex. A graph
G is calledtriangulated (or: chordal) if every cycle of length four of more possesses a chord. A
chord is an edge between two non consecutive vertices of the cycle. A graphG = (V, E) is a
subgraph of graphH = (W, F ) if V ⊆ W andE ⊆ F . A graphH = (V, F ) is a triangulation
of graphG = (V, E), if G is a subgraph ofH andH is a triangulated graph. Alinear ordering
of a graphG = (V, E) is a bijectionf : V → {1, 2, · · · , |V |}. A linear ordering of the vertices
of a graphG, σ = [v1, · · · , vn] is called aperfect elimination order (p.e.o.)of G, if for every
1 ≤ i ≤ n, vi is a simplicial vertex inG[v1, · · · , vn], i.e., the higher numbered neighbors ofvi

form a clique. It has been shown in [8] that a graphG is triangulated, if and only ifG has ap.e.o.
The weight of a set of vertices of a graphG, S ⊆ V is w(S) =

∏
v∈S w(v). Thetotal weight

of a graphG equals the weight of the set of its vertices,w(V ) =
∏

v∈V w(v). Theneighborhood
weightof a vertexv in a graphG, nwG(v) =

∏
v∈N [v] w(v), or in shortnw(v).

The definition of a tree decomposition of a weighted graphG = (V, E, w) is exactly the same
as for unweighted graphs. Atree decompositionof G = (V, E, w) is a pair({Xi | i ∈ I}, T =
(I, F )) with {Xi | i ∈ I} a collection of subsets ofV andT a tree, such that

⋃
i∈I Xi = V , for all

{v, w} ∈ E, there is ani ∈ I with v, w ∈ Xi, and for eachv, {i ∈ I | v ∈ Xi} forms a connected
subtree ofT . Theweighted widthof a tree decomposition equalsmaxi∈I w(Xi) and theweighted
treewidthof a graphG, wtw(G), is the minimum weighted width over all tree decompositions
of G.

A minor graphG′ = (W, F, w′) of a weighted graphG = (V, E, w) is a weighted graph
obtained fromG by a sequence of zero or more vertex removals, edge removals, and/ or edge
contractions, where an edge contraction for weighted graphs is the operation, that given an edge
{x, y} ∈ E, removesx andy and their incident edges fromG and adds a new vertexz, adjacent
to the vertices that were adjacent tox or y, with the weight ofz equal tomin(w(x), w(y)).

Lemma 1. (See e.g., [4].)

1. For every triangulated graphG = (V, E), there exists a tree decomposition(X = {Xi|i ∈
I}, T = (I, F )) of G, such that every setXi forms a clique inG, and for every maximal
cliqueW ⊆ V , there exists ani ∈ I with W = Xi.
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2. Let (X = {Xi|i ∈ I}, T = (I, F )) be a tree decomposition ofG of width at mostk. The
graphH = (V, E ∪ E ′), with E ′ = {{v, w}| ∃i ∈ I : v, w ∈ Xi}, obtained by making every
setXi a clique, is triangulated, and has maximum clique size at mostk + 1.

3. Let(X = {Xi|i ∈ I}, T = (I, F )) be a tree decomposition ofG, and letW ⊆ V form a
clique inG. Then there exist ani ∈ I with W ⊆ Xi.

Lemma 2. (See [6, 7]). The weighted treewidth of a graphG is the minimumk ≥ 0 such thatG
is a subgraph of a triangulated graph with all cliques of weight at mostk.

Lemma 3. (See [7]). LetG and G′ be two weighted graphs. IfG′ be a minor ofG, then the
weighted treewidth ofG′, wtw(G′), is at most the weighted treewidth ofG, wtw(G).

Definition 1. Thefill-in of a vertexx in a weighted graphG, fill-in G(x), or in short,fill-in (x),
is the number of edges that must be added between the neighbors ofx to make it simplicial, i.e.,
the neighborhood of that vertex turn into a clique.

fill-in(x) = |{{v, w}|v, w ∈ neighbors(x), {v, w} 6∈ E}|

Definition 2. Thefill-in excluding one neighbor of a vertexx in a weighted graphG, fill-in-excl-
oneG(x), or in short,fill-in-excl-one(x), is theminimum number of edges that must be added
between the neighbors ofx to make it almost simplicial, i.e., by adding these edges to the graph,
the neighborhood of that vertex will turn into an almost clique.

fill-in-excl-one(x)= min
z∈neighbors(x)

|{{v, w}|v, w ∈ neighbors(x)− {z}, {v, w} 6∈ E}|

3 Algorithms for finding weighted treewidth

In this section, we first introduce two heuristics for obtaining a lower bound on the weighted
treewidth. Then we introduce a number of heuristics for obtaining an upper bound on weighted
treewidth. Finally, we present the weighted variant of the branch and bound algorithm for treewidth
from [3].

3.1 Lower Bound Heuristics for Weighted Treewidth

In the following two lemmas, we give two simple lower bounds on the weighted treewidth of a
graph. Later, we generalize two known heuristics for a lower bound on the treewidth, namely,
Maximum Minimum Degree and the weighted variant of the Ramachandramurthi graph param-
eter.

Lemma 4. LetG be a weighted graph,wtw(G) ≥ maxv∈V (w(v)).

Proof. Let v be a vertex of maximum weight in a weighted graphG and let({Xi|i ∈ I}, T =
(I, F )) be a tree decomposition ofG of minimum weighted width. By the definition of a tree
decomposition of a weighted graph, there is at least one nodei ∈ I, such thatv ∈ Xi. Therefore,
the weighted treewidth ofG is at least the weight ofv. ut

Lemma 5. (Eijkhof et al. [7]). LetG be a weighted graph.wtw(G) ≥ minv∈V (nw(v)).
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The Maximum Minimum Neighborhood Weight Heuristic, variant Lower Bound (MMNW lb)
This heuristic builds upon Lemma 5. Given a weighted graphG = (V, E, w). The algorithm
works as follows: In the first step, the lower bound on the weighted treewidth is initialized with
zero,lb = 0. Then we repeat the following operations until the graph becomes empty: Letv ∈ V
be the vertex of the minimum neighborhood weight inG; set the lower bound on the weighted
treewidth to the maximum of its current value and the minimum neighborhood weight in the
graph,lb ← max(lb, nw(v)), and removev and its incident edges fromG. In Figure 1, we give
the pseudo-code of this algorithm.

MMNW lb Algorithm (G)

Input: A weighted graphG = (V, E, w);

Output: A lower bound on weighted treewidth of a graphG, lb;

1 let G′ = (V ′, E′) = G = (V, E), lb = 0;

2 while (G′ is not empty)

3 let v be a vertex withnwG′(v) the minimum amongst all vertices inG′;

4 setlb← max(lb, nwG′(v);

5 setV ′ ← V ′ − {v}; E′ = E′ − {v, w}, w is a neighbor ofv in G′;

6 return (lb);

Fig. 1.Pseudo-code of the Maximum Minimum Neighborhood Weight (MMNW) Algorithm .

Lemma 6. The weighted treewidth of a weighted graphG is at least the lower bound obtained
from the MMNWlb heuristic, applied toG.

The Weighted γw(G) Parameter Heuristic Ramachandramurthi [11] introduced the graph
parameterγ(G). Let G be an unweighted graph,γ(G) = min(n− 1,
minv,w∈V,{v,w}6∈E(max(degree(v), degree(w))), i.e.,γ(G) = n− 1, if G is a clique.

Lemma 7. (See Ramachandramurthi [11]). For every graphG, tw(G) ≥ γ(G).

The weighted variant ofγ, γw is defined as follows.

Definition 3. For each weighted graphG,

γw(G) = min(
∏
v∈V

(w(v)), min
v,w∈V,{v,w}6∈E

max(nw(v), nw(w)))

Note thatγw(G) =
∏

v∈V (w(v)), if G is a clique.

Lemma 8. For every weighted graphG, wtw(G) ≥ γw(G).
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Proof. If G is a complete graph (clique), thenγG =
∏

v∈V (w(v)) = wtw(G). Otherwise, let
x = wtw(G) and letv, w be a pair of nonadjacent vertices ofweight ≤ x in G. Thenx ≥
max(nw(v), nw(w)) ≥ γw(G). ut

The Weightedγw(G) Heuristic consists of two main steps. In the first step, we also initialize
the lower bound on the weighted treewidth with zero, i.e.,lb = 0. In the second step, if the
graph is a clique, then we setlb to the maximum of its current value and the weight of the graph.
Otherwise, we compute the minimum over all edges of the maximum weight of an endpoint
of the edge. We setlb to the maximum of its current value and this minimum, and repeat on
the graphG′, obtained by removing the vertex that yielded this minimum value and its incident
edges. As we compute at each stepγw(G′) for a subgraph ofG, we obtain a lower bound on the
weighted treewidth ofG. The pseudo-code of this algorithm is given in Figure 2.

γw(G) Algorithm (G)

Input: A weighted graphG = (V, E, w);

Output: A lower bound on weighted treewidth of graphG, lb;

1 let G′ = (V ′, E′)← G = (V, E), lb← 0;

2 while (G′ is not empty)

3 if (G′ is a clique)

4 return (max(w(G′) =
Q

v∈V (w(v)), lb));

5 else

6 CurGam← +∞;

7 foreachv, w ∈ V ′, {v, w} 6∈ E′

8 if (nw(v) ≥ nw(w)) then e← v; elsee← w;

9 if (nw(e) ≤ maxInt) then CurGam← nw(e); x← e;

10 setV ′ ← V ′ − {x}; E′ = E′ − {x, w}, w is a neighbor ofx in G′;

11 if ((CurGam > lb) then lb← CurGam;

Fig. 2.Pseudo-code of theγw(G) Algorithm.

3.2 Upper Bound Heuristics for Weighted Treewidth

The following lemma gives a very primitive upper bound on the weighted treewidth of the graph.

Lemma 9. The weighted treewidth of a weighted graphG is at most
∏

v∈V w(v).

In the following, we present a number of heuristics for the upper bound on the weighted
treewidth. All these heuristics depend basically on building a triangulation for a given graph.
The following lemma is a weighted variant of a well known result for treewidth, and can be
proved in the same way as the unweighted case, see e.g., [4].

Lemma 10. Let G be a triangulated graph. The weighted treewidth ofG equals the maximum
weight over all maximal cliquesQ = (W, F ) in G of

∏
w∈W w(v).
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For building a triangulationHσ = (V, F, w) for a weighted graphG = (V, E, w), one can
use a linear orderingσ of the vertices ofG such thatσ is a perfect elimination ordering (p.e.o.) of
Hσ, in the following way. Fori = σ[1], · · · , σ[|V |], in that order, we add an edge between every
pair of non-adjacent neighbors ofvi that are aftervi in the ordering,vi is thei′th vertex inσ.
Thus,σ is a p.e.o. of the resulting graphHσ. AsHσ is triangulated, its weighted treewidth equals
the maximum weight of the set of verticesS ⊆ V , whose vertices form a maximal clique in
Hσ. See Lemma 10. Hence, the weighted treewidth ofHσ, wtwHσ =

∏
v∈S w(v). The following

result can also be derived in the same way as the unweighted case.

Lemma 11. There is at least one linear orderingσ for a weighted graphG = (V, E, w) where
we obtain the exact weighted treewidth ofG.

This suggests the general scheme in Figure 3 for the upper bound heuristics on the weighted
treewidth.

setG′ ← G; i← 1; σ ← (); ub← 0;

while G′ is not the empty graph

selectaccording to some condition a vertexv from G′;

setub← max(ub, nw(vG′));

eliminate v; /* removev and turn its neighbors into a clique */

add v to positioni in the orderingσ;

seti← i + 1;

{Now ub is an upper bound on the weighted treewidth ofG.}

Fig. 3.A general scheme for the upper bound heuristics on the treewidth

We call a graphG′ encountered during the algorithm a temporary graph. Thus, the main dif-
ferences between the following heuristics are in their conditions for selecting a vertexv from G′,
at each step where we have to eliminate a vertex from the graph. Therefore, we will limit our dis-
cussion over these heuristics by giving the selection conditions of each heuristic. The following
two lemmas are the common factors between the selection conditions of these heuristics.

Lemma 12. (See [7]). Letv be a simplicial vertex in a weighted graphG = (V, E, w). Then the
weighted treewidth ofG is at least the neighborhood weight ofv, nw(v).

Definition 4. We call to a vertexv in a weighted graphG a strongly almost simplicialvertex in
G if and only if it is almost simplicial withN(v)−{x} a clique, the neighborhood weight ofv is
at most the weighted treewidth ofG, nw(v) ≤ wtw(G), and the weight ofx is at most the weight
of v, w(x) ≤ w(v).

Lemma 13. (See [7]). Letv be a weighted strongly almost simplicial vertex in a weighted graph
G = (V, E, w). Then the weighted treewidth ofG is at least the neighborhood weight ofv, nw(v).
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In [5], the notion ofsafe reduction rulewas introduced. A safe reduction rule rewrites a
graphG to a smaller one,G′, and maintains a lower bound variablelow, such that the maximum
of low and the treewidth of the graph at hand stays invariant, i.e., ruleR is safe, if for all graphs
G, G′, and all integerslow, low′, we havemax(low, wtw(G)) = max(low′, wtw(G′)). The
Simplicial and Strongly Almost Simplicial Rulesare examples of safe rules that we have used in
the selection conditions of our heuristics.

The Maximum Minimum Neighborhood Weight Heuristic, Upper Bound variant (MMNW ub)
The main steps of this heuristic are the same as in MMNWlb with one step more. Namely, before
we remove a vertex from the graph, we add an edge between every two non adjacent neighbors
of that vertex. In other words, we make a clique from the neighborhood of that vertex. Hence,
the selection conditions we used in this heuristic are based upon selecting at each step when
eliminate a vertex from a temporary graph, the vertex with the minimum neighborhood weight
in this graph.

Lemma 14. The weighted treewidth of a graphG = (V, E, w) is at most the output of the
MMNW heuristic, applied toG.

The Minimum Fill-in Heuristic, Weighted Variant (MF W) In this variant of the Minimum
Fill-in Heuristic, we compute an upper bound on the weighted treewidth in the same manner
as in the MMNWub heuristic, with one exception: in the selection conditions of this heuristic,
we select the vertex with minimum fill-in in the temporary graph instead of the vertex with the
minimum neighborhood weight as in MMNWub.

Lemma 15. The weighted treewidth of a graphG = (V, E, w) is at most the output of the MFW
heuristic, applied toG.

The Minimum Fill-in Excluding One Heuristic, variant Weighted (WMFEO) We have de-
veloped three versions of this heuristic. The differences between these are in the sequences of
the conditions we use for selecting the vertex we have to eliminate from the temporary graph.
In all three versions of this heuristic, and at any step when we have to eliminate a vertex from
the temporary graph, we check if this graph contains any simplicial or strongly almost simplicial
vertices. We eliminate these vertices from the graph, if they exist, and set the upper bound on
the weighted treewidth to the maximum of its current value and the maximum neighborhood
weight of these vertices. Otherwise, depending on the version, we select a version as follows.
In the first version, WMFEO1, we perform this check: Letp be a vertex with minimum fillin
in a temporary graphG′ = (W, F ) of a given graphG. We select a vertexq ∈ W such that,
q 6= p, fill-in-excl-one(q)≤ fill-in(p), nw(q) ≤ low, andw(x) ≤ w(q), wherex is the excluded
neighbor ofq andlow is a lower bound on the weighted treewidth ofG. If more than one vertex
q satisfies to these conditions, then we select the vertex of the minimumfill-in among them, but
if still there is more than one vertex with these specifications, then we select the first vertex of
the minimumfill-in-excl-oneamong these.

In version 2 of the algorithm, WMFEO2, the ties are broken using the fill-in and fill-in-
excl-one in the reverse order. If more than one vertexq satisfies to the two conditions, namely,
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fill-in-excl-one(q)< fill-in(p), nw(q) < low andw(x) ≤ w(q), then the vertex with minimum
fill-in amongst these is eliminated first. But, if there still is more than one vertex that satisfies the
last condition, then the vertex with minimumfill-in-excl-oneamongst these should be processed
first.

In version 3 of the algorithm, WMFEO3, the ties are broken using the neighborhood weight
besides the fill-in and fill-in-excl-one. If more than one vertexq satisfies to the two conditions,
fill-in-excl-one(q)< fill-in(p), nw(q) < low andw(x) ≤ w(q), then the vertex with minimum
neighborhood weight amongst these is eliminated first.

Lemma 16. Let ub be the upper bound on the weighted treewidth obtained from applying WM-
FEO1, WMFEO2, or WMFEO3 to a graphG = (V, E, w). The weighted treewidth ofG is at
mostub.

The Ratio Heuristic, Weighted Variant (WRATIO) We have adapted the two versions of
Ratio heuristic introduced in [2], to be used for computing an upper bound on the weighted
treewidth of a weighted graph. The rules we use for selecting a vertex that we should eliminate
are as follows: Again, as long as there are safe vertices in the temporary graph, namely, simplicial
and/or strongly almost simplicial vertices, we eliminate these first, and set the upper bound to
the maximum of its current value and the maximum neighborhood weight of these vertices.
After that, each version of the heuristic proceeds in a different way. In version 1, we proceed as
follows: Let p be a vertex with the minimumfill-in in the temporary graphG′ of a graphG. A
vertexw 6= p in the temporary graph is selected if thefill-in-excl-oneof w is less than or equal
to thefill-in of p, its neighborhood weight is at most a lower bound on the weighted treewidth of
G, nw(v) ≤ wtw(G), thew(v) ≤ w(x), wherex is the excluded neighbor ofw, and it satisfies
the following condition. Letr1(w) = fill-in-excl-one(w)/ fill-in(p), andr2(w) = nw(w)/nw(p).
We now require thatr1(w) < r2(w) to be a candidate for selection at this point. If we have more
than one such candidate, we select from these a vertex with the minimum difference betweenr1

andr2, (r1 − r2).
In version 2 of this heuristic, we proceed as follows: For allw ∈ W (G′), we select the vertex

of the minimum ratior(w) = fill-in(w) / nw(w), (nw(w) > 1) amongst all vertices ofG′.

Lemma 17. Letub be the upper bound on the weighted treewidth obtained from applying WRATIO
(version 1 or version 2) to a graphG = (V, E, w). The weighted treewidth ofG is at mostub.

We end this subsection with some general observations.

Lemma 18. LetG be a complete weighted graph,wtw(G) =
∏

v∈V (w(v)).

Proof. In Lemma 1, (3), we see that if(X = {Xi|i ∈ I}, T = (I, F )) is a tree decomposition of
G of minimum weighted width andW ⊆ V form a clique inG. Then there exists ani ∈ I with
W ⊆ Xi. Thus, the weighted treewidth ofG is at least

∏
v∈V (w(v)). In Lemma 9, we see that

the weighted treewidth ofG is at most
∏

v∈V (w(v)). Hence, the weighted treewidth ofG equals∏
v∈V (w(v)). ut
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Lemma 19. Let G = (V, E, w) be a triangulated weighted graph. The weighted treewidth ofG
equals the upper bound obtained from the MMNWub heuristic.

Proof. We use induction to|V |. The result clearly holds when|V | = 1. Suppose thatv is the first
vertex selected. Thus,nw(v) = minw∈V nw(w). Let G′ be the temporary graph, obtained from
eliminatingv from G, i.e.,G′ is obtained by turning the neighborhood ofv into a clique and then
removingv and its incident edges.

G′ is again a triangulated graph. Consider a cycleC of length at least four inG′. If each edge
in C is an edge inG, then clearlyC has a chord, asG is triangulated. Supposex, y are successive
vertices onC with {x, y} an edge inG′ but not inG. Thenx andy are neighbors ofv. Consider
the cycleC ′ in G, obtained by insertingv betweenx andy in C. This cycle must have a chord in
G: this chord is either the edge{x, y} (impossible by assumption), also a chord inG′, or of the
form {v, z} for somez onC. As C has length at least four, eitherx or y is not successive toz on
C, sayx. Then the edge{x, z} is added toG′ when eliminatingv, so againC has a chord. Thus,
we have shown that each cycle inG′ of length at least four has a chord, thusG′ is triangulated.

We can observe that the MMNWub heuristic outputs the maximum of the neighborhood
weight of v and the result of running the MMNWub heuristic onG′. Let w be a simplicial
vertex inG. We havenw(v) ≤ nw(w), and the weighted treewidth ofG is at leastnw(w), by the
simpliciality of w. As G′ is triangulated, the MMNWub heuristic gives the weighted treewidth
of G′, i.e., the maximum weight over all maximal cliquesQ in G′.

Thus, it remains to show that for each (maximal) cliqueQ in G′, the weight is at most the
weighted treewidth ofG. If Q is also a clique inG, then this clearly holds. Suppose now thatQ
is not a clique inG. ThenQ′ = Q ∩N(v) 6= ∅. We consider two cases.

– Q′ = Q. I.e., all vertices inQ belong toN(v). Then the weight ofQ is at mostnw(v), hence
at most the weighted treewidth ofG.

– Q′ 6= Q. Then there is a vertexz ∈ Q, z 6∈ N(v). For each pair of verticesx, y ∈ Q′,
x 6= y, look at the cyclev, x, z, y. This is a cycle inG of length four inG, and asz 6∈ N(v),
{x, y} ∈ E. But now we have thatv is simplicial, and so no edges are added when eliminating
v, and thusQ is also a clique inG.

ut

Lemma 20. Let G = (V, E) be a triangulated graph. The weighted treewidth ofG equals the
upper bound obtained from the following upper bound heuristics:

1. The MFW heuristic.
2. The WMFEO heuristic.
3. The WRATIO heuristic.

Proof. This follows as these algorithms select at each step a simplicial vertex. ut

3.3 Improving Upper and Lower Bound Heuristics

In order to obtain better lower and upper bounds on the weighted treewidth from the above heuris-
tics, it is wisely to incorporate some safe rules in theselection conditionsof these heuristics. One
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can do that as follows. At each step when we have to select and eliminate a vertex for the graph
using some specific selection conditions, we choose the vertices that do not cause a worse upper
or lower bound than that we will obtain when we select other vertices. An example for such safe
rules is the rule of selecting simplicial and strongly almost simplicial vertices whenever they ex-
ist. The question that could be arise now is the following. Is it worthwhile to spent some time to
test, at each state, whether or not there are simplicial or strongly almost simplicial vertices in the
graph? Theoretically, it has been proved that selecting of these vertices is safe (see Lemma’s 12
and 13). Practically, the results of our experiments reported in Section 4 and the results reported
in [7] support this.

3.4 A branch and bound algorithm for weighted treewidth

After we have introduced a number of heuristics for determining lower and upper bounds on
weighted treewidth in the previous sections, we introduce in this section a weighted variant of
branch and bound algorithm,BB-tw that we have introduced in [3], for computing the exact
weighted treewidth of weighted graphs. The goals for developing this algorithm were: First, to
determine the exact weighted treewidth of some graphs, in particular for graphs with at most 50
vertices. Second, to be able to more precisely establish the quality of the given upper and lower
bound, as an exact algorithm allows us to compare the outcome of these heuristics with the exact
values. Third, we can use branch and bound algorithm for improving the upper and lower bounds
on the weighted treewidth, obtained from the above heuristics, as we have described in [3], if
determining the exact weighted treewidth is not possible within a reasonable time.

In the weighted variant of branch and bound algorithm, W-BB-tw, we have the same space of
all feasible solutions as that we have described for unweighted variant. Briefly, this space consists
of all possible elimination orderings of the vertices of the given graph. The input to the algorithm
are a weighted graphG = (V, E, w), the best known upper and lower bounds, obtained from
the heuristics for the weighted treewidth ofG described in this paper, and a perfect elimination
ordering that gave the best upper bound that is known. The algorithm works as follows: At the
beginning, we check whether the best upper bound,ub, equals the best lower bound,lb, obtained
from the upper and lower bound heuristics. If so, then the algorithm return this value as the exact
weighted treewidth ofG. Otherwise, we test every (apart from pruning) possible elimination or-
derings, in the space of all feasible solutions, whether the elimination of the vertices of the graph
due to this order produces an exact weighted treewidth or a better upper bound than reported so
far. Moreover, we prune any solution in that space, which delivers an upper bound that is greater
than or equal to the reported one so far. The steps for eliminating the vertices of the graph and
producing a triangulation ofG for each elimination ordering are as it is described in Figure 3.

The pruning rules that we have incorporated in this variant of the algorithm are similar to
those we used for unweighted variant in [3]. We have adapted all the pruning rules we have
described for unweighted variant to be used for the weighted variant. The following two Lemmas
show the differences in the methods of computing the treewidth of a graph and the weighted
treewidth of a weighted graph.
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Lemma 21. Let H1, · · · , Hr, r ≥ 1, be all possible triangulated graphs of a graphG. Let
Q1, . . . , Qr be the cliques of maximum size inH1, · · · , Hr. Then, the treewidth ofG equals the
minimum size ofQ1, · · · , Qr.

Proof. Let Hi be a triangulated graph ofG, Qi = (W, F ) be a clique of the maximum size in
Hi, Di = {(Xi|i ∈ I, T = (I, F )} be a tree decomposition ofHi. Then the treewidth ofH
equals|W | − 1 (Lemma 1). The treewidth ofG equals the minimum width of all possible tree
decompositions ofG minus 1 (def. of the treewidth). Therefore, the treewidth ofG equals the
minimum size of the maximum cliques of all possible triangulated graphs ofG. ut

Lemma 22. LetH1, · · · , Hr, r ≥ 1, be all possible triangulated graphs of a weighted graphG.
Let Q1, . . . , Qr be the cliques of maximum weight inH1, · · · , Hr. Then, the weighted treewidth
of G equals the minimum weight ofQ1, · · · , Qr.

Proof. The proof of this lemma is similar to the proof of Lemma 21. Also here, if we suppose
thatHi be a triangulated graph ofG, Qi = (W, F ) be a clique of the maximum weight inHi,
Di = {(Xi|i ∈ I, T = (I, F )} be a tree decomposition ofHi. Then the weighted treewidth of
H equalsw(W ) =

∏
v∈W w(v). The weighted treewidth ofG equals the minimum weighted

width over all possible tree decompositions ofG (def. of the weighted treewidth). Therefore, the
weighted treewidth ofG equals the minimum of the maximum weights of the cliques over all
possible triangulated graphs ofG. ut

The differences in the manners in which the pruning rules can be used in both variants of the
problem follow from the differences in these two characterizations of treewidth and weighted
treewidth. Consider the pruning rules given in Section 3.2 of [3]. Some of these pruning rules
have to be modified when we consider the weighted variant, while the others remain as in the
unweighted variant. Below, we discuss the rules that are modified for the weighted case. The
rules that are not changed can be found in [3].

Pruning Rule 2: The weight of the temporary graph Let G′ be the temporary graph obtained
from eliminating a set of verticesX from a given weighted graphG. Let max be the maximum
neighborhood weight of all verticesx ∈ X, at the step when they were eliminated fromG and
added toX. If the total weight of the vertices inG′ is less than or equal to the value ofmax, then
we replace the upper bound value reported so far with the value ofmax, and prune the subtree
rooted at the last vertex,x ∈ X, that has been eliminated fromG and added to the setX, from
the space of all feasible solutions.

The rule becomes as follows in the weighted variant of the BB-tw algorithm.
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Pruning Rule 2:
let G = (V, E, w) be a weighted graph

(ub, lb) be the best upper and lower bound on thewtw(G),
reported so far,
G′ = (W, F, w) be the weighted graph after eliminating a set of
verticesX = {x|x ∈ V, x 6∈ W} and their incident edges fromG,
maximum = maxx∈X(nw(x)),
y be the last vertex that has been eliminated fromG,
w(G′) =

∏
w∈W w(w);

if (w(G′) ≤ maximum)
ub = maximum;
omit the subtree rooted at the parent of vertexy from the
space of all feasible solutions;

Lemma 23. Let G′ = (W, F, w′) be the weighted graph obtained from eliminating a vertexy
from a weighted graphG = (V, E, w) such that, for eachw ∈ W , w′(w) = w(w). Letr = nw(y)
at the step wheny is eliminated fromG. If

∏
w∈W w(w) < r, then the treewidth ofG is at mostr.

Proof. Eliminating the vertices of the graphG′ in any order and reporting the maximum of these
neighborhood seen during the process will not cause the treewidth of the graph to become larger
thanr sincer ≥

∏
w∈W w(w). ut

Pruning Rule 3: The weight of the eliminated vertex We check in this rule whether the neigh-
borhood weight of the vertex that we have to eliminate,nw(v), is greater than or equal to the
best upper bound on the weighted treewidth reported so far. If such a case holds, then the current
elimination ordering will not generate a better upper bound on the weighted treewidth than the
one we have reported right now. Therefore, we prune this elimination ordering from the space
of all feasible solutions and continue the search operation for the exact weighted treewidth or a
better upper bound in the next elimination ordering.

Pruning Rule 3
let v be the current vertex we have to eliminate from a graphG,

ub be the best upper bound on the weighted treewidth ofG we have
reported so far;

if nw(v) ≥ ub
omit the current elimination ordering from the space of all feasible
solutions;

Lemma 24. LetH = (W, F, w) be a weighted triangulation of a weighted graphG = (V, E, w)
andub be an upper bound on the weighted treewidth ofG. If ∃w ∈ W , nw(w) > ub andw is
simplicial, thenwtw(G) < wtw(H).
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Proof. Sincew is simplicial in H, the weighted treewidth ofH is at least the neighborhood
weight of w, nw(w) (Lemma 12). Now, we have thatnw(w) is greater than an upper bound
on the weighted treewidth ofG. Thus, the weighted treewidth ofG is less than the weighted
treewidth ofH. ut

Pruning Rule 5: Simplicial and strongly almost simplicial vertices In the Pruning Rule 5 of
the branch and bound algorithm BB-tw for unweighted graphs introduced in [3], if the graph
contains any simplicial or a strongly almost simplicial with a degree at most the best upper
bound reported so far, then we eliminate this vertex or these vertices from the graph and prune
all the elimination orderings from the space of all feasible solutions which, the values of their
elements equal the values of their correspond elements of the current elimination ordering up to
this position.

In the weighted variant of the algorithm, this rule is a rather straightforward generalization
of the unweighted variant in the case of simplicial vertices. But, in the case of almost simplicial
vertices, a vertex should fulfil to the following conditions to be strongly almost simplicial: The
vertices in its neighborhood form an almost clique, its neighborhood weight is at most the best
upper bound reported right now, and its weight is at most the weight of the excluding vertex from
its neighbor.

Pruning Rule 5
let v be the current vertex we have to eliminate from a graphG;
if v is simplicial orv is strongly almost simplicial

omit all the subtrees rooted at the parent ofv from the space of all feasible
solutions excluding the subtree rooted atv;

4 Computational Experiments

In this section, we report on computational experiments for the seven heuristics for computing an
upper bound on weighted treewidth, introduced in Section 3.2, the two heuristics for computing
a lower bound on the weighted treewidth, introduced in Section 3.1, and the branch and bound
algorithm for computing the exact weighted treewidth for a graph, BB-tw, introduced in Section
3.4.

All algorithms were implemented using C++ on a Windows 2000 PC with Pentium 4, 2.8
GHz processor. The tables shown in this section include besides the basic information for the
graph, also columns for the treewidth of the graph (tw), the upper bound (ub), the lower bound
(lb) on the weighted treewidth and the running time of the algorithm (t). We use the character ”*”
in the columnt to indicate that the algorithm did not terminate normally, namely, the algorithm
did run out of time. We defined three hours as the maximum time limit for running the BB-tw
algorithm on the input graph, i.e., if the algorithm did not find the exact treewidth within three
hours, then it was ended and returned an upper bound value for the treewidth.

Each table we give in this section includes 15 instances of sizes between 21 and 441 vertices,
and between 27 and 806 edges. The Alarm, Oesoca, Vsd and Wilson are probabilistic networks
taken from medical applications; several versions exist of the Myciel networks. The Barley and
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Mildew networks are used for agricultural purposes, the Water network models a water purifi-
cation process and Oow-trad, Oow-bas, Oow-solo, and Ship-ship networks are developed for
maritime use. The other graphs are obtained from the well-known DIMACS benchmarks for
vertex coloring.1

In Table 1, we show the results of the implementation of the BB-tw algorithm, weighted
variant, on this set of graphs. We observe that BB-tw algorithm, weighted variant, was able to
determine the exact weighted treewidth for all instances of sizes less than 50 vertices except one,
namely, Ship-ship, within a running time between0.0009 and7640.44 seconds.

Graphname|V | |E| bestlb bestub tw t

Alarm 37 65 32 32 32 0.00
Barley 48 126 151200 1.22472e7 6.3504e6 3115
Mildew 35 80 280000 1.7568e6 805200 0.16
Oesoca 39 67 240 240 240 0.00
Oesoca42 42 72 240 240 240 0.00
Oesoca+ 67 208 5760 92160 69120 22.472
Oow-bas 27 54 18270 822150 510300 3.240
Oow-solo 40 87 18270 3.402e6 2.916e6 7640.44
Oow-trad 33 72 18270 3.1789e7 2.48472e6 4734.76
Ship-ship 50 114 56700 1.2096e8 6.2208e7 *
VSD 38 62 240 360 360 0.00
Water 32 123 16384 1.76947e6 589824 0.381
Wilson 21 27 108 108 108 0.00

Table 1.Results of the WBB-tw algorithm

1 See http://www.cs.uu.nl/people/hansb/treewidthlib.
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In Table 2, we show the results of implementing the upper bound heuristics, introduced in
Section 3.2 on the same set of graphs.

We notice clearly from the results in these tables the following: First, the upper bounds of 5
instances, obtained from these heuristics, equal the exact weighted treewidths of these instances,
where the best lower bounds of all these five instances equal their best upper bounds. Second,
the upper bounds obtained from the three versions of WMFEO are better than or equal to those
obtained from MMNWF as well as from MFW for all instances of Table 2. Third, the upper
bounds of two instances, namely, Oesoca+ and Oow-solo, obtained from WMFEO, version 1 and
3 are better than the upper bounds obtained from all other upper bound heuristics for the same
graphs. Fourth, the upper bound of only one graph, namely, Oow-trad, obtained from Ratio1 is
better than that obtained from all other upper bound heuristics for the same graph. Five, the upper
bound obtained from Ratio2 heuristic are the worst amongst all other upper bound heuristic, for
all graphs of Table 2. The running time of implementing the upper bound heuristics on this set
of graphs are given in Table 3.

Finally, in Table 4, we give the results of implementing the two lower bound heuristics, in-
troduced in Section 3.1, for the weighted treewidth of a weighted graph. The lower bounds of 5
instances, obtained from one of these heuristics or both of them, equal to their exact weighted
treewidth. We notice that the gaps between the lower bounds obtained from these heuristics and
the exact weighted treewidths for many of these graphs are very large, specially when the lower
bound does not equal to the lower bound on the weighted treewidth of a graph. For many in-
stances, MMNWlb heuristic performs better thanγw(G) heuristic. This is because in MMNWlb
heuristic, we select a vertex that satisfies to the safe preprocessing rules before we select any other
vertex, while we do not do that inγw(G) heuristic.

Graphname Size ub lb Heuristic
MMNW lb γw(G)

|V | |E| lb t lb t
alarm 37 65 32 32 0 32 1
barley 48 126 1.224727e7151200 0 100800 1
mildew 35 80 1.7568e6 280000 0 280000 0
munin1 189 366 7.84e7 3600 0 1280 1.07
oesoca 39 67 240 240 0 240 0
oesoca42 42 72 240 240 0 240 0
oesoca+ 67 208 69120 8640 0 1920 0
oow bas 27 54 822150 28594 0 18270 0
oow solo 40 87 3.402e6 24300 0 18270 0
oow trad 33 72 3.17898e7 28350 0 18270 0
pigs 441 806 177147 729 1 81 43
ship-ship 50 114 1.2096e8107520 0 56700 0
VSD 38 62 360 360 0 240 0
water 32 123 1.76947e6 16384 0 16384 0
wilson-hugin 21 27 108 108 0 54 0

Table 4.Results of the lower bound heuristics introduced in Section 3.1
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